Li ZW, Yang W, Huang M, Yang X, Zhu CG et al. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. Opto-Electron Adv 4, 210017 (2021). doi: 10.29026/oea.2021.210017
Citation: Li ZW, Yang W, Huang M, Yang X, Zhu CG et al. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. Opto-Electron Adv 4, 210017 (2021) . doi: 10.29026/oea.2021.210017

Original Article Open Access

Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors

More Information
  • Mix-dimensional van der Waals heterostructures (vdWHs) have inspired worldwide interests and efforts in the field of advanced electronics and optoelectronics. The fundamental understanding of interfacial charge transfer is of vital importance for guiding the design of functional optoelectronic applications. In this work, type-II 0D-2D CdSe/ZnS quantum dots/MoS2 vdWHs are designed to study the light-triggered interfacial charge behaviors and enhanced optoelectronic performances. From spectral measurements in both steady and transient states, the phenomena of suppressed photoluminescence (PL) emissions, shifted Raman signals and changed PL lifetimes provide strong evidences of efficient charge transfer at the 0D-2D interface. A series of spectral evolutions of heterostructures with various QDs overlapping concentrations at different laser powers are analyzed in details, which clarifies the dynamic competition between exciton and trion during an efficient doping of 3.9×1013 cm−2. The enhanced photoresponses (1.57×104 A·W–1) and detectivities (2.86×1011 Jones) in 0D/2D phototransistors further demonstrate that the light-induced charge transfer is still a feasible way to optimize the performance of optoelectronic devices. These results are expected to inspire the basic understanding of interfacial physics at 0D/2D interfaces, and shed the light on promoting the development of mixed-dimensional optoelectronic devices in the near future.
  • 加载中
  • [1] Zhang Z, Lin P, Liao QL, Kang Z, Si HN et al. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv Mater 31, 1806411 (2019). doi: 10.1002/adma.201806411

    CrossRef Google Scholar

    [2] Jariwala D, Marks TJ, Hersam MC. Mixed-dimensional van der Waals heterostructures. Nat Mater 16, 170–181 (2017). doi: 10.1038/nmat4703

    CrossRef Google Scholar

    [3] Zeng QS, Liu Z. Novel optoelectronic devices: transition-metal-dichalcogenide-based 2D heterostructures. Adv Electron Mater 4, 1700335 (2018). doi: 10.1002/aelm.201700335

    CrossRef Google Scholar

    [4] Hu C, Dong DD, Yang XK, Qiao KK, Yang D et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv Funct Mater 27, 1603605 (2017). doi: 10.1002/adfm.201603605

    CrossRef Google Scholar

    [5] Song XF, Liu XH, Yu DJ, Huo CX, Ji JP et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces 10, 2801–2809 (2018). doi: 10.1021/acsami.7b14745

    CrossRef Google Scholar

    [6] Yang TF, Wang X, Zheng BY, Qi ZY, Ma C et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano 13, 7996–8003 (2019). doi: 10.1021/acsnano.9b02676

    CrossRef Google Scholar

    [7] Li F, Feng YX, Li ZW, Ma C, Qu JY et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv Mater 31, 1901351 (2019). doi: 10.1002/adma.201901351

    CrossRef Google Scholar

    [8] Prins F, Goodman AJ, Tisdale WA. Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett 14, 6087–6091 (2014). doi: 10.1021/nl5019386

    CrossRef Google Scholar

    [9] Lin Z, Carvalho BR, Kahn E, Lv RT, Rao R et al. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater 3, 22002 (2016). doi: 10.1088/2053-1583/3/2/022002

    CrossRef Google Scholar

    [10] Bertolazzi S, Bonacchi S, Nan GJ, Pershin A, Beljonne D et al. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv Mater 29, 1606760 (2017). doi: 10.1002/adma.201606760

    CrossRef Google Scholar

    [11] Nguyen DA, Oh HM, Duong NT, Bang S, Yoon SJ et al. Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots. ACS Appl Mater Interfaces 10, 10322–10329 (2018). doi: 10.1021/acsami.7b18419

    CrossRef Google Scholar

    [12] Li ZW, Liu CX, Rong X, Luo Y, Cheng HT et al. Tailoring MoS2 valley-polarized photoluminescence with super chiral near-field. Adv Mater 30, 1801908 (2018). doi: 10.1002/adma.201801908

    CrossRef Google Scholar

    [13] Li ZW, Li Y, Han TY, Wang XL, Yu Y et al. Tailoring MoS2 exciton-plasmon interaction by optical spin-orbit coupling. ACS Nano 11, 1165–1171 (2017). doi: 10.1021/acsnano.6b06834

    CrossRef Google Scholar

    [14] Ying HT, Li X, Wang HM, Wang YR, Hu X et al. Band structure engineering in MoS2 based heterostructures toward high-performance phototransistors. Adv Opt Mater 8, 2000430 (2020). doi: 10.1002/adom.202000430

    CrossRef Google Scholar

    [15] Hou HL, Zhang XW. Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chem Eng J 395, 125030 (2020). doi: 10.1016/j.cej.2020.125030

    CrossRef Google Scholar

    [16] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat Nanotech 7, 363–368 (2012). doi: 10.1038/nnano.2012.60

    CrossRef Google Scholar

    [17] Zheng DS, Wang JL, Hu WD, Liao L, Fang HH et al. When nanowires meet ultrahigh ferroelectric field−high-performance full-depleted nanowire photodetectors. Nano Lett 16, 2548–2555 (2016). doi: 10.1021/acs.nanolett.6b00104

    CrossRef Google Scholar

    [18] Luo WJ, Weng QC, Long MS, Wang P, Gong F et al. Room-temperature single-photon detector based on single nanowire. Nano Lett 18, 5439–5445 (2018). doi: 10.1021/acs.nanolett.8b01795

    CrossRef Google Scholar

    [19] Kufer D, Lasanta T, Bernechea M, Koppens FHL, Konstantatos G. Interface engineering in hybrid quantum dot–2D phototransistors. ACS Photonics 3, 1324–1330 (2016). doi: 10.1021/acsphotonics.6b00299

    CrossRef Google Scholar

    [20] Bessonov AA, Allen M, Liu YL, Malik S, Bottomley J et al. Compound quantum dot-perovskite optical absorbers on graphene enhancing short-wave infrared photodetection. ACS Nano 11, 5547–5557 (2017). doi: 10.1021/acsnano.7b00760

    CrossRef Google Scholar

    [21] Kagan CR, Lifshitz E, Sargent EH, Talapin DV. Building devices from colloidal quantum dots. Science 353, aac5523 (2016). doi: 10.1126/science.aac5523

    CrossRef Google Scholar

    [22] Wang HM, Li CH, Fang PF, Zhang ZL, Zhang JZ. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem Soc Rev 47, 6101–6127 (2018). doi: 10.1039/C8CS00314A

    CrossRef Google Scholar

    [23] Subbaiah YPV, Saji KJ, Tiwari A. Atomically thin MoS2: a versatile nongraphene 2D material. Adv Funct Mater 26, 2046–2069 (2016). doi: 10.1002/adfm.201504202

    CrossRef Google Scholar

    [24] Cheng YC, Li HJW, Liu B, Jiang LY, Liu M et al. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small 16, 2005217 (2020). doi: 10.1002/smll.202005217

    CrossRef Google Scholar

    [25] Wu HL, Kang Z, Zhang ZH, Zhang Z, Si HN et al. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der Waals heterostructures. Adv Funct Mater 28, 1802015 (2018). doi: 10.1002/adfm.201802015

    CrossRef Google Scholar

    [26] Wu HL, Si HN, Zhang ZH, Kang Z, Wu PW et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv Sci 5, 1801219 (2018). doi: 10.1002/advs.201801219

    CrossRef Google Scholar

    [27] Zhang LW, Shen SL, Li M, Li LY, Zhang JB et al. Strategies for air-stable and tunable monolayer MoS2-based hybrid photodetectors with high performance by regulating the fully inorganic trihalide perovskite nanocrystals. Adv Opt Mater 7, 1801744 (2019). doi: 10.1002/adom.201801744

    CrossRef Google Scholar

    [28] Luo P, Zhuge FW, Wang FK, Lian LY, Liu KL et al. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano 13, 9028–9037 (2019). doi: 10.1021/acsnano.9b03124

    CrossRef Google Scholar

    [29] Tang X, Lai KWC. Graphene/HgTe quantum-dot photodetectors with gate-tunable infrared response. ACS Appl Nano Mater 2, 6701–6706 (2019). doi: 10.1021/acsanm.9b01587

    CrossRef Google Scholar

    [30] Nikitskiy I, Goossens S, Kufer D, Lasanta T, Navickaite G et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat Commun 7, 11954 (2016). doi: 10.1038/ncomms11954

    CrossRef Google Scholar

    [31] Liu H, Wang C, Wang T, Hu XM, Liu DM et al. Controllable interlayer charge and energy transfer in perovskite quantum dots/transition metal dichalcogenide heterostructures. Adv Mater Interfaces 6, 1901263 (2019). doi: 10.1002/admi.201901263

    CrossRef Google Scholar

    [32] Zhang SK, Wang XD, Chen Y, Wu GJ, Tang YC et al. Ultrasensitive hybrid MoS2-ZnCdSe quantum dot photodetectors with high gain. ACS Appl Mater Interfaces 11, 23667–23672 (2019). doi: 10.1021/acsami.9b03971

    CrossRef Google Scholar

    [33] Ahn S, Chen WJ, Moreno-Gonzalez MA, Lockett M, Wang JY et al. Enhanced charge transfer and responsivity in hybrid quantum dot/graphene photodetectors using ZnO as intermediate electron-collecting layer. Adv Electron Mater 6, 2000014 (2020). doi: 10.1002/aelm.202000014

    CrossRef Google Scholar

    [34] Ye GL, Gong YJ, Lin JH, Li B, He YM et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett 16, 1097–1103 (2016). doi: 10.1021/acs.nanolett.5b04331

    CrossRef Google Scholar

    [35] Li SS, Lin YC, Zhao W, Wu J, Wang Z et al. Vapor-liquid-solid growth of monolayer MoS2 nanoribbons. Nat Mater 17, 535–542 (2018). doi: 10.1038/s41563-018-0055-z

    CrossRef Google Scholar

    [36] Liu P, Zhu XQ, Feng C, Huang M, Li J et al. Enhanced p-type behavior in the hybrid structure of graphene quantum dots/2D-WSe2. Appl Phys Lett 111, 111603 (2017). doi: 10.1063/1.4989598

    CrossRef Google Scholar

    [37] Cho H, Jeong SH, Park MH, Kim YH, Wolf C et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015). doi: 10.1126/science.aad1818

    CrossRef Google Scholar

    [38] Ning ZJ, Gong XW, Comin R, Walters G, Fan FJ et al. Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015). doi: 10.1038/nature14563

    CrossRef Google Scholar

    [39] Cho IW, Ryu MY. Enhancement of luminescence properties and stability in perovskite hybrid structure with CdSe/ZnS quantum dots. APL Mater 7, 051112 (2019). doi: 10.1063/1.5097331

    CrossRef Google Scholar

    [40] Cho IW, Ryu MY. Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots. Sci Rep 9, 18433 (2019). doi: 10.1038/s41598-019-54860-1

    CrossRef Google Scholar

    [41] Lanzafame JM, Miller RJD, Muenter AA, Parkinson BA. Ultrafast charge-transfer dynamics at tin disulfide surfaces. J Phys Chem 96, 2820–2826 (1992). doi: 10.1021/j100186a008

    CrossRef Google Scholar

    [42] Shi HY, Yan RS, Bertolazzi S, Brivio J, Gao B et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013). doi: 10.1021/nn303973r

    CrossRef Google Scholar

    [43] Liu B, Zhao WJ, Ding ZJ, Verzhbitskiy I, Li LJ et al. Engineering bandgaps of monolayer MoS2 and WS2 on fluoropolymer substrates by electrostatically tuned many-body effects. Adv Mater 28, 6457–6464 (2016). doi: 10.1002/adma.201504876

    CrossRef Google Scholar

    [44] Mak KF, He KL, Lee C, Lee GH, Hone J et al. Tightly bound trions in monolayer MoS2. Nat Mater 12, 207–211 (2013). doi: 10.1038/nmat3505

    CrossRef Google Scholar

    [45] Suh J, Park TE, Lin DY, Fu DY, Park J et al. Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett 14, 6976–6982 (2014). doi: 10.1021/nl503251h

    CrossRef Google Scholar

    [46] Ross JS, Wu SF, Yu HY, Ghimire NJ, Jones AM et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 4, 1474 (2013). doi: 10.1038/ncomms2498

    CrossRef Google Scholar

    [47] Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett 13, 5944–5948 (2013). doi: 10.1021/nl403036h

    CrossRef Google Scholar

    [48] Li L, Wang WK, Chai Y, Li HQ, Tian ML et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv Funct Mater 27, 1701011 (2017). doi: 10.1002/adfm.201701011

    CrossRef Google Scholar

    [49] Island OJ, Blanter SI, Buscema M, van der Zant HSJ, Castellanos-Gomez A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett 15, 7853–7858 (2015). doi: 10.1021/acs.nanolett.5b02523

    CrossRef Google Scholar

  • Supplementary information for Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint