Citation: | Fan XT, Wu TZ, Liu B, Zhang R, Kuo HC et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv 4, 210022 (2021).. doi: 10.29026/oea.2021.210022 |
[1] | Pust P, Schmidt PJ, Schnick W. A revolution in lighting. Nat Mater 14, 454–458 (2015). doi: 10.1038/nmat4270 |
[2] | Reineke S. Complementary LED technologies. Nat Mater 14, 459–462 (2015). doi: 10.1038/nmat4277 |
[3] | Jiang HX, Jin SX, Li J, Shakya J, Lin JY. III-nitride blue microdisplays. Appl Phys Lett 78, 1303–1305 (2001). doi: 10.1063/1.1351521 |
[4] | Jin SX, Li J, Lin JY, Jiang HX. InGaN/GaN quantum well interconnected microdisk light emitting diodes. Appl Phys Lett 77, 3236–3238 (2000). doi: 10.1063/1.1326479 |
[5] | Jin SX, Li J, Li JZ, Lin JY, Jiang HX. GaN microdisk light emitting diodes. Appl Phys Lett 76, 631–633 (2000). doi: 10.1063/1.125841 |
[6] | Wu TZ, Sher CW, Lin Y, Lee CF, Liang F et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl Sci 8, 1557 (2018). doi: 10.3390/app8091557 |
[7] | Liu ZJ, Lin CH, Hyun BR, Sher CW, Lv ZJ et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl 9, 83 (2020). doi: 10.1038/s41377-020-0268-1 |
[8] | Yin YM, Hu ZP, Ali MU, Duan M, Gao L et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv Mater Technol 5, 2000251 (2020). doi: 10.1002/admt.202000251 |
[9] | Huang YG, Hsiang EL, Deng MY, Wu ST. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci Appl 9, 105 (2020). doi: 10.1038/s41377-020-0341-9 |
[10] | Zhou XJ, Tian PF, Sher CW, Wu J, Liu HZ et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quant Electron 71, 100263 (2020). doi: 10.1016/j.pquantelec.2020.100263 |
[11] | Hong YJ, Lee CH, Yoon A, Kim M, Seong HK et al. Visible-color-tunable light-emitting diodes. Adv Mater 23, 3284–3288 (2011). doi: 10.1002/adma.201100806 |
[12] | Chen SWH, Huang YM, Singh KJ, Hsu YC, Liou FJ et al. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Res 8, 630–636 (2020). doi: 10.1364/PRJ.388958 |
[13] | Gou FW, Hsiang EL, Tan GJ, Lan YF, Tsai CY et al. Tripling the optical efficiency of color-converted micro-LED displays with funnel-tube array. Crystals 9, 39 (2019). doi: 10.3390/cryst9010039 |
[14] | Jeong CK, Park KI, Son JH, Hwang GT, Lee SH et al. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ Sci 7, 4035–4043 (2014). doi: 10.1039/C4EE02435D |
[15] | Ding K, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H. Micro-LEDs, a manufacturability perspective. Appl Sci 9, 1206 (2019). doi: 10.3390/app9061206 |
[16] | Wang K, Du YX, Liang J, Zhao JY, Xu FF et al. Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv Mater 32, 2001999 (2020). doi: 10.1002/adma.202001999 |
[17] | Mei WH, Zhang ZQ, Zhang AD, Li D, Zhang XY et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res 13, 2485–2491 (2020). doi: 10.1007/s12274-020-2883-9 |
[18] | Shirasaki Y, Supran GJ, Bawendi MG, Bulović V. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 7, 13–23 (2013). doi: 10.1038/nphoton.2012.328 |
[19] | Ho SJ, Hsu HC, Yeh CW, Chen HS. Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays. ACS Appl Mater Interfaces 12, 33346–33351 (2020). doi: 10.1021/acsami.0c05646 |
[20] | Kim T, Kim KH, Kim S, Choi SM, Jang H et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020). doi: 10.1038/s41586-020-2791-x |
[21] | Sekiguchi H, Kishino K, Kikuchi A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl Phys Lett 96, 231104 (2010). doi: 10.1063/1.3443734 |
[22] | Lin HY, Sher CW, Hsieh DH, Chen XY, Chen HMP et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Res 5, 411–416 (2017). doi: 10.1364/PRJ.5.000411 |
[23] | Chen HS, Hsu CK, Hong HY. InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photon Technol Lett 18, 193–195 (2006). doi: 10.1109/LPT.2005.859540 |
[24] | Zhou BZ, Liu MJ, Wen YW, Li Y, Chen R. Atomic layer deposition for quantum dots based devices. Opto-Electron Adv 3, 190043 (2020). |
[25] | Rindermann JJ, Pozina G, Monemar B, Hultman L, Amano H et al. Dependence of resonance energy transfer on exciton dimensionality. Phys Rev Lett 107, 236805 (2011). doi: 10.1103/PhysRevLett.107.236805 |
[26] | Clapp AR, Medintz IL, Mattoussi H. Förster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 7, 47–57 (2006). doi: 10.1002/cphc.200500217 |
[27] | Han HV, Lin HY, Lin CC, Chong WC, Li JR et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt Express 23, 32504–32515 (2015). doi: 10.1364/OE.23.032504 |
[28] | Zhang F, Liu J, You GJ, Zhang CF, Mohney SE et al. Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs. Opt Express 20, A333–A339 (2012). doi: 10.1364/OE.20.00A333 |
[29] | Chanyawadee S, Lagoudakis PG, Harley RT, Charlton MDB, Talapin DV et al. Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer. Adv Mater 22, 602–606 (2010). doi: 10.1002/adma.200902262 |
[30] | Wang SW, Hong KB, Tsai YL, Teng CH, Tzou AJ et al. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Sci Rep 7, 42962 (2017). doi: 10.1038/srep42962 |
[31] | Itskos G, Heliotis G, Lagoudakis PG, Lupton J, Barradas NP et al. Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga, In)N quantum well/polyfluorene semiconductor heterostructures. Phys Rev B 76, 035344 (2007). doi: 10.1103/PhysRevB.76.035344 |
[32] | Kos Š, Achermann M, Klimov VI, Smith DL. Different regimes of Förster-type energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals. Phys Rev B 71, 205309 (2005). doi: 10.1103/PhysRevB.71.205309 |
[33] | Medintz IL, Clapp AR, Melinger JS, Deschamps JR, Mattoussi H. A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer. Adv Mater 17, 2450–2455 (2005). doi: 10.1002/adma.200500722 |
[34] | Heliotis G, Itskos G, Murray R, Dawson MD, Watson IM et al. Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer. Adv Mater 18, 334–338 (2006). doi: 10.1002/adma.200501949 |
[35] | Achermann M, Petruska MA, Kos S, Smith DL, Koleske DD et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004). doi: 10.1038/nature02571 |
[36] | Achermann M, Petruska MA, Koleske DD, Crawford MH, Klimov VI. Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett 6, 1396–1400 (2006). doi: 10.1021/nl060392t |
[37] | Vaghasiya JV, Sonigara KK, Suresh L, Panahandeh-Fard M, Soni SS et al. Efficient power generating devices utilizing low intensity indoor lights via non-radiative energy transfer mechanism from organic ionic redox couples. Nano Energy 60, 457–466 (2019). doi: 10.1016/j.nanoen.2019.03.086 |
[38] | Sahoo H. Förster resonance energy transfer – a spectroscopic nanoruler: principle and applications. J Photochem Photobiol C 12, 20–30 (2011). doi: 10.1016/j.jphotochemrev.2011.05.001 |
[39] | Krishnan C, Mercier T, Rahman T, Piana G, Brossard M et al. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting. Nanoscale 11, 18837–18844 (2019). doi: 10.1039/C9NR04003J |
[40] | Tian PF, McKendry JJD, Gong Z, Guilhabert B, Watson IM et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl Phys Lett 101, 231110 (2012). doi: 10.1063/1.4769835 |
[41] | Olivier F, Daami A, Licitra C, Templier F. Shockley-read-hall and auger non-radiative recombination in GaN based LEDs: a size effect study. Appl Phys Lett 111, 022104 (2017). doi: 10.1063/1.4993741 |
[42] | Kim IS, Martinson ABF. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers. J Mater Chem A 3, 20092–20096 (2015). doi: 10.1039/C5TA07186K |
[43] | Richters JP, Voss T, Kim DS, Scholz R, Zacharias M. Enhanced surface-excitonic emission in ZnO/Al2O3 core-shell nanowires. Nanotechnology 19, 305202 (2008). doi: 10.1088/0957-4484/19/30/305202 |
[44] | Wong MS, Hwang D, Alhassan AI, Lee C, Ley R et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt Express 26, 21324–21331 (2018). doi: 10.1364/OE.26.021324 |
[45] | Wong MS, Kearns JA, Lee C, Smith JM, Lynsky C et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt Express 28, 5787–5793 (2020). doi: 10.1364/OE.384127 |
[46] | Huang Chen SW, Shen CC, Wu TZ, Liao ZY, Chen LF et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res 7, 416–422 (2019). doi: 10.1364/PRJ.7.000416 |
[47] | Liu CY, Chen TP, Kao TS, Huang JK, Kuo HC et al. Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes. Opt Express 24, 19978–19987 (2016). doi: 10.1364/OE.24.019978 |
[48] | Ghataora S, Smith RM, Athanasiou M, Wang T. Electrically injected hybrid organic/inorganic III-nitride white light-emitting diodes with nonradiative Förster resonance energy transfer. ACS Photonics 5, 642–647 (2018). doi: 10.1021/acsphotonics.7b01291 |
[49] | Kang JH, Li BJ, Zhao TS, Johar MA, Lin CC et al. RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots. ACS Appl Mater Interfaces 12, 30890–30895 (2020). doi: 10.1021/acsami.0c00839 |
[50] | Krishnan C, Brossard M, Lee KY, Huang JK, Lin CH et al. Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica 3, 503–509 (2016). doi: 10.1364/OPTICA.3.000503 |
[51] | Zhuang Z, Guo X, Liu B, Hu FR, Li Y et al. High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv Funct Mater 26, 36–43 (2016). doi: 10.1002/adfm.201502870 |
[52] | Zhang QG, Wang B, Zheng WL, Kong L, Wan Q et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat Commun 11, 31 (2020). doi: 10.1038/s41467-019-13881-0 |
The corresponding developments of QD micro-LED. (a) The methods of mass production. (b) Atomic layer deposition passivation. (c) The mechanism of energy transfer between micro-LED chip and QDs. (d) Structural design for QD micro-LEDs. Figures reproduced with permission from: (a) ref.14, Royal Society of Chemistry; ref.15, under a Creative Commons Attribution License; ref.22, Chinese Laser Press; (d) ref.28, Optical Society of America; ref.29, John Wiley and Sons; ref.30, under a Creative Commons Attribution License.
Optical properties of the hybrid QW/QDs. Figure reproduced with permission from ref.35, Springer Nature.
(a) Electroluminescence (EL) wavelength spectrum of a 100 μm × 100 μm AlGaInP micro-LED and (b) light output power characteristics of 100 μm × 100 μm and 20 μm × 20 μm micro-LEDs with different sidewall treatments. The insets in (a) are EL images of the five micro-LED sizes at 1 A/cm2. Figures reproduced with permission from ref.45, Optical Society of America.
(a) PL emission spectra of micro-LEDs with and without ALD passivation. (b) Temperature-dependent time-resolved photoluminescence decay curves of micro-LEDs with and without ALD. Figures reproduced with permission from ref.46, under a Creative Commons Attribution License.
(a) Schematic of the nano-pillar LED. (b) Cross-sectional SEM image of a nano-pillar LED device. (c) SEM image of the QD-coated nanopillars. Figures reproduced with permission from ref.28, Optical Society of America.
Electroluminescence spectra of the (a) nano-pillar LED and (b) planar control samples with and without QD coupling. (c) Time-resolved photoluminescence decay curves of a nano-pillar LED sample with and without QD-coating. Figures reproduced with permission from ref.28, Optical Society of America.
(a) Schematic representation, (b) cross-sectional, and (c) top SEM images of a photonic quasicrystal LED hybridized with QD color converters. Figures reproduced with permission from ref.50, under a Creative Commons Attribution License.
Electroluminescence spectra of a PQC LED before (black solid line) and after hybridization (red solid line) with (a) QD-585 and (b) a blend of QD-535, QD-585, and QD-630, along with the absorption spectrum of QD-585 (orange dashed line) in (a) and the absorption spectrum of QD-535 (green dashed line), QD-585 (orange dashed line), and QD-630 (red dashed line) in (b). (c, d) Effective quantum yield (red solid circles) and effective color conversion efficiency (black open squares) of a PQC LED hybridized with QD-585 in (c) and with the QD blend in (d). Figures reproduced with permission from ref.50, under a Creative Commons Attribution License.
(a) Schematic diagrams of hybrid h-LED. (b) Bird’s eye view SEM image of ordered nano-hole arrays in the absence of QDs with ITO current spreading layer on the surface. (c) Cross-sectional view SEM image of nano-holes filled with NCs, and (d) transmission electron microscopy (TEM) image of CdSe/ZnS core/shell QDs and a high-resolution image in the inset. Figures reproduced with permission from ref.51, John Wiley and Sons.
The physical schematic diagram of an NRET process. Figures reproduced with permission from ref.51, John Wiley and Sons.
(a) Epitaxial wafer. (b) Three subpixels of a green micro-LED, a blue micro-LED, and a QD-micro-LED. (c) Deposition of transparent conducting oxide (TCO) film and P/N electrodes. (d) Covering distributed Bragg reflector (DBR) filter. (e) Full-color display panel composed of the proposed hybrid QD-micro-LED. (f) Cross-sectional view of a single RGB pixel. Figures reproduced with permission from ref.46, Chinese Laser Press.
(a) SEM image of RGB pixel array. (b) SEM image of QD-micro-LED with 30° tilt angle. (c) TEM image of the contact area between multi-QWs and QDs. (d) TEM image of 1 nm Al2O3 deposited on the sidewall of an QD-micro-LED through ALD. Figures reproduced with permission from ref.46, Chinese Laser Press.
(a) Absorption spectrum of red QD and EL spectrum of blue nano-ring micro-LED. (b) TRPL curves of nano-ring micro-LED with and without red QDs. (c) Normalized EL spectra of RGB hybrid full-color micro-LED devices. (d) Color gamut of RGB hybrid full-color micro-LED device, NTSC, and Rec. 2020. Figures reproduced with permission from ref.46, Chinese Laser Press.