Fan XT, Wu TZ, Liu B, Zhang R, Kuo HC et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv 4, 210022 (2021).. doi: 10.29026/oea.2021.210022
Citation: Fan XT, Wu TZ, Liu B, Zhang R, Kuo HC et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv 4, 210022 (2021).. doi: 10.29026/oea.2021.210022

Review Open Access

Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism

More Information
  • With regard to micro-light-emitting diodes (micro-LEDs), their excellent brightness, low energy consumption, and ultra-high resolution are significant advantages. However, the large size of traditional inorganic phosphors and the number of side defects have restricted the practical applications of small sized micro-LEDs. Recently, quantum dot (QD) and non-radiative energy transfer (NRET) have been proposed to solve existing problems. QDs possess nanoscale dimensions and high luminous efficiency, and they are suitable for NRET because they are able to nearly contact the micro-LED chip. The NRET between QDs and micro-LED chip further improves the color conversion efficiency (CCE) and effective quantum yield (EQY) of full-color micro-LED devices. In this review, we discuss the NRET mechanism for QD micro-LED devices, and then nano-pillar LED, nano-hole LED, and nano-ring LED are introduced in detail. These structures are beneficial to the NRET between QD and micro-LED, especially nano-ring LED. Finally, the challenges and future envisions have also been described.
  • 加载中
  • [1] Pust P, Schmidt PJ, Schnick W. A revolution in lighting. Nat Mater 14, 454–458 (2015). doi: 10.1038/nmat4270

    CrossRef Google Scholar

    [2] Reineke S. Complementary LED technologies. Nat Mater 14, 459–462 (2015). doi: 10.1038/nmat4277

    CrossRef Google Scholar

    [3] Jiang HX, Jin SX, Li J, Shakya J, Lin JY. III-nitride blue microdisplays. Appl Phys Lett 78, 1303–1305 (2001). doi: 10.1063/1.1351521

    CrossRef Google Scholar

    [4] Jin SX, Li J, Lin JY, Jiang HX. InGaN/GaN quantum well interconnected microdisk light emitting diodes. Appl Phys Lett 77, 3236–3238 (2000). doi: 10.1063/1.1326479

    CrossRef Google Scholar

    [5] Jin SX, Li J, Li JZ, Lin JY, Jiang HX. GaN microdisk light emitting diodes. Appl Phys Lett 76, 631–633 (2000). doi: 10.1063/1.125841

    CrossRef Google Scholar

    [6] Wu TZ, Sher CW, Lin Y, Lee CF, Liang F et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl Sci 8, 1557 (2018). doi: 10.3390/app8091557

    CrossRef Google Scholar

    [7] Liu ZJ, Lin CH, Hyun BR, Sher CW, Lv ZJ et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl 9, 83 (2020). doi: 10.1038/s41377-020-0268-1

    CrossRef Google Scholar

    [8] Yin YM, Hu ZP, Ali MU, Duan M, Gao L et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv Mater Technol 5, 2000251 (2020). doi: 10.1002/admt.202000251

    CrossRef Google Scholar

    [9] Huang YG, Hsiang EL, Deng MY, Wu ST. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci Appl 9, 105 (2020). doi: 10.1038/s41377-020-0341-9

    CrossRef Google Scholar

    [10] Zhou XJ, Tian PF, Sher CW, Wu J, Liu HZ et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quant Electron 71, 100263 (2020). doi: 10.1016/j.pquantelec.2020.100263

    CrossRef Google Scholar

    [11] Hong YJ, Lee CH, Yoon A, Kim M, Seong HK et al. Visible-color-tunable light-emitting diodes. Adv Mater 23, 3284–3288 (2011). doi: 10.1002/adma.201100806

    CrossRef Google Scholar

    [12] Chen SWH, Huang YM, Singh KJ, Hsu YC, Liou FJ et al. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Res 8, 630–636 (2020). doi: 10.1364/PRJ.388958

    CrossRef Google Scholar

    [13] Gou FW, Hsiang EL, Tan GJ, Lan YF, Tsai CY et al. Tripling the optical efficiency of color-converted micro-LED displays with funnel-tube array. Crystals 9, 39 (2019). doi: 10.3390/cryst9010039

    CrossRef Google Scholar

    [14] Jeong CK, Park KI, Son JH, Hwang GT, Lee SH et al. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ Sci 7, 4035–4043 (2014). doi: 10.1039/C4EE02435D

    CrossRef Google Scholar

    [15] Ding K, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H. Micro-LEDs, a manufacturability perspective. Appl Sci 9, 1206 (2019). doi: 10.3390/app9061206

    CrossRef Google Scholar

    [16] Wang K, Du YX, Liang J, Zhao JY, Xu FF et al. Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv Mater 32, 2001999 (2020). doi: 10.1002/adma.202001999

    CrossRef Google Scholar

    [17] Mei WH, Zhang ZQ, Zhang AD, Li D, Zhang XY et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res 13, 2485–2491 (2020). doi: 10.1007/s12274-020-2883-9

    CrossRef Google Scholar

    [18] Shirasaki Y, Supran GJ, Bawendi MG, Bulović V. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 7, 13–23 (2013). doi: 10.1038/nphoton.2012.328

    CrossRef Google Scholar

    [19] Ho SJ, Hsu HC, Yeh CW, Chen HS. Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays. ACS Appl Mater Interfaces 12, 33346–33351 (2020). doi: 10.1021/acsami.0c05646

    CrossRef Google Scholar

    [20] Kim T, Kim KH, Kim S, Choi SM, Jang H et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020). doi: 10.1038/s41586-020-2791-x

    CrossRef Google Scholar

    [21] Sekiguchi H, Kishino K, Kikuchi A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl Phys Lett 96, 231104 (2010). doi: 10.1063/1.3443734

    CrossRef Google Scholar

    [22] Lin HY, Sher CW, Hsieh DH, Chen XY, Chen HMP et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Res 5, 411–416 (2017). doi: 10.1364/PRJ.5.000411

    CrossRef Google Scholar

    [23] Chen HS, Hsu CK, Hong HY. InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photon Technol Lett 18, 193–195 (2006). doi: 10.1109/LPT.2005.859540

    CrossRef Google Scholar

    [24] Zhou BZ, Liu MJ, Wen YW, Li Y, Chen R. Atomic layer deposition for quantum dots based devices. Opto-Electron Adv 3, 190043 (2020).

    Google Scholar

    [25] Rindermann JJ, Pozina G, Monemar B, Hultman L, Amano H et al. Dependence of resonance energy transfer on exciton dimensionality. Phys Rev Lett 107, 236805 (2011). doi: 10.1103/PhysRevLett.107.236805

    CrossRef Google Scholar

    [26] Clapp AR, Medintz IL, Mattoussi H. Förster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 7, 47–57 (2006). doi: 10.1002/cphc.200500217

    CrossRef Google Scholar

    [27] Han HV, Lin HY, Lin CC, Chong WC, Li JR et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt Express 23, 32504–32515 (2015). doi: 10.1364/OE.23.032504

    CrossRef Google Scholar

    [28] Zhang F, Liu J, You GJ, Zhang CF, Mohney SE et al. Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs. Opt Express 20, A333–A339 (2012). doi: 10.1364/OE.20.00A333

    CrossRef Google Scholar

    [29] Chanyawadee S, Lagoudakis PG, Harley RT, Charlton MDB, Talapin DV et al. Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer. Adv Mater 22, 602–606 (2010). doi: 10.1002/adma.200902262

    CrossRef Google Scholar

    [30] Wang SW, Hong KB, Tsai YL, Teng CH, Tzou AJ et al. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Sci Rep 7, 42962 (2017). doi: 10.1038/srep42962

    CrossRef Google Scholar

    [31] Itskos G, Heliotis G, Lagoudakis PG, Lupton J, Barradas NP et al. Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga, In)N quantum well/polyfluorene semiconductor heterostructures. Phys Rev B 76, 035344 (2007). doi: 10.1103/PhysRevB.76.035344

    CrossRef Google Scholar

    [32] Kos Š, Achermann M, Klimov VI, Smith DL. Different regimes of Förster-type energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals. Phys Rev B 71, 205309 (2005). doi: 10.1103/PhysRevB.71.205309

    CrossRef Google Scholar

    [33] Medintz IL, Clapp AR, Melinger JS, Deschamps JR, Mattoussi H. A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer. Adv Mater 17, 2450–2455 (2005). doi: 10.1002/adma.200500722

    CrossRef Google Scholar

    [34] Heliotis G, Itskos G, Murray R, Dawson MD, Watson IM et al. Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer. Adv Mater 18, 334–338 (2006). doi: 10.1002/adma.200501949

    CrossRef Google Scholar

    [35] Achermann M, Petruska MA, Kos S, Smith DL, Koleske DD et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004). doi: 10.1038/nature02571

    CrossRef Google Scholar

    [36] Achermann M, Petruska MA, Koleske DD, Crawford MH, Klimov VI. Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett 6, 1396–1400 (2006). doi: 10.1021/nl060392t

    CrossRef Google Scholar

    [37] Vaghasiya JV, Sonigara KK, Suresh L, Panahandeh-Fard M, Soni SS et al. Efficient power generating devices utilizing low intensity indoor lights via non-radiative energy transfer mechanism from organic ionic redox couples. Nano Energy 60, 457–466 (2019). doi: 10.1016/j.nanoen.2019.03.086

    CrossRef Google Scholar

    [38] Sahoo H. Förster resonance energy transfer – a spectroscopic nanoruler: principle and applications. J Photochem Photobiol C 12, 20–30 (2011). doi: 10.1016/j.jphotochemrev.2011.05.001

    CrossRef Google Scholar

    [39] Krishnan C, Mercier T, Rahman T, Piana G, Brossard M et al. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting. Nanoscale 11, 18837–18844 (2019). doi: 10.1039/C9NR04003J

    CrossRef Google Scholar

    [40] Tian PF, McKendry JJD, Gong Z, Guilhabert B, Watson IM et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl Phys Lett 101, 231110 (2012). doi: 10.1063/1.4769835

    CrossRef Google Scholar

    [41] Olivier F, Daami A, Licitra C, Templier F. Shockley-read-hall and auger non-radiative recombination in GaN based LEDs: a size effect study. Appl Phys Lett 111, 022104 (2017). doi: 10.1063/1.4993741

    CrossRef Google Scholar

    [42] Kim IS, Martinson ABF. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers. J Mater Chem A 3, 20092–20096 (2015). doi: 10.1039/C5TA07186K

    CrossRef Google Scholar

    [43] Richters JP, Voss T, Kim DS, Scholz R, Zacharias M. Enhanced surface-excitonic emission in ZnO/Al2O3 core-shell nanowires. Nanotechnology 19, 305202 (2008). doi: 10.1088/0957-4484/19/30/305202

    CrossRef Google Scholar

    [44] Wong MS, Hwang D, Alhassan AI, Lee C, Ley R et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt Express 26, 21324–21331 (2018). doi: 10.1364/OE.26.021324

    CrossRef Google Scholar

    [45] Wong MS, Kearns JA, Lee C, Smith JM, Lynsky C et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt Express 28, 5787–5793 (2020). doi: 10.1364/OE.384127

    CrossRef Google Scholar

    [46] Huang Chen SW, Shen CC, Wu TZ, Liao ZY, Chen LF et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res 7, 416–422 (2019). doi: 10.1364/PRJ.7.000416

    CrossRef Google Scholar

    [47] Liu CY, Chen TP, Kao TS, Huang JK, Kuo HC et al. Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes. Opt Express 24, 19978–19987 (2016). doi: 10.1364/OE.24.019978

    CrossRef Google Scholar

    [48] Ghataora S, Smith RM, Athanasiou M, Wang T. Electrically injected hybrid organic/inorganic III-nitride white light-emitting diodes with nonradiative Förster resonance energy transfer. ACS Photonics 5, 642–647 (2018). doi: 10.1021/acsphotonics.7b01291

    CrossRef Google Scholar

    [49] Kang JH, Li BJ, Zhao TS, Johar MA, Lin CC et al. RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots. ACS Appl Mater Interfaces 12, 30890–30895 (2020). doi: 10.1021/acsami.0c00839

    CrossRef Google Scholar

    [50] Krishnan C, Brossard M, Lee KY, Huang JK, Lin CH et al. Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica 3, 503–509 (2016). doi: 10.1364/OPTICA.3.000503

    CrossRef Google Scholar

    [51] Zhuang Z, Guo X, Liu B, Hu FR, Li Y et al. High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv Funct Mater 26, 36–43 (2016). doi: 10.1002/adfm.201502870

    CrossRef Google Scholar

    [52] Zhang QG, Wang B, Zheng WL, Kong L, Wan Q et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat Commun 11, 31 (2020). doi: 10.1038/s41467-019-13881-0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint