Joshi S, Kiani A. Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D nanonetwork silicon structures. Opto-Electron Adv 4, 210039 (2021). doi: 10.29026/oea.2021.210039
Citation: Joshi S, Kiani A. Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D nanonetwork silicon structures. Opto-Electron Adv 4, 210039 (2021) . doi: 10.29026/oea.2021.210039

Original Article Open Access

Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D nanonetwork silicon structures

More Information
  • The aim of this study is to develop a reliable method to determine optical constants for 3D-nanonetwork Si thin films manufactured using a pulsed-laser ablation technique that can be applied to other materials synthesized by this technique. An analytical method was introduced to calculate optical constants from reflectance and transmittance spectra. Optical band gaps for this novel material and other important insights on the physical properties were derived from the optical constants. The existing optimization methods described in the literature were found to be complex and prone to errors while determining optical constants of opaque materials where only reflectance data is available. A supervised Deep Learning Algorithm was developed to accurately predict optical constants from the reflectance spectrum alone. The hybrid method introduced in this study was proved to be effective with an accuracy of 95%.
  • 加载中
  • [1] Volinsky AA, Vella JB, Gerberich WW. Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429, 201–210 (2003). doi: 10.1016/S0040-6090(03)00406-1

    CrossRef Google Scholar

    [2] Dubey RS, Jhansirani K, Singh S. Investigation of solar cell performance using multilayer thin film structure (SiO2/Si3N4) and grating. Results Phys 7, 77–81 (2017). doi: 10.1016/j.rinp.2016.11.065

    CrossRef Google Scholar

    [3] Olivares J, Wegmann E, Capilla J, Iborra E, Clement M et al. Sputtered SiO2 as low acoustic impedance material for Bragg mirror fabrication in BAW resonators. In 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum 316–321 (IEEE, 2009); http://doi.org/10.1109/FREQ.2009.5168193.

    Google Scholar

    [4] Innocenzi P, Martucci A, Guglielmi M, Bearzotti A, Traversa E et al. Mesoporous silica thin films for alcohol sensors. J Eur Ceram Soc 21, 1985–1988 (2001). doi: 10.1016/S0955-2219(01)00156-X

    CrossRef Google Scholar

    [5] Kim ID, Jeon EK, Choi SH, Choi DK, Tuller HL. Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications. J Electroceram 25, 159–167 (2010). doi: 10.1007/s10832-010-9607-6

    CrossRef Google Scholar

    [6] Abed MM, Gaspari F, Kiani A. Optical properties of Si/SiO2 Nano structured films induced by laser plasma ionization deposition. Opt Commun 462, 125297 (2020). doi: 10.1016/j.optcom.2020.125297

    CrossRef Google Scholar

    [7] Mistrik J, Kasap S, Ruda HE, Koughia C, Singh J. Optical properties of electronic materials: fundamentals and characterization. In Springer Handbook of Electronic and Photonic Materials. Kasap S, Capper P, eds. Cham: Springer, 2017.

    Google Scholar

    [8] Poelman D, Smet PF. Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J Phys D: Appl Phys 36, 1850–1857 (2003). doi: 10.1088/0022-3727/36/15/316

    CrossRef Google Scholar

    [9] Manifacier JC, De Murcia M, Fillard JP, Vicario E. Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure. Thin Solid Films 41, 127–135 (1977). doi: 10.1016/0040-6090(77)90395-9

    CrossRef Google Scholar

    [10] Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. J Phys E: Sci Instrum 16, 1214–1222 (1983). doi: 10.1088/0022-3735/16/12/023

    CrossRef Google Scholar

    [11] Ritter D, Weiser K. Suppression of interference fringes in absorption measurements on thin films. Opt Commun 57, 336–338 (1986). doi: 10.1016/0030-4018(86)90270-1

    CrossRef Google Scholar

    [12] Hishikawa Y, Nakamura N, Tsuda S, Nakano S, Kishi Y et al. Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films. Jpn J Appl Phys 30, 1008–1014 (1991). doi: 10.1143/JJAP.30.1008

    CrossRef Google Scholar

    [13] Mahanty S, Basak D, Merino JM, Leon M. Determination of interference-free optical constants of thin films. Mater Sci Eng: B 68, 72–75 (1999). doi: 10.1016/S0921-5107(99)00518-8

    CrossRef Google Scholar

    [14] Ruan ZH, Yuan Y, Zhang XX, Shuai Y, Tan HP. Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization. Solar Energy 127, 147–158 (2016). doi: 10.1016/j.solener.2016.01.027

    CrossRef Google Scholar

    [15] Liu YC, Hsieh JH, Tung SK. Extraction of optical constants of zinc oxide thin films by ellipsometry with various models. Thin Solid Films 510, 32–38 (2006). doi: 10.1016/j.tsf.2005.10.089

    CrossRef Google Scholar

    [16] Synowicki RA. Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 313–314, 394–397 (1998). doi: https://doi.org/10.1016/S0040-6090(97)00853-5

    CrossRef Google Scholar

    [17] Dressel M, Gompf B, Faltermeier D, Tripathi AK, Pflaum TJ et al. Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene. Opt Exp 16, 19770–19778 (2008). doi: 10.1364/OE.16.019770

    CrossRef Google Scholar

    [18] Rocha WRM, Pilling S. Determination of optical constants n and k of thin films from absorbance data using Kramers–Kronig relationship. Spectrochim Acta Part A Mol Biomol Spectrosc 123, 436–446 (2014). doi: 10.1016/j.saa.2013.12.075

    CrossRef Google Scholar

    [19] Forouhi AR, Bloomer I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys Rev B 34, 7018–7026 (1986). doi: 10.1103/PhysRevB.34.7018

    CrossRef Google Scholar

    [20] Nilsson PO. Determination of optical constants from intensity measurements at normal incidence. Appl Opt 7, 435–442 (1968). doi: 10.1364/AO.7.000435

    CrossRef Google Scholar

    [21] Paulick TC. Inversion of normal-incidence (R, T) measurements to obtain n+ik for thin films. Appl Opt 25, 562–564 (1986). doi: 10.1364/AO.25.000562

    CrossRef Google Scholar

    [22] Bringans RD. The determination of the optical constants of thin films from measurements of normal incidence reflectance and transmittance. J Phys D:Appl Phys 10, 1855–1861 (1977). doi: 10.1088/0022-3727/10/13/020

    CrossRef Google Scholar

    [23] Denton RE, Campbell RD, Tomlin SG. The determination of the optical constants of thin films from measurements of reflectance and transmittance at normal incidence. J Phys D:Appl Phys 5, 852–863 (1972). doi: 10.1088/0022-3727/5/4/329

    CrossRef Google Scholar

    [24] Chambouleyron I, Martínez JM, Moretti AC, Mulato M. Retrieval of optical constants and thickness of thin films from transmission spectra. Appl Opt 36, 8238–8247 (1997). doi: 10.1364/AO.36.008238

    CrossRef Google Scholar

    [25] Chambouleyron I, Martínez JM, Moretti AC, Mulato M. Optical constants of thin films by means of a pointwise constrained optimization approach. Thin Solid Films 317, 133–136 (1998). doi: 10.1016/S0040-6090(97)00609-3

    CrossRef Google Scholar

    [26] Mulato M, Chambouleyron I, Birgin EC, Martínez JM. Determination of thickness and optical constants of amorphous silicon films from transmittance data. Appl Phys Lett 77, 2133–2135 (2000). doi: 10.1063/1.1314299

    CrossRef Google Scholar

    [27] Birgin EG, Chambouleyron I, Martínez JM. Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J Comput Phys 151, 862–880 (1999). doi: 10.1006/jcph.1999.6224

    CrossRef Google Scholar

    [28] Abed MM. Investigation of selective optical properties of Si/SiO2 nanostructures generated by pulsed laser ablation as-deposited and post-treated. 2020.

    Google Scholar

    [29] Schafer RW. What is a savitzky-golay filter? [Lecture Notes]. IEEE Signal Proc Mag 28, 111–117 (2011). doi: 10.1109/MSP.2011.941097

    CrossRef Google Scholar

    [30] Pankove JI. Optical Processes in Semiconductors (Courier Corporation, Dover, 1975).

    Google Scholar

    [31] Tauc J. Amorphous and Liquid Semiconductors (Springer Science & Business Media, Boston, 2012).

    Google Scholar

    [32] Vitanov P, Babeva T, Alexieva Z, Harizanova A, Nenova Z et al. Optical properties of (Al2O3)x(TiO2)1−x films deposited by the sol–gel method. Vacuum 76, 219–222 (2004). doi: 10.1016/j.vacuum.2004.07.018

    CrossRef Google Scholar

    [33] Laidani N, Bartali R, Gottardi G, Anderle M, Cheyssac P. Optical absorption parameters of amorphous carbon films from Forouhi–Bloomer and Tauc–Lorentz models: a comparative study. J Phys:Condens Matter 20, 015216 (2007).

    Google Scholar

    [34] Bakr NA, Funde AM, Waman VS, Kamble MM, Hawaldar RR et al. Determination of the optical parameters of a-Si: H thin films deposited by hot wire–chemical vapour deposition technique using transmission spectrum only. Pramana 76, 519–531 (2011). doi: 10.1007/s12043-011-0024-4

    CrossRef Google Scholar

    [35] Shunk FA. Constitution of Binary Alloys Vol. S3 (McGraw-Hill, New York, 1969).

    Google Scholar

    [36] Hass G, Salzberg CD. Optical properties of silicon monoxide in the wavelength region from 0.24 to 14.0 microns. J Opt Soc Am 44, 181–187 (1954). doi: 10.1364/JOSA.44.000181

    CrossRef Google Scholar

    [37] Heavens OS. Optical properties of thin films. Rep Prog Phys 23, 1–65 (1960). doi: 10.1143/PTP.23.1

    CrossRef Google Scholar

    [38] Abass KH. Fe2O3 thin films prepared by spray pyrolysis technique and study the annealing on its optical properties. Int Lett Chem Phys Astron 45, 24–31 (2015). doi: 10.18052/www.scipress.com/ILCPA.45.24

    CrossRef Google Scholar

    [39] Tomlin SG. Optical reflection and transmission formulae for thin films. J Phys D: Appl Phys 1, 1667–1671 (1968). doi: 10.1088/0022-3727/1/12/312

    CrossRef Google Scholar

    [40] Palik ED. Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).

    Google Scholar

    [41] Torres-Costa V, Martín-Palma RJ, Martínez-Duart JM. Optical constants of porous silicon films and multilayers determined by genetic algorithms. J Appl Phys 96, 4197–4203 (2004). doi: 10.1063/1.1786672

    CrossRef Google Scholar

    [42] Ma YS, Liu X, Gu PF, Tang GF. Estimation of optical constants of thin film by the use of artificial neural networks. Appl Opt 35, 5035–5039 (1996). doi: 10.1364/AO.35.005035

    CrossRef Google Scholar

    [43] Tabet MF, McGahan WA. Use of artificial neural networks to predict thickness and optical constants of thin films from reflectance data. Thin Solid Films 370, 122–127 (2000). doi: 10.1016/S0040-6090(00)00952-4

    CrossRef Google Scholar

    [44] Jakatdar NH, Niu XH, Spanos C J. Neural network approach to rapid thin film characterization. Proc SPIE 3275, 163–171 (1998). doi: 10.1117/12.304402

    CrossRef Google Scholar

    [45] Ketkar N. Deep Learning with Python Vol. 1 (Springer, Berkeley, 2017).

    Google Scholar

    [46] Manaswi NK. Deep Learning with Applications Using Python (Springer, New York, 2018).

    Google Scholar

    [47] Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv: 1412.6980, 2014.

    Google Scholar

    [48] Rouard P, Meessen A. II Optical properties of thin metal films. Prog Opt 15, 77–137 (1977).

    Google Scholar

    [49] Freeman EC, Paul W. Optical constants of RF sputtered hydrogenated amorphous Si. Phys Rev B 20, 716–728 (1979). doi: 10.1103/PhysRevB.20.716

    CrossRef Google Scholar

    [50] Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15, 627–637 (1966). doi: 10.1002/pssb.19660150224

    CrossRef Google Scholar

    [51] Al-Kuhaili MF, Saleem M, Durrani SMA. Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron. J Alloys Compd 521, 178–182 (2012). doi: 10.1016/j.jallcom.2012.01.115

    CrossRef Google Scholar

    [52] Cody GD, Brooks BG, Abeles B. Optical absorption above the optical gap of amorphous silicon hydride. Solar Energy Mater 8, 231–240 (1982). doi: 10.1016/0165-1633(82)90065-X

    CrossRef Google Scholar

    [53] Ventura SD, Birgin EG, Martínez JM, Chambouleyron I. Optimization techniques for the estimation of the thickness and the optical parameters of thin films using reflectance data. J Appl Phys 97, 043512 (2005). doi: 10.1063/1.1849431

    CrossRef Google Scholar

    [54] Minnaert B, Veelaert P. Guidelines for the bandgap combinations and absorption windows for organic tandem and triple-junction solar cells. Materials 5, 1933–1953 (2012). doi: 10.3390/ma5101933

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint