Citation: |
|
[1] | Volinsky AA, Vella JB, Gerberich WW. Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429, 201–210 (2003). doi: 10.1016/S0040-6090(03)00406-1 |
[2] | Dubey RS, Jhansirani K, Singh S. Investigation of solar cell performance using multilayer thin film structure (SiO2/Si3N4) and grating. Results Phys 7, 77–81 (2017). doi: 10.1016/j.rinp.2016.11.065 |
[3] | Olivares J, Wegmann E, Capilla J, Iborra E, Clement M et al. Sputtered SiO2 as low acoustic impedance material for Bragg mirror fabrication in BAW resonators. In 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum 316–321 (IEEE, 2009); http://doi.org/10.1109/FREQ.2009.5168193. |
[4] | Innocenzi P, Martucci A, Guglielmi M, Bearzotti A, Traversa E et al. Mesoporous silica thin films for alcohol sensors. J Eur Ceram Soc 21, 1985–1988 (2001). doi: 10.1016/S0955-2219(01)00156-X |
[5] | Kim ID, Jeon EK, Choi SH, Choi DK, Tuller HL. Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications. J Electroceram 25, 159–167 (2010). doi: 10.1007/s10832-010-9607-6 |
[6] | Abed MM, Gaspari F, Kiani A. Optical properties of Si/SiO2 Nano structured films induced by laser plasma ionization deposition. Opt Commun 462, 125297 (2020). doi: 10.1016/j.optcom.2020.125297 |
[7] | Mistrik J, Kasap S, Ruda HE, Koughia C, Singh J. Optical properties of electronic materials: fundamentals and characterization. In Springer Handbook of Electronic and Photonic Materials. Kasap S, Capper P, eds. Cham: Springer, 2017. |
[8] | Poelman D, Smet PF. Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J Phys D: Appl Phys 36, 1850–1857 (2003). doi: 10.1088/0022-3727/36/15/316 |
[9] | Manifacier JC, De Murcia M, Fillard JP, Vicario E. Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure. Thin Solid Films 41, 127–135 (1977). doi: 10.1016/0040-6090(77)90395-9 |
[10] | Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. J Phys E: Sci Instrum 16, 1214–1222 (1983). doi: 10.1088/0022-3735/16/12/023 |
[11] | Ritter D, Weiser K. Suppression of interference fringes in absorption measurements on thin films. Opt Commun 57, 336–338 (1986). doi: 10.1016/0030-4018(86)90270-1 |
[12] | Hishikawa Y, Nakamura N, Tsuda S, Nakano S, Kishi Y et al. Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films. Jpn J Appl Phys 30, 1008–1014 (1991). doi: 10.1143/JJAP.30.1008 |
[13] | Mahanty S, Basak D, Merino JM, Leon M. Determination of interference-free optical constants of thin films. Mater Sci Eng: B 68, 72–75 (1999). doi: 10.1016/S0921-5107(99)00518-8 |
[14] | Ruan ZH, Yuan Y, Zhang XX, Shuai Y, Tan HP. Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization. Solar Energy 127, 147–158 (2016). doi: 10.1016/j.solener.2016.01.027 |
[15] | Liu YC, Hsieh JH, Tung SK. Extraction of optical constants of zinc oxide thin films by ellipsometry with various models. Thin Solid Films 510, 32–38 (2006). doi: 10.1016/j.tsf.2005.10.089 |
[16] | Synowicki RA. Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 313–314, 394–397 (1998). doi: https://doi.org/10.1016/S0040-6090(97)00853-5 |
[17] | Dressel M, Gompf B, Faltermeier D, Tripathi AK, Pflaum TJ et al. Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene. Opt Exp 16, 19770–19778 (2008). doi: 10.1364/OE.16.019770 |
[18] | Rocha WRM, Pilling S. Determination of optical constants n and k of thin films from absorbance data using Kramers–Kronig relationship. Spectrochim Acta Part A Mol Biomol Spectrosc 123, 436–446 (2014). doi: 10.1016/j.saa.2013.12.075 |
[19] | Forouhi AR, Bloomer I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys Rev B 34, 7018–7026 (1986). doi: 10.1103/PhysRevB.34.7018 |
[20] | Nilsson PO. Determination of optical constants from intensity measurements at normal incidence. Appl Opt 7, 435–442 (1968). doi: 10.1364/AO.7.000435 |
[21] | Paulick TC. Inversion of normal-incidence (R, T) measurements to obtain n+ik for thin films. Appl Opt 25, 562–564 (1986). doi: 10.1364/AO.25.000562 |
[22] | Bringans RD. The determination of the optical constants of thin films from measurements of normal incidence reflectance and transmittance. J Phys D:Appl Phys 10, 1855–1861 (1977). doi: 10.1088/0022-3727/10/13/020 |
[23] | Denton RE, Campbell RD, Tomlin SG. The determination of the optical constants of thin films from measurements of reflectance and transmittance at normal incidence. J Phys D:Appl Phys 5, 852–863 (1972). doi: 10.1088/0022-3727/5/4/329 |
[24] | Chambouleyron I, Martínez JM, Moretti AC, Mulato M. Retrieval of optical constants and thickness of thin films from transmission spectra. Appl Opt 36, 8238–8247 (1997). doi: 10.1364/AO.36.008238 |
[25] | Chambouleyron I, Martínez JM, Moretti AC, Mulato M. Optical constants of thin films by means of a pointwise constrained optimization approach. Thin Solid Films 317, 133–136 (1998). doi: 10.1016/S0040-6090(97)00609-3 |
[26] | Mulato M, Chambouleyron I, Birgin EC, Martínez JM. Determination of thickness and optical constants of amorphous silicon films from transmittance data. Appl Phys Lett 77, 2133–2135 (2000). doi: 10.1063/1.1314299 |
[27] | Birgin EG, Chambouleyron I, Martínez JM. Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J Comput Phys 151, 862–880 (1999). doi: 10.1006/jcph.1999.6224 |
[28] | Abed MM. Investigation of selective optical properties of Si/SiO2 nanostructures generated by pulsed laser ablation as-deposited and post-treated. 2020. |
[29] | Schafer RW. What is a savitzky-golay filter? [Lecture Notes]. IEEE Signal Proc Mag 28, 111–117 (2011). doi: 10.1109/MSP.2011.941097 |
[30] | Pankove JI. Optical Processes in Semiconductors (Courier Corporation, Dover, 1975). |
[31] | Tauc J. Amorphous and Liquid Semiconductors (Springer Science & Business Media, Boston, 2012). |
[32] | Vitanov P, Babeva T, Alexieva Z, Harizanova A, Nenova Z et al. Optical properties of (Al2O3)x(TiO2)1−x films deposited by the sol–gel method. Vacuum 76, 219–222 (2004). doi: 10.1016/j.vacuum.2004.07.018 |
[33] | Laidani N, Bartali R, Gottardi G, Anderle M, Cheyssac P. Optical absorption parameters of amorphous carbon films from Forouhi–Bloomer and Tauc–Lorentz models: a comparative study. J Phys:Condens Matter 20, 015216 (2007). |
[34] | Bakr NA, Funde AM, Waman VS, Kamble MM, Hawaldar RR et al. Determination of the optical parameters of a-Si: H thin films deposited by hot wire–chemical vapour deposition technique using transmission spectrum only. Pramana 76, 519–531 (2011). doi: 10.1007/s12043-011-0024-4 |
[35] | Shunk FA. Constitution of Binary Alloys Vol. S3 (McGraw-Hill, New York, 1969). |
[36] | Hass G, Salzberg CD. Optical properties of silicon monoxide in the wavelength region from 0.24 to 14.0 microns. J Opt Soc Am 44, 181–187 (1954). doi: 10.1364/JOSA.44.000181 |
[37] | Heavens OS. Optical properties of thin films. Rep Prog Phys 23, 1–65 (1960). doi: 10.1143/PTP.23.1 |
[38] | Abass KH. Fe2O3 thin films prepared by spray pyrolysis technique and study the annealing on its optical properties. Int Lett Chem Phys Astron 45, 24–31 (2015). doi: 10.18052/www.scipress.com/ILCPA.45.24 |
[39] | Tomlin SG. Optical reflection and transmission formulae for thin films. J Phys D: Appl Phys 1, 1667–1671 (1968). doi: 10.1088/0022-3727/1/12/312 |
[40] | Palik ED. Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985). |
[41] | Torres-Costa V, Martín-Palma RJ, Martínez-Duart JM. Optical constants of porous silicon films and multilayers determined by genetic algorithms. J Appl Phys 96, 4197–4203 (2004). doi: 10.1063/1.1786672 |
[42] | Ma YS, Liu X, Gu PF, Tang GF. Estimation of optical constants of thin film by the use of artificial neural networks. Appl Opt 35, 5035–5039 (1996). doi: 10.1364/AO.35.005035 |
[43] | Tabet MF, McGahan WA. Use of artificial neural networks to predict thickness and optical constants of thin films from reflectance data. Thin Solid Films 370, 122–127 (2000). doi: 10.1016/S0040-6090(00)00952-4 |
[44] | Jakatdar NH, Niu XH, Spanos C J. Neural network approach to rapid thin film characterization. Proc SPIE 3275, 163–171 (1998). doi: 10.1117/12.304402 |
[45] | Ketkar N. Deep Learning with Python Vol. 1 (Springer, Berkeley, 2017). |
[46] | Manaswi NK. Deep Learning with Applications Using Python (Springer, New York, 2018). |
[47] | Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv: 1412.6980, 2014. |
[48] | Rouard P, Meessen A. II Optical properties of thin metal films. Prog Opt 15, 77–137 (1977). |
[49] | Freeman EC, Paul W. Optical constants of RF sputtered hydrogenated amorphous Si. Phys Rev B 20, 716–728 (1979). doi: 10.1103/PhysRevB.20.716 |
[50] | Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15, 627–637 (1966). doi: 10.1002/pssb.19660150224 |
[51] | Al-Kuhaili MF, Saleem M, Durrani SMA. Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron. J Alloys Compd 521, 178–182 (2012). doi: 10.1016/j.jallcom.2012.01.115 |
[52] | Cody GD, Brooks BG, Abeles B. Optical absorption above the optical gap of amorphous silicon hydride. Solar Energy Mater 8, 231–240 (1982). doi: 10.1016/0165-1633(82)90065-X |
[53] | Ventura SD, Birgin EG, Martínez JM, Chambouleyron I. Optimization techniques for the estimation of the thickness and the optical parameters of thin films using reflectance data. J Appl Phys 97, 043512 (2005). doi: 10.1063/1.1849431 |
[54] | Minnaert B, Veelaert P. Guidelines for the bandgap combinations and absorption windows for organic tandem and triple-junction solar cells. Materials 5, 1933–1953 (2012). doi: 10.3390/ma5101933 |
Schematic of fabrication set-up. Figure reproduced with permission from ref.6, Elsevier.
Filtered reflectance data.
Filtered transmittance data.
Model validation with experimental transmittance.
Refractive index as a function of wavelength.
Extinction coefficient as a function of wavelength.
PUMA model validation with analytical refractive index (n); R_Puma: Simulation results when only reflectance was input; B_Puma: Simulation results when both reflectance and transmittance were inputs.
PUMA model validation with analytical extinction coefficient (k).
PUMA model validation with analytical extinction coefficient (k).
PUMA model evaluation with experimental transmittance.
PUMA model evaluation with experimental reflectance.
Flowchart for deep learning algorithm.
Deep Learning Model developed.
Comparison of model-predicted extinction coefficient with analytical values.
Comparison of model-predicted refractive index with analytical values.
Absorption regions for fabricated silicon thin film.
Tauc’s Plot for determining optical bandgap.