Kim D, Choi H, Brendel T, Quach H, Esparza M et al. Advances in optical engineering for future telescopes. Opto-Electron Adv 4, 210040 (2021). doi: 10.29026/oea.2021.210040
Citation: Kim D, Choi H, Brendel T, Quach H, Esparza M et al. Advances in optical engineering for future telescopes. Opto-Electron Adv 4, 210040 (2021) . doi: 10.29026/oea.2021.210040

Review Open Access

Advances in optical engineering for future telescopes

More Information
  • Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the technological advances in three key areas. First is the optical fabrication technique used for constructing next-generation telescope mirrors. Advances in ground-based telescope control and instrumentation comprise the second area of development. This includes active alignment of the laser truss-based Large Binocular Telescope (LBT) prime focus camera, the new MOBIUS modular cross-dispersion spectroscopy unit used at the prime focal plane of the LBT, and topological pupil segment optimization. Lastly, future space telescope concepts and enabling technologies are discussed. Among these, the Nautilus space observatory requires challenging alignment of segmented multi-order diffractive elements. The OASIS terahertz space telescope presents unique challenges for characterizing the inflatable primary mirror, and the Hyperion space telescope pushes the limits of high spectral resolution, far-UV spectroscopy. The Coronagraphic Debris and Exoplanet Exploring Pioneer (CDEEP) is a Small Satellite (SmallSat) mission concept for high-contrast imaging of circumstellar disks and exoplanets using vector vortex coronagraph. These advances in optical engineering technologies will help mankind to probe, explore, and understand the scientific beauty of our universe.
  • 加载中
  • [1] Martin HM, Allen RG, Burge JH, Kim DW, Kingsley JS et al. Fabrication and testing of the first 8.4-m off-axis segment for the Giant Magellan Telescope. Proc SPIE 7739, 77390A (2010).

    Google Scholar

    [2] Martin HM, Allen RG, Burge JH, Kim DW, Kingsley JS et al. Production of 8.4m segments for the Giant Magellan Telescope. Proc SPIE 8450, 84502D (2012).

    Google Scholar

    [3] Martin HM, Burge JH, Davis JM, Kim DW, Kingsley JS et al. Status of mirror segment production for the Giant Magellan Telescope. Proc SPIE 9912, 99120V (2016).

    Google Scholar

    [4] Martin HM, Allen R, Gasho V, Jannuzi BT, Kim DW et al. Manufacture of primary mirror segments for the Giant Magellan Telescope. Proc SPIE 10706, 107060V (2018).

    Google Scholar

    [5] Kim DW, Kim SW, Burge JH. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions. Opt Express 17, 21850–21866 (2009). doi: 10.1364/OE.17.021850

    CrossRef Google Scholar

    [6] Ke XL, Wang TY, Choi H, Pullen W, Huang L et al. Dual-tool multiplexing model of parallel computer controlled optical surfacing. Opt Lett 45, 6426–6429 (2020). doi: 10.1364/OL.404575

    CrossRef Google Scholar

    [7] Kim DW, Park WH, Kim SW, Burge JH. Edge tool influence function library using the parametric edge model for computer controlled optical surfacing. Proc SPIE 7426, 74260G (2009).

    Google Scholar

    [8] Negi VS, Garg H, Shravan Kumar RR, Karar V, Tiwari UK et al. Parametric removal rate survey study and numerical modeling for deterministic optics manufacturing. Opt Express 28, 26733–26749 (2020). doi: 10.1364/OE.399105

    CrossRef Google Scholar

    [9] Wang TY, Huang L, Kang H, Choi H, Kim DW et al. RIFTA: a robust iterative Fourier transform-based dwell time Algorithm for ultra-precision ion beam figuring of synchrotron mirrors. Sci Rep 10, 8135 (2020). doi: 10.1038/s41598-020-64923-3

    CrossRef Google Scholar

    [10] Wang TY, Huang L, Zhu Y, Vescovi M, Khune D et al. Development of a position–velocity–time-modulated two-dimensional ion beam figuring system for synchrotron x-ray mirror fabrication. Appl Opt 59, 3306–3314 (2020). doi: 10.1364/AO.389010

    CrossRef Google Scholar

    [11] Rodriguez S, Rakich A, Hill J, Kuhn O, Brendel T et al. Implementation of a laser-truss based telescope metrology system at the Large Binocular Telescope. Proc SPIE 11487, 114870E (2020). doi: 10.1117/12.2576438

    CrossRef Google Scholar

    [12] Rakich A, Choi H, Veillet C, Hill JM, Bec M et al. A laser-truss based optical alignment system on LBT. Proc SPIE 11445, 114450R (2020).

    Google Scholar

    [13] Kang H, Thompson D, Conrad A, Vogel C, Lamdan A et al. Modular plug-in extension enabling cross-dispersed spectroscopy for Large Binocular Telescope. Proc SPIE 11116, 1111606 (2019).

    Google Scholar

    [14] Feng YT, Ashcraft JN, Breckinridge JB, Harvey JE, Douglas ES et al. Topological pupil segmentation and point spread function analysis for large aperture imaging systems. Proc SPIE 11568, 115680I (2020).

    Google Scholar

    [15] Apai D, Milster TD, Kim DW, Bixel A, Schneider G et al. A thousand earths: a very large aperture, ultralight space telescope array for atmospheric biosignature surveys. Astron J 158, 83 (2019). doi: 10.3847/1538-3881/ab2631

    CrossRef Google Scholar

    [16] Apai D, Milster TD, Arenberg J, Kim D, Liang R et al. Nautilus deep space observatory: a giant segmented space telescope array for a galactic biosignature survey. In Deep Space Gateway Concept Science Workshop 3127 (LPI, 2018). Bibcode: 2018LPICo2063.3127A

    Google Scholar

    [17] Apai D, Milster TD, Kim DW, Bixel A, Schneider G et al. Nautilus Observatory: a space telescope array based on very large aperture ultralight diffractive optical elements. Proc SPIE 11116, 1111608 (2019).

    Google Scholar

    [18] Milster TD, Apai D, Kim DW, Kim YS, Kim GH et al. Progress toward optical design and fabrication of ultralight, large aperture transmissive lenses for space telescopes. In Frontiers in Optics 2020 FM1A.2 (OSA, 2020); https://doi.org/10.1364/FIO.2020.FM1A.2.

    Google Scholar

    [19] Kim DW, Walker CK, Apai D, Milster TD, Takashima Y et al. Disruptive space telescope concepts, designs, and developments: OASIS and Nautilus -INVITED. EPJ Web Conf 238, 06001 (2020). doi: 10.1051/epjconf/202023806001

    CrossRef Google Scholar

    [20] Esparza MA, Choi H, Kim DW. Alignment of Multi-Order Diffractive Engineered (MODE) lens segments using the Kinematically-Engaged Yoke System. Proc SPIE 11487, 114870V (2020). doi: 10.1117/12.2569442

    CrossRef Google Scholar

    [21] Choi H, Esparza MA, Lamdan A, Feng TT, Milster T et al. In-process metrology for segmented optics UV curing control. Proc SPIE 11487, 114870M (2020). doi: 10.1117/12.2569310

    CrossRef Google Scholar

    [22] Walket CK, Smith IS, Goldsmith PF, O’Dougherty S, Takashima Y et al. Spherical reflectors for space based telescopes. In Proceedings of 2017 IEEE MTT-S International Microwave Symposium (IMS) 1884–1887 (IEEE, 2017); https://doi.org/10.1109/MWSYM.2017.8059024.

    Google Scholar

    [23] Chandra A, Sirsi S, Choi H, Phan A, Takashima Y et al. Thermally formed inflatable reflectors for space telescopes. In Proceedings of 2020 IEEE Aerospace Conference 1–9 (IEEE, 2020); https://doi.org/10.1109/AERO47225.2020.9172651.

    Google Scholar

    [24] Quach H, Berkson J, Sirsi S, Choi H, Dominguez R et al. Full-aperture optical metrology for inflatable membrane mirrors. Proc SPIE 11487, 114870N (2020). doi: 10.1117/12.2569750

    CrossRef Google Scholar

    [25] Choi H, Trumper IL, Feng YT, Kang H, Berkson J et al. Long-slit cross-dispersion spectroscopy for Hyperion UV space telescope. J Astron Telesc, Instrum, Syst 7, 014006 (2021). doi: 10.1117/1.JATIS.7.1.014006

    CrossRef Google Scholar

    [26] Choi H, Trumper I, Feng YT, Kang H, Hamden E et al. Hyperion: far-UV cross dispersion spectroscope design. Proc SPIE 11487, 114870W (2020). doi: 10.1117/12.2570489

    CrossRef Google Scholar

    [27] Maier ER, Douglas ES, Kim DW, Su K, Ashcraft JN et al. Design of the vacuum high contrast imaging testbed for CDEEP, the Coronagraphic Debris and Exoplanet Exploring Pioneer. Proc SPIE 11443, 114431Y (2020).

    Google Scholar

    [28] Kim DW, Esparza M, Quach H, Rodriguez S, Kang H et al. Optical technology for future telescopes. Proc SPIE 11761, 1176103 (2021).

    Google Scholar

    [29] Cheng H. Independent Variables for Optical Surfacing Systems: Synthesis, Characterization and Application. (Springer-Verlag, Berlin, 2014).

    Google Scholar

    [30] Carnal CL, Egert CM, Hylton KW. Advanced matrix-based algorithm for ion-beam milling of optical components. Proc SPIE 1752, 54–62 (1992). doi: 10.1117/12.130719

    CrossRef Google Scholar

    [31] Wu JF, Lu ZW, Zhang HX, Wang TS. Dwell time algorithm in ion beam figuring. Appl Opt 48, 3930–3937 (2009). doi: 10.1364/AO.48.003930

    CrossRef Google Scholar

    [32] Huang T, Zhao D, Cao ZC. Trajectory planning of optical polishing based on optimized implementation of dwell time. Precis Eng 62, 223–231 (2020). doi: 10.1016/j.precisioneng.2019.12.006

    CrossRef Google Scholar

    [33] Zhou L, Dai YF, Xie XH, Jiao CJ, Li SY. Model and method to determine dwell time in ion beam figuring. Nanotechnol Precis Eng 5, 107–112 (2007).

    Google Scholar

    [34] Zhang YF, Fang FZ, Huang W, Fan W. Dwell time algorithm based on bounded constrained least squares under dynamic performance constraints of machine tool in deterministic optical finishing. Int J Precis Eng Manuf-Green Technol (2021). doi: 10.1007/s40684-020-00306-3

    CrossRef Google Scholar

    [35] Jiao CJ, Li SY, Xie XH. Algorithm for ion beam figuring of low-gradient mirrors. Appl Opt 48, 4090–4096 (2009). doi: 10.1364/AO.48.004090

    CrossRef Google Scholar

    [36] Wilson SR, McNeil JR. Neutral ion beam figuring of large optical surfaces. Proc SPIE 0818, 320–324 (1987). doi: 10.1117/12.978903

    CrossRef Google Scholar

    [37] Wang TY, Huang L, Vescovi M, Kuhne D, Tayabaly K et al. Study on an effective one-dimensional ion-beam figuring method. Opt Express 27, 15368–15381 (2019). doi: 10.1364/OE.27.015368

    CrossRef Google Scholar

    [38] Richardson WH. Bayesian-based iterative method of image restoration. J Opt Soc Am 62, 55–59 (1972). doi: 10.1364/JOSA.62.000055

    CrossRef Google Scholar

    [39] Nelder JA, Mead R. A simplex method for function minimization. Comput J 7, 308–313 (1965). doi: 10.1093/comjnl/7.4.308

    CrossRef Google Scholar

    [40] Huang L, Wang TY, Tayabaly K, Kuhne D, Xu WH et al. Stitching interferometry for synchrotron mirror metrology at National Synchrotron Light Source II (NSLS-II). Opt Lasers Eng 124, 105795 (2020). doi: 10.1016/j.optlaseng.2019.105795

    CrossRef Google Scholar

    [41] Huang L, Wang TY, Nicolas J, Vivo A, Polack F et al. Two-dimensional stitching interferometry for self-calibration of high-order additive systematic errors. Opt Express 27, 26940–26956 (2019). doi: 10.1364/OE.27.026940

    CrossRef Google Scholar

    [42] Heidt J, Thompson D. LUCI Users Manual. September 7, 2016 https://sites.google.com/a/lbto.org/luci/documents-and-links.

    Google Scholar

    [43] Werenskiold CH. Improved telescope spider design. J Roy Astron Soc Can 35, 268 (1941).

    Google Scholar

    [44] Couder A. Dealing with spider diffraction. In Amateur Telescope Making (Book Two), Ingalls AG, ed, 8th Printing 620–622 (Scientific American, Inc, 1952).

    Google Scholar

    [45] Everhart E, Kantorski JW. Diffraction patterns produced by obstructions in reflecting telescopes of modest size. Astron J 64, 455 (1959). doi: 10.1086/107973

    CrossRef Google Scholar

    [46] Richter JL. Spider diffraction: a comparison of curved and straight legs. Appl Opt 23, 1907–1913 (1984). doi: 10.1364/AO.23.001907

    CrossRef Google Scholar

    [47] Harvey JE, Ftaclas C. Diffraction effects of telescope secondary mirror spiders on various image-quality criteria. Appl Opt 34, 6337–6349 (1995). doi: 10.1364/AO.34.006337

    CrossRef Google Scholar

    [48] Kasdin NJ, Vanderbei RJ, Spergel DN, Littman MG. Extrasolar planet finding via optimal apodized-pupil and shaped-pupil coronagraphs. Astrophys J 582, 1147–1161 (2003). doi: 10.1086/344751

    CrossRef Google Scholar

    [49] Breckinridge JB, Harvey JE, Crabtree K, Hull T. Exoplanet telescope diffracted light minimized: the pinwheel-pupil solution. Proc SPIE 10698, 106981P (2018).

    Google Scholar

    [50] Snik F, Absil O, Baudoz P, Beaulieu M, Bendek E et al. Review of high-contrast imaging systems for current and future ground-based and space-based telescopes III: technology opportunities and pathways. Proc SPIE 10706, 107062L (2018).

    Google Scholar

    [51] Breckinridge JB, Harvey JE, Irvin R, Chipman R, Kupinski M et al. ExoPlanet Optics: conceptual design processes for stealth telescopes. Proc SPIE 11115, 111150H (2019).

    Google Scholar

    [52] Harvey JE, Breckinridge JB, Irvin RG, Pfisterer RN. Novel designs for minimizing diffraction effects of large segmented mirror telescopes. Proc SPIE 10745, 107450L (2018).

    Google Scholar

    [53] Perrin M, Long J, Douglas E, Sivaramakrishnan A, Slocum C et al. POPPY: physical optics propagation in PYthon. Astrophysics Source Code Library, record ascl: 1602.018 (2016).

    Google Scholar

    [54] Perrin MD, Soummer R, Elliott EM, Lallo MD, Sivaramakrishnan A. Simulating point spread functions for the James Webb Space Telescope with WebbPSF. Proc SPIE 8442, 84423D (2012). doi: 10.1117/12.925230

    CrossRef Google Scholar

    [55] Ruane G, Riggs A, Coker CT, Shaklan SB, Sidick E et al. Fast Linearized Coronagraph Optimizer (FALCO) IV: coronagraph design survey for obstructed and segmented apertures. Proc SPIE 10698, 106984U (2018). doi: 10.1117/12.2312973

    CrossRef Google Scholar

    [56] N’Diaye M, Soummer R, Pueyo L, Carlotti A, Stark CC et al. Apodized pupil lyot coronagraphs for arbitrary apertures. Astrophys J 818, 163 (2016). doi: 10.3847/0004-637X/818/2/163

    CrossRef Google Scholar

    [57] Kim Y, Wang ZC, Milster T. Ultralight very large aperture space telescopes using MODE lens technology. In Optical Design and Fabrication 2019 FM4B.4 (OSA, 2019). https://doi.org/10.1364/FREEFORM.2019.FM4B.4.

    Google Scholar

    [58] Walker C, Kulesa C, Smith IS, Perry B, Takashima Y et al. Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): following water from the interstellar medium to oceans. Bulletin of the AAS [Internet]. 2019 Sep 30;51(7). https://baas.aas.org/pub/2020n7i047.

    Google Scholar

    [59] Knauer MC, Kaminski J, Hausler G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces. Proc SPIE 5457, 366–376 (2004). doi: 10.1117/12.545704

    CrossRef Google Scholar

    [60] Su P, Parks RE, Wang LR, Angel RP, Burge JH. Software configurable optical test system: a computerized reverse Hartmann test. Appl Opt 49, 4404–4412 (2010). doi: 10.1364/AO.49.004404

    CrossRef Google Scholar

    [61] Su TQ, Wang SS, Parks RE, Su P, Burge JH. Measuring rough optical surfaces using scanning long-wave optical test system. Appl Opt 52, 7117–7126 (2013). doi: 10.1364/ao.52.007117

    CrossRef Google Scholar

    [62] Evans CJ, Kestner RN. Test optics error removal. Appl Opt 35, 1015–1021 (1996). doi: 10.1364/ao.35.001015

    CrossRef Google Scholar

    [63] Decataldo D, Pallottini A, Ferrara A, Vallini L, Gallerani S. Photoevaporation of jeans-unstable molecular clumps. Mon Not Roy Astron Soc 487, 3377–3391 (2019). doi: 10.1093/mnras/stz1527

    CrossRef Google Scholar

    [64] Gould RJ, Salpeter EE. The interstellar abundance of the hydrogen molecule. I. Basic processes. Astrophys J 138, 393 (1963). doi: 10.1086/147654

    CrossRef Google Scholar

    [65] Krumholz MR. The big problems in star formation: the star formation rate, stellar clustering, and the initial mass function. Phys Rep 539, 49–134 (2014). doi: 10.1016/j.physrep.2014.02.001

    CrossRef Google Scholar

    [66] Smith WJ. Modern Lens Design 2nd ed (McGraw-Hill, New York, 2005).

    Google Scholar

    [67] Shannon RR. The Art and Science of Optical Design (Cambridge University Press, Cambridge, 1997).

    Google Scholar

    [68] Trumper I, Anderson AQ, Howard JM, West G, Kim DW. Design form classification of two-mirror unobstructed freeform telescopes. Opt Eng 59, 025105 (2020). doi: 10.1117/1.OE.59.2.025105

    CrossRef Google Scholar

    [69] West SC, Bailey SH, Bauman S, Cuerden B, Granger Z et al. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror. Proc SPIE 7731, 77311O (2010). doi: 10.1117/12.857750

    CrossRef Google Scholar

    [70] Allan G, Douglas ES, Barnes D, Egan M, Furesz G et al. The deformable mirror demonstration mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration. Proc SPIE 10698, 1069857 (2018).

    Google Scholar

    [71] Morgan RE, Douglas ES, Allan GW, Bierden P, Chakrabarti S et al. MEMS deformable mirrors for space-based high-contrast imaging. Micromachines 10, 366 (2019). doi: 10.3390/mi10060366

    CrossRef Google Scholar

    [72] Mendillo CB, Howe GA, Hewawasam K, Martel J, Finn SC et al. Optical tolerances for the PICTURE-C mission: error budget for electric field conjugation, beam walk, surface scatter, and polarization aberration. Proc SPIE 10400, 1040010 (2017).

    Google Scholar

    [73] Mendillo CB, Hicks BA, Cook TA, Bifano TG, Content DA et al. PICTURE: a sounding rocket experiment for direct imaging of an extrasolar planetary environment. Proc SPIE 8442, 84420E (2012).

    Google Scholar

    [74] Chakrabarti S, Mendillo CB, Cook TA, Martel JF, Finn SC et al. Planet Imaging Coronagraphic Technology Using a Reconfigurable Experimental Base (PICTURE-B): the second in the series of suborbital exoplanet experiments. J Astron Inst 5, 1640004 (2016). doi: 10.1142/S2251171716400043

    CrossRef Google Scholar

    [75] Douglas ES, Mendillo CB, Cook TA, Cahoy KL, Chakrabarti S. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload. J Astron Telesc, Instrum, Syst 4, 019003 (2018).

    Google Scholar

    [76] Belikov R, Lozi J, Pluzhnik E, Hix TT, Bendek E et al. EXCEDE technology development III: first vacuum tests. Proc SPIE 9143, 914323 (2014).

    Google Scholar

    [77] Sirbu D, Thomas SJ, Belikov R, Lozi J, Bendek E et al. EXCEDE technology development IV: demonstration of polychromatic contrast in vacuum at 1.2 λ/D. Proc SPIE 9605, 96050J (2015).

    Google Scholar

    [78] Tinker F, Ragan C, Bodden A, Dahlberg K. 2016. Silicon Carbide Optical Telescopes in “Small Satellite” Constellations. AIAA/USU Conference on Small Satellites, August. https://digitalcommons.usu.edu/smallsat/2016/Poster3/4.

    Google Scholar

    [79] Tinker F, Xin K. Fabrication of SiC aspheric mirrors with low mid-spatial error. Proc SPIE 8837, 88370M (2013). doi: 10.1117/12.2028014

    CrossRef Google Scholar

    [80] Mawet D, Serabyn E, Liewer K, Hanot C, McEldowney S et al. Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration. Opt Express 17, 1902–1918 (2009). doi: 10.1364/OE.17.001902

    CrossRef Google Scholar

    [81] Mawet D, Serabyn E, Liewer K, Burruss R, Hickey J et al. The vector vortex coronagraph: laboratory results and first light at Palomar observatory. Astrophys J 709, 53–57 (2010). doi: 10.1088/0004-637X/709/1/53

    CrossRef Google Scholar

    [82] Ruane G, Crill B, Patterson K, Prada CM, Seo BJ et al. Decadal survey testbed commissioning roadmap: demonstrating technology for imaging new worlds. Jet Propulsion Laboratory, NASA ExEP Program roadmap, 11 (2019).

    Google Scholar

    [83] Serabyn G, Mawet D, Ruane G, Mejia-Prada C, Jovanovic N. Technology development for exoplanet MISSONS: technology milestone white paper vortex coronagraph technology. TDEM White Paper, JPL TDEM Whitepaper (2019).

    Google Scholar

    [84] Singh G, Martinache F, Baudoz P, Guyon O, Matsuo T et al. Lyot-based low order wavefront sensor for phase-mask coronagraphs: principle, simulations and laboratory experiments. Publ Astron Soc Pac 126, 586–594 (2014). doi: 10.1086/677048

    CrossRef Google Scholar

    [85] Belikov R, Give’on A, Kern B, Cady E, Carr M et al. Demonstration of high contrast in 10% broadband light with the shaped pupil coronagraph. Proc SPIE 6693, 66930Y (2007). doi: 10.1117/12.734976

    CrossRef Google Scholar

    [86] Pueyo L, Stark C, Juanola-Parramon R, Zimmerman N, Bolcar M et al. The LUVOIR Extreme Coronagraph for Living Planetary Systems (ECLIPS) I: searching and characterizing exoplanetary gems. Proc SPIE 11117, 1111703 (2019). doi: 10.1117/12.2530722

    CrossRef Google Scholar

    [87] Kasdin NJ, Bailey VP, Mennesson B, Zellem RT, Ygouf M et al. The Nancy grace roman space telescope coronagraph instrument (CGI) technology demonstration. Proc SPIE 11443, 114431U (2020). doi: 10.1117/12.2562997

    CrossRef Google Scholar

    [88] Mazoyer J, Pueyo L. Fundamental limits to high-contrast wavefront control. Proc SPIE 10400, 1040014 (2017). doi: 10.1117/12.2274657

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(29)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint