Bharati MSS, Soma VR. Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electron Adv 4, 210048 (2021). doi: 10.29026/oea.2021.210048
Citation: Bharati MSS, Soma VR. Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electron Adv 4, 210048 (2021) . doi: 10.29026/oea.2021.210048

Review Open Access

Flexible SERS substrates for hazardous materials detection: recent advances

More Information
  • This article reviews the most recent advances in the development of flexible substrates used as surface-enhanced Raman scattering (SERS) platforms for detecting several hazardous materials (e.g., explosives, pesticides, drugs, and dyes). Different flexible platforms such as papers/filter papers, fabrics, polymer nanofibers, and cellulose fibers have been investigated over the last few years and their SERS efficacies have been evaluated. We start with an introduction of the importance of hazardous materials trace detection followed by a summary of different SERS methodologies with particular attention on flexible substrates and their advantages over the nanostructures and nanoparticle-based solid/hybrid substrates. The potential of flexible SERS substrates, in conjunction with a simple portable Raman spectrometer, is the power to enable practical/on-field/point of interest applications primarily because of their low-cost and easy sampling.
  • 加载中
  • [1] Bharati MSS. Rigid, flexible sers substrates fabricated using femtosecond laser pulses for explosives detection (Ph.D. Thesis, Submitted to University of Hyderabad, Hyderabad, India, 2020).

    Google Scholar

    [2] Zamora-Sequeira R, Starbird-Pérez R, Rojas-Carillo O, Vargas-Villalobos S. What are the main sensor methods for quantifying pesticides in agricultural activities? a review. Molecules 24, 2659 (2019). doi: 10.3390/molecules24142659

    CrossRef Google Scholar

    [3] National Research Council. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 3 (The National Academies Press, Washington, 2003).

    Google Scholar

    [4] Bartelt-Hunt SL, Knappe DRU, Barlaz MA. A review of chemical warfare agent simulants for the study of environmental behavior. Crit Rev Environ Sci Technol 38, 112–136 (2008). doi: 10.1080/10643380701643650

    CrossRef Google Scholar

    [5] Kumar V. Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation. Chem Commun 57, 3430–3444 (2021). doi: 10.1039/D1CC00132A

    CrossRef Google Scholar

    [6] Jindal MK, Mainuddin M, Veerabuthiran S, Razdan AK. Laser based systems for standoff detection of CWA: a short review. IEEE Sens J 21, 4085–4096 (2021). doi: 10.1109/JSEN.2020.3030672

    CrossRef Google Scholar

    [7] Wallin S, Pettersson A, Östmark H, Hobro A. Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem 395, 259–274 (2009). doi: 10.1007/s00216-009-2844-3

    CrossRef Google Scholar

    [8] Mokalled L, Al-Husseini M, Kabalan KY, El-Hajj A. Sensor review for trace detection of explosives. Int J Sci Eng Res 5, 337–350 (2014).

    Google Scholar

    [9] Singh S. Sensors—an effective approach for the detection of explosives. J Hazard Mater 144, 15–28 (2007). doi: 10.1016/j.jhazmat.2007.02.018

    CrossRef Google Scholar

    [10] Ruan S, Chen YZ, Zhang P, Pan XZ, Fang C et al. Online remote monitoring of explosives by optical fibres. RSC Adv 6, 103324–103327 (2016). doi: 10.1039/C6RA24080A

    CrossRef Google Scholar

    [11] Konstantynovski K, Njio G, Börner F, Lepcha A, Fischer T et al. Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials. Sens Actuators B: Chem 258, 1252–1266 (2018). doi: 10.1016/j.snb.2017.11.116

    CrossRef Google Scholar

    [12] Wen P, Amin M, Herzog WD, Kunz RR. Key challenges and prospects for optical standoff trace detection of explosives. TrAC Trends Anal Chem 100, 136–144 (2018). doi: 10.1016/j.trac.2017.12.014

    CrossRef Google Scholar

    [13] Davies AG, Burnett AD, Fan WH, Linfield EH, Cunningham JE. Terahertz spectroscopy of explosives and drugs. Mater Today 11, 18–26 (2008).

    Google Scholar

    [14] Yinon J. Counterterrorist Detection Techniques of Explosives (Elsevier, Amsterdam, 2007).

    Google Scholar

    [15] Moore DS, Scharff RJ. Portable Raman explosives detection. Anal Bioanal Chem 393, 1571–1578 (2009). doi: 10.1007/s00216-008-2499-5

    CrossRef Google Scholar

    [16] Christesen SD, Guicheteau JA, Curtiss JM, Fountain AW. Handheld dual-wavelength Raman instrument for the detection of chemical agents and explosives. Opt Eng 55, 074103 (2016). doi: 10.1117/1.OE.55.7.074103

    CrossRef Google Scholar

    [17] Vandenabeele P. Practical Raman Spectroscopy: An Introduction (John Wiley & Sons, Chichester, 2013); http://doi.org/10.1002/9781119961284.

    Google Scholar

    [18] Mosier-Boss PA. Review of SERS substrates for chemical sensing. Nanomaterials 7, 142 (2017). doi: 10.3390/nano7060142

    CrossRef Google Scholar

    [19] Sun J, Gong L, Wang WJ, Gong ZJ, Wang DM et al. Surface‐enhanced Raman spectroscopy for on‐site analysis: a review of recent developments. Luminescence 35, 808–820 (2020). doi: 10.1002/bio.3796

    CrossRef Google Scholar

    [20] Muehlethaler C, Leona M, Lombardi JR. Review of surface enhanced Raman scattering applications in forensic science. Anal Chem 88, 152–169 (2016). doi: 10.1021/acs.analchem.5b04131

    CrossRef Google Scholar

    [21] Gares KL, Hufziger KT, Bykov SV, Asher SA. Review of explosive detection methodologies and the emergence of standoff deep UV resonance Raman. J Raman Spectros 47, 124–141 (2016). doi: 10.1002/jrs.4868

    CrossRef Google Scholar

    [22] Zhou HB, Zhang ZP, Jiang CL, Guan GJ, Zhang K et al. Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array. Anal Chem 83, 6913–6917 (2011). doi: 10.1021/ac201407z

    CrossRef Google Scholar

    [23] Hakonen A, Rindzevicius T, Schmidt MS, Andersson PO, Juhlin L et al. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Nanoscale 8, 1305–1308 (2016). doi: 10.1039/C5NR06524K

    CrossRef Google Scholar

    [24] Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26, 163–166 (1974). doi: 10.1016/0009-2614(74)85388-1

    CrossRef Google Scholar

    [25] Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84, 1–20 (1977). doi: 10.1016/S0022-0728(77)80224-6

    CrossRef Google Scholar

    [26] Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99, 5215–5217 (1977). doi: 10.1021/ja00457a071

    CrossRef Google Scholar

    [27] Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69, 4159–4161 (1978). doi: 10.1063/1.437095

    CrossRef Google Scholar

    [28] Rajesh Y, Bharati MSS, Rao SV, Krishna MG. ZnO nanowire arrays decorated with titanium nitride nanoparticles as surface-enhanced Raman scattering substrates. Appl Phys A 127, 270 (2021). doi: 10.1007/s00339-021-04424-w

    CrossRef Google Scholar

    [29] Lan LL, Gao YM, Fan XC, Li MZ, Hao Q et al. The origin of ultrasensitive SERS sensing beyond plasmonics. Front Phys 16, 43300 (2021). doi: 10.1007/s11467-021-1047-z

    CrossRef Google Scholar

    [30] Zhen Y, Xu KC, Jiang SZ, Luo D, Chen R et al. Recent progress on two-dimensional layered materials for surface enhanced Raman spectroscopy and their applications. Mater Today Phys 18, 100378 (2021). doi: 10.1016/j.mtphys.2021.100378

    CrossRef Google Scholar

    [31] Basu N, Bharathi MSS, Sharma M, Yadav K, Parmar AS et al. Large area few-layer hexagonal boron nitride as a Raman enhancement material. Nanomaterials 11, 622 (2021). doi: 10.3390/nano11030622

    CrossRef Google Scholar

    [32] Ge MH, Pan L, Zhou GL, Chen SY, Han W et al. General surface enhanced Raman spectroscopy method for actively capturing target molecules in small gaps. J Am Chem Soc 143, 7769–7776 (2021). doi: 10.1021/jacs.1c02169

    CrossRef Google Scholar

    [33] Le Ru EC, Etchegoin PG. Quantifying SERS enhancements. MRS Bull 38, 631–640 (2013). doi: 10.1557/mrs.2013.158

    CrossRef Google Scholar

    [34] Fan MK, Andrade GFS, Brolo AG. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693, 7–25 (2011). doi: 10.1016/j.aca.2011.03.002

    CrossRef Google Scholar

    [35] Mahadeva SK, Walus K, Stoeber B. Paper as a platform for sensing applications and other devices: a review. ACS Appl Mater Interfaces 7, 8345–8362 (2015). doi: 10.1021/acsami.5b00373

    CrossRef Google Scholar

    [36] Restaino SM, White IM. A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal Chim Acta 1060, 17–29 (2019). doi: 10.1016/j.aca.2018.11.057

    CrossRef Google Scholar

    [37] Senthamizhan A, Balusamy B, Uyar T. Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408, 1285–1306 (2016). doi: 10.1007/s00216-015-9152-x

    CrossRef Google Scholar

    [38] Hakonen A, Andersson PO, Schmidt MS, Rindzevicius T, Käll M. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal Chim Acta 893, 1–13 (2015). doi: 10.1016/j.aca.2015.04.010

    CrossRef Google Scholar

    [39] Ogundare SA, van Zyl WE. A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 26, 6489–6528 (2019). doi: 10.1007/s10570-019-02580-0

    CrossRef Google Scholar

    [40] Maddipatla D, Narakathu BB, Atashbar M. Recent progress in manufacturing techniques of printed and flexible sensors: a review. Biosensors 10, 199 (2020). doi: 10.3390/bios10120199

    CrossRef Google Scholar

    [41] Peng XY, Li D, Li YT, Xing HB, Deng W. Plasmonic tunable Ag-coated gold nanorod arrays as reusable SERS substrates for multiplexed antibiotics detection. J Mater Chem B 9, 1123–1130 (2021). doi: 10.1039/D0TB02540B

    CrossRef Google Scholar

    [42] Xu KC, Yan HP, Tan CF, Lu YY, Li Y et al. Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible‐light‐driven recyclable surface enhanced Raman scattering. Adv Opt Mater 6, 1701167 (2018). doi: 10.1002/adom.201701167

    CrossRef Google Scholar

    [43] Zhang DR, Pu HB, Huang LJ, Sun DW. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: fundamentals and recent applications. Trends Food Sci Technol 109, 690–701 (2021). doi: 10.1016/j.jpgs.2021.01.058

    CrossRef Google Scholar

    [44] Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int: Synergy 2, 670–700 (2020). doi: 10.1016/j.fsisyn.2020.01.020

    CrossRef Google Scholar

    [45] Li ZY, Huang X, Lu G. Recent developments of flexible and transparent SERS substrates. J Mater Chem C 8, 3956–3969 (2020).

    Google Scholar

    [46] Forbes TP, Krauss ST, Gillen G. Trace detection and chemical analysis of homemade fuel-oxidizer mixture explosives: emerging challenges and perspectives. TrAC Trends Anal Chem 131, 116023 (2020). doi: 10.1016/j.trac.2020.116023

    CrossRef Google Scholar

    [47] Wu JJ, Zhang L, Huang F, Ji XX, Dai HQ et al. Surface enhanced Raman scattering substrate for the detection of explosives: construction strategy and dimensional effect. J Hazard Mater 387, 121714 (2020). doi: 10.1016/j.jhazmat.2019.121714

    CrossRef Google Scholar

    [48] Shvalya V, Filipič G, Zavašnik J, Abdulhalim I, Cvelbar U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: the relevance of interparticle spacing and surface morphology. Appl Phys Rev 7, 031307 (2020). doi: 10.1063/5.0015246

    CrossRef Google Scholar

    [49] To KC, Ben-Jaber S, Parkin IP. Recent developments in the field of explosive trace detection. ACS Nano 14, 10804–10833 (2020). doi: 10.1021/acsnano.0c01579

    CrossRef Google Scholar

    [50] Pérez-Jiménez AI, Lyu DY, Lu ZX, Liu GK, Ren B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem Sci 11, 4563–4577 (2020). doi: 10.1039/D0SC00809E

    CrossRef Google Scholar

    [51] Huang CC, Cheng CY, Lai YS. Paper-based flexible surface enhanced Raman scattering platforms and their applications to food safety. Trends Food Sci Technol 100, 349–358 (2020). doi: 10.1016/j.jpgs.2020.04.019

    CrossRef Google Scholar

    [52] Chen MP, Liu D, Du XY, Lo KH, Wang SP et al. 2D materials: excellent substrates for surface-enhanced Raman scattering (SERS) in chemical sensing and biosensing. TrAC Trends Anal Chem 130, 115983 (2020). doi: 10.1016/j.trac.2020.115983

    CrossRef Google Scholar

    [53] Xue JJ, Wu T, Dai YQ, Xia YN. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119, 5298–5415 (2019). doi: 10.1021/acs.chemrev.8b00593

    CrossRef Google Scholar

    [54] Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M et al. A review on surface-enhanced Raman scattering. Biosensors 9, 57 (2019). doi: 10.3390/bios9020057

    CrossRef Google Scholar

    [55] Lee HK, Lee YH, Koh CSL, Phan-Quang GC, Han XM et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem Soc Rev 48, 731–756 (2019). doi: 10.1039/C7CS00786H

    CrossRef Google Scholar

    [56] Xu KC, Zhou R, Takei K, Hong MH. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv Sci 6, 1900925 (2019). doi: 10.1002/advs.201900925

    CrossRef Google Scholar

    [57] Zhang S, Jia ZX, Liu TJ, Wei G, Su ZQ. Electrospinning nanoparticles-based materials interfaces for sensor applications. Sensors 19, 3977 (2019). doi: 10.3390/s19183977

    CrossRef Google Scholar

    [58] Liyanage T, Rael A, Shaffer S, Zaidi S, Goodpaster JV et al. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst 143, 2012–2022 (2018). doi: 10.1039/C8AN00008E

    CrossRef Google Scholar

    [59] Xu KC, Zhang CT, Lu TH, Wang PQ, Zhou R et al. Hybrid metal-insulator-metal structures on Si nanowires array for surface enhanced Raman scattering. Opto-Electron Eng 44, 185–191 (2017).

    Google Scholar

    [60] Fierro-Mercado PM, Hernández-Rivera SP. Highly sensitive filter paper substrate for SERS trace explosives detection. Int J Spectrosc 2012, 716527 (2012).

    Google Scholar

    [61] Cui H, Li SY, Deng SZ, Chen HJ, Wang CX. Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection. ACS Sens 2, 386–393 (2017). doi: 10.1021/acssensors.6b00712

    CrossRef Google Scholar

    [62] Jiang JL, Zou SM, Ma LW, Wang SF, Liao JS et al. Surface-enhanced Raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver nanorods. ACS Appl Mater Interfaces 10, 9129–9135 (2018). doi: 10.1021/acsami.7b18039

    CrossRef Google Scholar

    [63] Lee M, Oh K, Choi HK, Lee SG, Youn HJ et al. Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens 3, 151–159 (2018). doi: 10.1021/acssensors.7b00782

    CrossRef Google Scholar

    [64] Wang KQ, Sun DW, Pu HB, Wei QY, Huang LJ. Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array. ACS Appl Mater Interfaces 11, 29177–29186 (2019). doi: 10.1021/acsami.9b09746

    CrossRef Google Scholar

    [65] Lin Y, Gritsenko D, Liu Q, Lu XN, Xu J. Recent advancements in functionalized paper-based electronics. ACS Appl Mater Interfaces 8, 20501–20515 (2016). doi: 10.1021/acsami.6b04854

    CrossRef Google Scholar

    [66] Kumar A, Santhanam V. Paper swab based SERS detection of non-permitted colourants from dals and vegetables using a portable spectrometer. Anal Chim Acta 1090, 106–113 (2019). doi: 10.1016/j.aca.2019.08.073

    CrossRef Google Scholar

    [67] Liu Q, Wang JH, Wang BK, Li Z, Huang H et al. Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening. Biosens Bioelectron 54, 128–134 (2014). doi: 10.1016/j.bios.2013.10.067

    CrossRef Google Scholar

    [68] Kim EJ, Kim H, Park E, Kim T, Chung DR et al. Paper-based multiplex surface-enhanced Raman scattering detection using polymerase chain reaction probe codification. Anal Chem 93, 3677–3685 (2021). doi: 10.1021/acs.analchem.0c05285

    CrossRef Google Scholar

    [69] Park M, Jung H, Jeong Y, Jeong KH. Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 11, 438–443 (2017). doi: 10.1021/acsnano.6b06196

    CrossRef Google Scholar

    [70] Gao RK, Song XF, Zhan CB, Weng CG, Cheng S et al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens Actuators B: Chem 314, 128081 (2020). doi: 10.1016/j.snb.2020.128081

    CrossRef Google Scholar

    [71] Lee CH, Tian LM, Singamaneni S. Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2, 3429–3435 (2010). doi: 10.1021/am1009875

    CrossRef Google Scholar

    [72] Yu WW, White IM. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. Analyst 138, 3679–3686 (2013). doi: 10.1039/c3an00673e

    CrossRef Google Scholar

    [73] Polavarapu L, Porta AL, Novikov SM, Coronado-Puchau M, Liz-Marzán ML. Pen on paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 10, 3065–3071 (2014). doi: 10.1002/smll.201400438

    CrossRef Google Scholar

    [74] Lan LL, Hou XY, Gao YM, Fan XC, Qiu T. Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy. Nanotechnology 31, 055502 (2020). doi: 10.1088/1361-6528/ab4f11

    CrossRef Google Scholar

    [75] Chamuah N, Hazarika A, Hatiboruah D, Nath P. SERS on paper: an extremely low cost technique to measure Raman signal. J Phys D: Appl Phys 50, 485601 (2017). doi: 10.1088/1361-6463/aa8fef

    CrossRef Google Scholar

    [76] Yu CC, Chou SY, Tseng YC, Tseng SC, Yen YT et al. Single-shot laser treatment provides quasi-three-dimensional paper-based substrates for SERS with attomolar sensitivity. Nanoscale 7, 1667–1677 (2015). doi: 10.1039/C4NR05178E

    CrossRef Google Scholar

    [77] Zhang R, Xu BB, Liu XQ, Zhang YL, Xu Y et al. Highly efficient SERS test strips. Chem Commun 48, 5913–5915 (2012). doi: 10.1039/c2cc31604h

    CrossRef Google Scholar

    [78] Raza A, Saha B. In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes. Forensic Sci Int 237, e42–e46 (2014). doi: 10.1016/j.forsciint.2014.01.019

    CrossRef Google Scholar

    [79] Das D, Senapati S, Nanda KK. “Rinse, Repeat”: an efficient and reusable SERS and catalytic platform fabricated by controlled deposition of silver nanoparticles on cellulose paper. ACS Sustainable Chem Eng 7, 14089–14101 (2019). doi: 10.1021/acssuschemeng.9b02651

    CrossRef Google Scholar

    [80] Oliveira MJ, Quaresma P, de Almeida MP, Araújo A, Pereira E et al. Office paper decorated with silver nanostars - an alternative cost effective platform for trace analyte detection by SERS. Sci Rep 7, 2480 (2017). doi: 10.1038/s41598-017-02484-8

    CrossRef Google Scholar

    [81] Yu WW, White IM. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82, 9626–9630 (2010). doi: 10.1021/ac102475k

    CrossRef Google Scholar

    [82] Li YX, Zhang K, Zhao JJ, Ji J, Ji C et al. A three dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147, 493–500 (2016). doi: 10.1016/j.talanta.2015.10.025

    CrossRef Google Scholar

    [83] Marques PAAP, Nogueira HIS, Pinto RJB, Neto CP, Trindade T. Silver‐bacterial cellulosic sponges as active SERS substrates. J Raman Spectrosc 39, 439–443 (2008). doi: 10.1002/jrs.1853

    CrossRef Google Scholar

    [84] Kim W, Kim YH, Park HK, Choi S. Facile fabrication of a silver nanoparticle immersed, surface-enhanced Raman scattering imposed paper platform through successive ionic layer absorption and reaction for on-site bioassays. ACS Appl Mater Interfaces 7, 27910–27917 (2015). doi: 10.1021/acsami.5b09982

    CrossRef Google Scholar

    [85] Hasi WLJ, Lin X, Lou XT, Lin S, Yang F et al. Chloride ion assisted self assembly of silver nanoparticles on filter paper as SERS substrate. Appl Phys A 118, 799–807 (2015). doi: 10.1007/s00339-014-8800-x

    CrossRef Google Scholar

    [86] Huang ZF, Cao G, Sun Y, Du SR, Li YZ et al. Evaluation and optimization of paper-based SERS substrate for potential label-free Raman analysis of seminal plasma. J Nanomater 2017, 4807064 (2017).

    Google Scholar

    [87] Mehn D, Morasso C, Vanna R, Bedoni M, Prosperi D et al. Immobilised gold nanostars in a paper-based test system for surface-enhanced Raman spectroscopy. Vib Spectrosc 68, 45–50 (2013). doi: 10.1016/j.vibspec.2013.05.010

    CrossRef Google Scholar

    [88] Wang C, Liu BX, Dou XC. Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sens Actuators B: Chem 231, 357–364 (2016). doi: 10.1016/j.snb.2016.03.030

    CrossRef Google Scholar

    [89] Lee CH, Hankus ME, Tian LM, Pellegrino PM, Singamaneni S. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem 83, 8953–8958 (2011). doi: 10.1021/ac2016882

    CrossRef Google Scholar

    [90] Hoppmann EP, Yu WW, White IM. Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63, 219–224 (2013). doi: 10.1016/j.ymeth.2013.07.010

    CrossRef Google Scholar

    [91] Hoppmann EP, Yu WW, White IM. Inkjet-printed fluidic paper devices for chemical and biological analytics using surface enhanced Raman spectroscopy. IEEE J Sel Top Quantum Electron 20, 7300510 (2014).

    Google Scholar

    [92] Kim D, Gwon G, Lee G, Jeon Y, Kim UJ et al. Surface enhanced Raman scattering active AuNR array cellulose films for multi hazard detection. J Hazard Mater 402, 123505 (2021). doi: 10.1016/j.jhazmat.2020.123505

    CrossRef Google Scholar

    [93] Xian L, You RY, Lu DC, Wu CJ, Feng SY et al. Surface-modified paper-based SERS substrates for direct-droplet quantitative determination of trace substances. Cellulose 27, 1483–1495 (2020). doi: 10.1007/s10570-019-02855-6

    CrossRef Google Scholar

    [94] Moram SSB, Byram C, Shibu SN, Chilukamarri BM, Soma VR. Ag/Au nanoparticle-loaded paper-based versatile surface-enhanced Raman spectroscopy substrates for multiple explosives detection. ACS Omega 3, 8190–8201 (2018). doi: 10.1021/acsomega.8b01318

    CrossRef Google Scholar

    [95] Lin S, Hasi W, Han SQGW, Lin X, Wang L. A dual-functional PDMS-assisted paper-based SERS platform for the reliable detection of thiram residue both on fruit surfaces and in juice. Anal Methods 12, 2571–2579 (2020). doi: 10.1039/D0AY00483A

    CrossRef Google Scholar

    [96] Ming HZ, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63, 2223–2253 (2003). doi: 10.1016/S0266-3538(03)00178-7

    CrossRef Google Scholar

    [97] Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17, R89–R106 (2006). doi: 10.1088/0957-4484/17/14/R01

    CrossRef Google Scholar

    [98] Aleisa R. Electrospinning. In Handbook of Synthetic Methodologies and Protocols of Nanomaterials, Liu YD, He L, Yin YD edn, 149–181 (World Scientific, 2019); http://doi.org/10.1142/9789813277847_0006.

    Google Scholar

    [99] Husain O, Lau W, Edirisinghe M, Parhizkar M. Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution. Mater Sci Eng: C 65, 240–250 (2016). doi: 10.1016/j.msec.2016.03.076

    CrossRef Google Scholar

    [100] Wan MH, Zhao HD, Peng LC, Zou XY, Zhao YB et al. Loading of Au/Ag bimetallic nanoparticles within and outside of the flexible SiO2 electrospun nanofibers as highly sensitive, stable, repeatable substrates for versatile and trace SERS detection. Polymers 12, 3008 (2020). doi: 10.3390/polym12123008

    CrossRef Google Scholar

    [101] Zhang ZJ, Wu YP, Wang ZH, Zou XY, Zhao YB et al. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Mater Sci Eng: C 69, 462–469 (2016). doi: 10.1016/j.msec.2016.07.015

    CrossRef Google Scholar

    [102] Jalaja K, Bhuvaneswari S, Ganiga M, Divyamol R, Anup S et al. Effective SERS detection using a flexible wiping substrate based on electrospun polystyrene nanofibers. Anal Methods 9, 3998–4003 (2017). doi: 10.1039/C7AY00882A

    CrossRef Google Scholar

    [103] Jia P, Chang J, Wang JQ, Zhang P, Cao B et al. Fabrication and formation mechanism of Ag nanoplate‐decorated nanofiber mats and their application in SERS. Chem-Asian J 11, 86–92 (2016). doi: 10.1002/asia.201500777

    CrossRef Google Scholar

    [104] Chamuah N, Bhuyan N, Das PP, Ojah N, Choudhary AJ et al. Gold-coated electrospun PVA nanofibers as SERS substrate for detection of pesticides. Sens Actuators B: Chem 273, 710–717 (2018). doi: 10.1016/j.snb.2018.06.079

    CrossRef Google Scholar

    [105] Motamedi AS, Mirzadeh H, Hajiesmaeilbaigi F, Bagheri-Khoulenjani S, Shokrgozar MA. Piezoelectric electrospun nanocomposite comprising Au NPs/PVDF for nerve tissue engineering. J Biomed Mater Res Part A 105, 1984–1993 (2017). doi: 10.1002/jbm.a.36050

    CrossRef Google Scholar

    [106] Zhang CL, Lv KP, Cong HP, Yu SH. Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free‐standing SERS substrates by electrospinning. Small 8, 648–653 (2012). doi: 10.1002/smll.201102230

    CrossRef Google Scholar

    [107] Zhang LF, Gong X, Bao Y, Zhao Y, Xi M et al. Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering. Langmuir 28, 14433–14440 (2012). doi: 10.1021/la302779q

    CrossRef Google Scholar

    [108] Alyami A, Quinn AJ, Iacopino D. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 201, 58–64 (2019). doi: 10.1016/j.talanta.2019.03.115

    CrossRef Google Scholar

    [109] Qiu HW, Wang MQ, Jiang SZ, Zhang L, Yang Z et al. Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA. Sens Actuators B: Chem 249, 439–450 (2017). doi: 10.1016/j.snb.2017.04.118

    CrossRef Google Scholar

    [110] Zuo ZW, Zhu K, Gu C, Wen YB, Cui GL et al. Transparent, flexible surface enhanced Raman scattering substrates based on Ag coated structured PET (polyethylene terephthalate) for in-situ detection. Appl Surf Sci 379, 66–72 (2016). doi: 10.1016/j.apsusc.2016.04.022

    CrossRef Google Scholar

    [111] Creedon NC, Lovera P, Furey A, O’Riordan A. Transparent polymer-based SERS substrates templated by a soda can. Sens Actuators B: Chem 259, 64–74 (2018). doi: 10.1016/j.snb.2017.12.039

    CrossRef Google Scholar

    [112] Alvarez-Ruiz DT, Almohammed S, Fularz A, Barwich ST, Rice JH. Self-energized organic-inorganic hybrid composite for surface enhanced Raman spectroscopy. J Appl Phys 129, 193102 (2021). doi: 10.1063/5.0048802

    CrossRef Google Scholar

    [113] Wang KQ, Sun DW, Pu HB, Wei QY. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 223, 121782 (2021). doi: 10.1016/j.talanta.2020.121782

    CrossRef Google Scholar

    [114] Zhang CP, Yi PY, Peng LF, Lai XM, Chen J et al. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci Rep 7, 39814 (2017). doi: 10.1038/srep39814

    CrossRef Google Scholar

    [115] Fang LN, Li JC, Zhang JR, Han DD. Femtosecond laser structuring for flexible surface-enhanced Raman spectroscopy substrates. IEEE Photonics J 13, 6800908 (2021).

    Google Scholar

    [116] Byram C, Moram SSB, Soma VR. SERS based detection of multiple analytes from dye/explosive mixtures using picosecond laser fabricated gold nanoparticles and nanostructures. Analyst 144, 2327–2336 (2019). doi: 10.1039/C8AN01276H

    CrossRef Google Scholar

    [117] Naqvi TK, Bajpai A, Bharati MSS, Kulkarni MM, Siddiqui AM et al. Ultra-sensitive reusable SERS sensor for multiple hazardous materials detection on single platform. J Hazard Mater 407, 124353 (2021). doi: 10.1016/j.jhazmat.2020.124353

    CrossRef Google Scholar

    [118] Byram C, Moram SSB, Soma VR. Picosecond laser fabricated Ag, Au and Ag-Au nanoparticles for detecting ammonium perchlorate using a portable Raman spectrometer. AIP Conf Proc 1942, 050028 (2018).

    Google Scholar

    [119] Hamad S, Moram SSB, Yendeti B, Podagatlapalli GK, Rao SVSN et al. Femtosecond laser-induced, nanoparticle-embedded periodic surface structures on crystalline silicon for reproducible and multi-utility SERS platforms. ACS Omega 3, 18420–18432 (2018). doi: 10.1021/acsomega.8b02629

    CrossRef Google Scholar

    [120] Moram SSB, Shaik AK, Byram C, Hamad S, Soma VR. Instantaneous trace detection of nitro-explosives and mixtures with nanotextured silicon decorated with Ag–Au alloy nanoparticles using the SERS technique. Anal Chim Acta 1101, 157–168 (2020). doi: 10.1016/j.aca.2019.12.026

    CrossRef Google Scholar

    [121] Podagatlapalli GK, Hamad S, Mohiddon MA, Rao SV. Effect of oblique incidence on silver nanomaterials fabricated in water via ultrafast laser ablation for photonics and explosives detection. Appl Surf Sci 303, 217–232 (2014). doi: 10.1016/j.apsusc.2014.02.152

    CrossRef Google Scholar

    [122] Tang B, Wang JF, Xu SP, Afrin T, Xu WQ et al. Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric. J Colloid Interface Sci 356, 513–518 (2011). doi: 10.1016/j.jcis.2011.01.054

    CrossRef Google Scholar

    [123] Liu J, Zhou J, Tang B, Zeng T, Li YL et al. Surface enhanced Raman scattering (SERS) fabrics for trace analysis. Appl Surf Sci 386, 296–302 (2016). doi: 10.1016/j.apsusc.2016.05.150

    CrossRef Google Scholar

    [124] Chen YM, Ge FY, Guang SY, Cai ZS. Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis. Appl Surf Sci 436, 111–116 (2018). doi: 10.1016/j.apsusc.2017.11.288

    CrossRef Google Scholar

    [125] Zheng YD, Xiao MD, Jiang SX, Ding F, Wang JF. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions. Nanoscale 5, 788–795 (2013). doi: 10.1039/C2NR33064D

    CrossRef Google Scholar

    [126] Wang RH, Wang XW, Xin JH. Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Appl Mater Interfaces 2, 82–85 (2010). doi: 10.1021/am900588s

    CrossRef Google Scholar

    [127] Gao W, Xu JT, Cheng C, Qiu S, Jiang SX. Rapid and highly sensitive SERS detection of fungicide based on flexible “wash free” metallic textile. Appl Surf Sci 512, 144693 (2020). doi: 10.1016/j.apsusc.2019.144693

    CrossRef Google Scholar

    [128] Lu SC, You TT, Yang N, Gao YK, Yin PG. Flexible SERS substrate based on Ag nanodendrite–coated carbon fiber cloth: simultaneous detection for multiple pesticides in liquid droplet. Anal Bioanal Chem 412, 1159–1167 (2020). doi: 10.1007/s00216-019-02344-6

    CrossRef Google Scholar

    [129] Zhang ZL, Si TT, Liu J, Zhou GW. In-situ grown silver nanoparticles on nonwoven fabrics based on mussel-inspired polydopamine for highly sensitive SERS Carbaryl pesticides detection. Nanomaterials 9, 384 (2019). doi: 10.3390/nano9030384

    CrossRef Google Scholar

    [130] Liu Y, Zhang Y, Tardivel M, Lequeux M, Chen XP et al. Evaluation of the reliability of six commercial SERS substrates. Plasmonics 15, 743–752 (2020). doi: 10.1007/s11468-019-01084-8

    CrossRef Google Scholar

    [131] Hakonen A, Wu KY, Schmidt MS, Andersson PO, Boisen A et al. Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers. Talanta 189, 649–652 (2018). doi: 10.1016/j.talanta.2018.07.009

    CrossRef Google Scholar

    [132] Wang JP, Yang L, Liu BH, Jiang HH, Liu RY et al. Inkjet-printed silver nanoparticle paper detects airborne species from crystalline explosives and their ultratrace residues in open environment. Anal Chem 86, 3338–3345 (2014). doi: 10.1021/ac403409q

    CrossRef Google Scholar

    [133] Moram SSB, Byram C, Soma VR. Gold-nanoparticle-and nanostar-loaded paper-based SERS substrates for sensing nanogram-level Picric acid with a portable Raman spectrometer. Bull Mater Sci 43, 53 (2020). doi: 10.1007/s12034-019-2017-8

    CrossRef Google Scholar

    [134] Khan GA, Demirtaş Ö, Demir AK, Ayteki Ö, Bek A et al. Fabrication of flexible, cost-effective, and scalable silver substrates for efficient surface enhanced Raman spectroscopy based trace detection. Colloids Surf A: Physicochem Eng Aspects 619, 126542 (2021). doi: 10.1016/j.colsurfa.2021.126542

    CrossRef Google Scholar

    [135] Yu WW, White IM. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138, 1020–1025 (2013). doi: 10.1039/C2AN36116G

    CrossRef Google Scholar

    [136] Alder R, Hong J, Chow E, Fang JH, Isa F et al. Application of plasma-printed paper-based SERS substrate for cocaine detection. Sensors 21, 810 (2021). doi: 10.3390/s21030810

    CrossRef Google Scholar

    [137] Zhang LZ, Liu J, Zhou GW, Zhang ZL. Controllable in-situ growth of silver nanoparticles on filter paper for flexible and highly sensitive SERS sensors for malachite green residue detection. Nanomaterials 10, 826 (2020). doi: 10.3390/nano10050826

    CrossRef Google Scholar

    [138] Lee CW, Chia ZC, Hsieh YT, Tsai HC, Tai Y et al. A facile wet-chemistry approach to engineer an Au-based SERS substrate and enhance sensitivity down to ppb-level detection. Nanoscale 13, 3991–3999 (2021). doi: 10.1039/D0NR06537D

    CrossRef Google Scholar

    [139] Zhu YQ, Li MQ, Yu DY, Yang LB. A novel paper rag as ‘D-SERS’substrate for detection of pesticide residues at various peels. Talanta 128, 117–124 (2014). doi: 10.1016/j.talanta.2014.04.066

    CrossRef Google Scholar

    [140] Bolz A, Panne U, Rurack K, Buurman M. Glass fibre paper-based test strips for sensitive SERS sensing. Anal Methods 8, 1313–1318 (2016). doi: 10.1039/C5AY03096J

    CrossRef Google Scholar

    [141] Zhu JJ, Chen QS, Kutsanedzie FYH, Yang MX, Ouyang Q et al. Highly sensitive and label-free determination of thiram residue using surface-enhanced Raman spectroscopy (SERS) coupled with paper-based microfluidics. Anal Methods 9, 6186–6193 (2017). doi: 10.1039/C7AY01637A

    CrossRef Google Scholar

    [142] Ma YD, Wang YH, Luo Y, Duan HZ, Li D et al. Rapid and sensitive on-site detection of pesticide residues in fruits and vegetables using screen-printed paper-based SERS swabs. Anal Methods 10, 4655–4664 (2018). doi: 10.1039/C8AY01698D

    CrossRef Google Scholar

    [143] Sun J, Gong L, Lu YT, Wang DM, Gong ZJ et al. Dual functional PDMS sponge SERS substrate for the on-site detection of pesticides both on fruit surfaces and in juice. Analyst 143, 2689–2695 (2018). doi: 10.1039/C8AN00476E

    CrossRef Google Scholar

    [144] Kim D, Ko Y, Kwon G, Choo YM, You J. Low-cost, high-performance plasmonic nanocomposites for hazardous chemical detection using surface enhanced Raman scattering. Sens Actuators B: Chem 274, 30–36 (2018). doi: 10.1016/j.snb.2018.07.107

    CrossRef Google Scholar

    [145] Luo W, Chen M, Hao NY, Huang XQ, Zhao XY et al. In situ synthesis of gold nanoparticles on pseudo-paper films as flexible SERS substrate for sensitive detection of surface organic residues. Talanta 197, 225–233 (2019). doi: 10.1016/j.talanta.2018.12.099

    CrossRef Google Scholar

    [146] Atanasov PA, Nedyalkov NN, Fukata N, Jevasuwan W, Subramani T et al. Surface-enhanced Raman spectroscopy (SERS) of mancozeb and thiamethoxam assisted by gold and silver nanostructures produced by laser techniques on paper. Appl Spectros 73, 313–319 (2019). doi: 10.1177/0003702818816304

    CrossRef Google Scholar

    [147] Zhang CM, You TT, Yang N, Gao YK, Jiang L et al. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Food Chem 287, 363–368 (2019). doi: 10.1016/j.foodchem.2019.02.094

    CrossRef Google Scholar

    [148] Xie J, Li LY, Khan IM, Wang ZP, Ma XY. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochim Acta Part A: Mol Biomol Spectrosc 231, 118104 (2020). doi: 10.1016/j.saa.2020.118104

    CrossRef Google Scholar

    [149] Chen J, Huang MZ, Kong LL. Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Appl Surf Sci 533, 147454 (2020). doi: 10.1016/j.apsusc.2020.147454

    CrossRef Google Scholar

    [150] Sun L, Yu ZL, Alsammarraie FK, Lin MH, Kong FB et al. Development of cellulose nanofiber-based substrates for rapid detection of ferbam in kale by surface-enhanced Raman spectroscopy. Food Chem 347, 129023 (2021). doi: 10.1016/j.foodchem.2021.129023

    CrossRef Google Scholar

    [151] Song SW, Kim D, Kim J, You J, Kim HM. Flexible nanocellulose-based SERS substrates for fast analysis of hazardous materials by spiral scanning. J Hazard Mater 414, 125160 (2021). doi: 10.1016/j.jhazmat.2021.125160

    CrossRef Google Scholar

    [152] Tay LL, Poirier S, Ghaemi A, Hulse J, Wang SL. Paper-based surface-enhanced Raman spectroscopy sensors for field applications. J Raman Spectros 52, 563–572 (2021). doi: 10.1002/jrs.6017

    CrossRef Google Scholar

    [153] Lee HG, Choi W, Yang SY, Kim DH, Park SG et al. PCR-coupled Paper-based surface-enhanced Raman scattering (SERS) sensor for rapid and sensitive detection of respiratory bacterial DNA. Sens Actuators B: Chem 326, 128802 (2021). doi: 10.1016/j.snb.2020.128802

    CrossRef Google Scholar

    [154] Kim D, Kim J, Henzie J, Ko Y, Lim H et al. Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chem Eng J 419, 129445 (2021). doi: 10.1016/j.cej.2021.129445

    CrossRef Google Scholar

    [155] Xu XY, Hu XM, Fu FY, Liu L, Liu XD. DNA-induced assembly of silver nanoparticle decorated cellulose nanofiber: a flexible surface-enhanced Raman spectroscopy substrate for the selective charge molecular detection and wipe test of pesticide residues in fruits. ACS Sustainable Chem Eng 9, 5217–5229 (2021). doi: 10.1021/acssuschemeng.1c00788

    CrossRef Google Scholar

    [156] Gong ZJ, Du HJ, Cheng FS, Wang C, Wang CC et al. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces 6, 21931–21937 (2014). doi: 10.1021/am507424v

    CrossRef Google Scholar

    [157] Wang C, Wong KW, Wang Q, Zhou YF, Tang CY et al. Silver-nanoparticles-loaded chitosan foam as a flexible SERS substrate for active collecting analytes from both solid surface and solution. Talanta 191, 241–247 (2019). doi: 10.1016/j.talanta.2018.08.067

    CrossRef Google Scholar

    [158] Kong LL, Huang MZ, Chen J, Lin MS. Fabrication of sensitive silver-decorated cotton swabs for SERS quantitative detection of mixed pesticide residues in bitter gourds. New J Chem 44, 12779–12784 (2020). doi: 10.1039/D0NJ02054K

    CrossRef Google Scholar

    [159] Liu J, Si TT, Zhang ZL. Mussel-inspired immobilization of silver nanoparticles toward sponge for rapid swabbing extraction and SERS detection of trace inorganic explosives. Talanta 204, 189–197 (2019). doi: 10.1016/j.talanta.2019.05.110

    CrossRef Google Scholar

    [160] Bharati MSS, Byram C, Banerjee D, Sarma D, Barkakaty B et al. Gold nanoparticle nanofibres as SERS substrate for detection of methylene blue and a chemical warfare simulant (methyl salicylate). Bull Mater Sci 14, 103 (2021).

    Google Scholar

    [161] Chen Y, Cao JL, Wei HY, Wu ZG, Wang XP et al. Synthesis of polyvinyl alcohol/Ag electrospun nanofibers as highly efficient flexible SERS substrates. Vib Spectrosc 114, 103246 (2021). doi: 10.1016/j.vibspec.2021.103246

    CrossRef Google Scholar

    [162] Kong LS, Dong NX, Tian GF, Qi SL, Wu DZ. Highly enhanced Raman scattering with good reproducibility observed on a flexible PI nanofabric substrate decorated by silver nanoparticles with controlled size. Appl Surf Sci 511, 145443 (2020). doi: 10.1016/j.apsusc.2020.145443

    CrossRef Google Scholar

    [163] Cai LM, Deng Z, Dong J, Song SD, Wang YR et al. Fabrication of non-woven fabric-based SERS substrate for direct detection of pesticide residues in fruits. J Anal Test 1, 322–329 (2017). doi: 10.1007/s41664-017-0035-3

    CrossRef Google Scholar

    [164] Cheng DS, He MT, Ran JH, Cai GM, Wu JH et al. Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection. Sens Actuators B: Chem 270, 508–517 (2018). doi: 10.1016/j.snb.2018.05.075

    CrossRef Google Scholar

    [165] Cheng DS, Bai X, He MT, Wu JH, Yang HJ et al. Polydopamine-assisted immobilization of Ag@AuNPs on cotton fabrics for sensitive and responsive SERS detection. Cellulose 26, 4191–4204 (2019). doi: 10.1007/s10570-019-02343-x

    CrossRef Google Scholar

    [166] Bian XY, Xu JT, Yang J, Chiu KI, Jiang SX. Flexible Ag SERS substrate for non-destructive and rapid detection of toxic materials on irregular surface. Surf Interfaces 23, 100995 (2021). doi: 10.1016/j.surfin.2021.100995

    CrossRef Google Scholar

    [167] Zheng WW, Tian WT, Liu XJ, Zhang QQ, Zong CH et al. In situ photochemical deposition of Ag nanoparticles on polyester fiber membranes as flexible SERS substrates for sensitive detection of sodium saccharin in soft drinks. Microchem J 164, 106003 (2021). doi: 10.1016/j.microc.2021.106003

    CrossRef Google Scholar

    [168] Tian XR, Zhai P, Guo JQ, Yu Q, Xu LZ et al. Fabrication of plasmonic cotton gauze-Ag composite as versatile SERS substrate for detection of pesticides residue. Spectrochim Acta Part A: Mol Biomol Spectrosc 257, 119766 (2021). doi: 10.1016/j.saa.2021.119766

    CrossRef Google Scholar

    [169] Liu AR, Zhang S, Guang SY, Ge FY, Wang J. Ag-coated nylon fabrics as flexible substrates for surface-enhanced Raman scattering swabbing applications. J Mater Res 35, 1271–1278 (2020). doi: 10.1557/jmr.2020.103

    CrossRef Google Scholar

    [170] Ning S, Wang ZK, Mu J, Jie Z. Flexible carbon fiber cloth decorated by Ag nanoparticles for high Raman enhancement. Opt Mater Express 11, 1321–1333 (2021).

    Google Scholar

    [171] Sun MM, Qian HM, Liu J, Li YC, Pang SP et al. A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Adv 7, 7073–7078 (2017). doi: 10.1039/C6RA25956A

    CrossRef Google Scholar

    [172] Gupta P, Luan JY, Wang ZY, Cao SS, Bae SH et al. On-demand electromagnetic hotspot generation in surface-enhanced Raman scattering substrates via “add-on” plasmonic patch. ACS Appl Mater Interfaces 11, 37939–37946 (2019). doi: 10.1021/acsami.9b12402

    CrossRef Google Scholar

    [173] Emamian S, Eshkeiti A, Narakathu BB, Avuthu SGR, Atashbar MZ. Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2,4-dinitrotoluene (DNT) vapor. Sens Actuators B: Chem 217, 129–135 (2015). doi: 10.1016/j.snb.2014.10.069

    CrossRef Google Scholar

    [174] Liu W, Song ZH, Zhao YF, Liu Y, He X et al. Flexible porous aerogels decorated with Ag nanoparticles as an effective SERS substrate for label-free trace explosives detection. Anal Methods 12, 4123–4129 (2020). doi: 10.1039/D0AY00771D

    CrossRef Google Scholar

    [175] Gao RK, Qian HY, Weng CG, Wang XL, Xie C et al. A SERS stamp: multiscale coupling effect of silver nanoparticles and highly ordered nano-micro hierarchical substrates for ultrasensitive explosive detection. Sens Actuators B: Chem 321, 128543 (2020). doi: 10.1016/j.snb.2020.128543

    CrossRef Google Scholar

    [176] Xu KC, Wang ZY, Tan CF, Kang N, Chen LW et al. Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl Mater Interfaces 9, 26341–26349 (2017). doi: 10.1021/acsami.7b06669

    CrossRef Google Scholar

    [177] Li CH, Xu SC, Yu J, Jiang SZ, Liu AH et al. 3D hybrid MoS2/AgNPs/inverted pyramid PMMA resonant cavity system for the excellent flexible surface enhanced Raman scattering sensor. Sens Actuators B: Chem 274, 152–162 (2018). doi: 10.1016/j.snb.2018.07.150

    CrossRef Google Scholar

    [178] Xiu XW, Guo Y, Li CH, Li Z, Li DZ et al. High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA. Opt Mater Express 8, 844–857 (2018). doi: 10.1364/OME.8.000844

    CrossRef Google Scholar

    [179] Zang SY, Liu H, Wang Q, Yang JW, Pang ZQ et al. Facile fabrication of Au nanoworms covered polyethylene terephthalate (PET) film: towards flexible SERS substrates. Mater Lett 294, 129643 (2021). doi: 10.1016/j.matlet.2021.129643

    CrossRef Google Scholar

    [180] Li Y, Xin XL, Zhang TT, Li WH, Li JS et al. Raspberry like polyamide@ Ag hybrid nanoarrays with flexible cores and SERS signal enhancement strategy for adenosine detection. Chem Eng J 422, 129983 (2021). doi: 10.1016/j.cej.2021.129983

    CrossRef Google Scholar

    [181] Chen JM, Huang YJ, Kannan P, Zhang L, Lin ZY et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88, 2149–2155 (2016). doi: 10.1021/acs.analchem.5b03735

    CrossRef Google Scholar

    [182] Wei W, Du YX, Zhang LM, Yang Y, Gao YF. Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires. J Mater Chem C 6, 8793–8803 (2018).

    Google Scholar

    [183] Ma Y, Chen Y, Tian YR, Gu CJ, Jiang T. Contrastive study of in situ sensing and swabbing detection based on SERS-active gold nanobush–PDMS hybrid film. J Agric Food Chem 69, 1975–1983 (2021). doi: 10.1021/acs.jafc.0c06562

    CrossRef Google Scholar

    [184] Xu LM, Liu HG, Hui Z, Hong MH. One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection. Talanta 228, 122204 (2021). doi: 10.1016/j.talanta.2021.122204

    CrossRef Google Scholar

    [185] Sitjar J, Liao JD, Lee H, Pan LP, Liu BH et al. Ag nanostructures with spikes on adhesive tape as a flexible sers-active substrate for in situ trace detection of pesticides on fruit skin. Nanomaterials 9, 1750 (2019). doi: 10.3390/nano9121750

    CrossRef Google Scholar

    [186] https://www.stellarnet.us/spectrometers-accessories/sers-substrates/.

    Google Scholar

    [187] https://www.horiba.com/en_en/products/detail/action/show/Product/sers-substrates-1635/.

    Google Scholar

    [188] https://www.sersitive.eu/.

    Google Scholar

    [189] http://enspectr.com/applications/sers-analysis/.

    Google Scholar

    [190] https://www.silmeco.com/products/sers-substrate-serstrate/.

    Google Scholar

    [191] https://www.hamamatsu.com/jp/en/product/optical-components/sers-substrate/index.html.

    Google Scholar

    [192] https://integratedoptics.com/products/sers-substrates.

    Google Scholar

    [193] https://www.trademed.com/products/6451/SERS-Substrates.html.

    Google Scholar

    [194] http://www.madatec.com/RAMAN_files/Q-SERS%20G1_data%20sheet-Madatec.pdf.

    Google Scholar

    [195] https://www.metrohm.com/en/products/607506170.

    Google Scholar

    [196] Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguié B et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020). doi: 10.1021/acsnano.9b04224

    CrossRef Google Scholar

    [197] Goodacre R, Graham D, Faulds, K. Recent developments in quantitative SERS: Moving towards absolute quantification. Trends Anal Chem 102, 359–368 (2018). doi: 10.1016/j.trac.2018.03.005

    CrossRef Google Scholar

    [198] Szaniawska A, Kudelski A. Applications of Surface-Enhanced Raman Scattering in Biochemical and Medical Analysis. Front Chem 9, 664134 (2021). doi: 10.3389/fchem.2021.664134

    CrossRef Google Scholar

    [199] Cupil-Garcia V, Strobbia P, Crawford BM, Wang HN, Ngo H et al. Plasmonic nanoplatforms: from surface‐enhanced Raman scattering sensing to biomedical applications. J Raman Spectros 52, 541–553 (2021). doi: 10.1002/jrs.6056

    CrossRef Google Scholar

    [200] Lin L, Bi XY, Gu YQ, Wang F, Ye J. Surface-enhanced Raman scattering nanotags for bioimaging. J Appl Phys 129, 191101 (2021). doi: 10.1063/5.0047578

    CrossRef Google Scholar

    [201] Jiang L, Hassan MM, Ali S, Li HH, Sheng R et al. Evolving trends in SERS-based techniques for food quality and safety: a review. Trends Food Sci Technol 112, 225–240 (2021). doi: 10.1016/j.jpgs.2021.04.006

    CrossRef Google Scholar

    [202] Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A et al. SERS based lateral flow immunoassay for point-of-care detection of SARS-CoV-2 in clinical samples. ACS Appl Bio Mater 4, 2974–2995 (2021). doi: 10.1021/acsabm.1c00102

    CrossRef Google Scholar

    [203] Chen H, Park SG, Choi N, Kwon HJ, Kang T et al. Sensitive detection of SARS-CoV-2 using a SERS-based aptasensor. ACS Sens 6, 2378–2385 (2021). doi: 10.1021/acssensors.1c00596

    CrossRef Google Scholar

    [204] Weng SZ, Hu XJ, Wang JH, Tang L, Li P et al. Advanced application of Raman spectroscopy and surface-enhanced Raman spectroscopy in plant disease diagnostics: a review. J Agric Food Chem 69, 2950–2964 (2021). doi: 10.1021/acs.jafc.0c07205

    CrossRef Google Scholar

    [205] Amin MO, Al-Hetlani E, Lednev IK. Trends in vibrational spectroscopy offingermarks for forensicpurposes. Trends Anal Chem 143, 116341 (2021). doi: https://doi.org/10.1016/j.trac.2021.116341

    CrossRef Google Scholar

    [206] Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW. Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 16, 2224–2239 (2014). doi: 10.1039/C3CP53560F

    CrossRef Google Scholar

    [207] Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53, 4756–4795 (2014). doi: 10.1002/anie.201205748

    CrossRef Google Scholar

    [208] Yadav S, Satija J. The current state of the art of plasmonic nanofibrous mats as SERS substrates: design, fabrication and sensor applications. J Mater Chem B 9, 267–282 (2021). doi: 10.1039/D0TB02137G

    CrossRef Google Scholar

    [209] Bharati MSS , Chandu B, Banerjee D, Sarma D, Barkakaty B, Venugopal Rao S. Gold Nanoparticle Nanofibers as SERS Substrate for Detection of Methylene Blue and a Chemical Warfare Simulant (Methyl Salicylate). Bull Mater Sci 44, 103 (2021).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint