Shahzadi M, Zheng CY, Ahmad S, Wang SS, Zhang WL. Exciton-polariton based WS2 polarization modulator controlled by optical Stark beam. Opto-Electron Adv 5, 200066 (2022). doi: 10.29026/oea.2022.200066
Citation: Shahzadi M, Zheng CY, Ahmad S, Wang SS, Zhang WL. Exciton-polariton based WS2 polarization modulator controlled by optical Stark beam. Opto-Electron Adv 5, 200066 (2022). doi: 10.29026/oea.2022.200066

Original Article Open Access

Exciton-polariton based WS2 polarization modulator controlled by optical Stark beam

More Information
  • The recent era of fast optical manipulation and optical devices owe a lot to exciton-polaritons being lighter in mass, faster in speed and stronger in nonlinearity due to hybrid light-matter characteristics. The room temperature existence of polaritons in two dimensional materials opens up new avenues to the design and analysis of all optical devices and has gained the researchers attention. Here, spin-selective optical Stark effect is introduced to form a waveguide effect in uniform community of polaritons, and is used to realize polarization modulation of polaritons. The proposed device basically takes advantage of the spin-sensitive properties of optical Stark effect of polaritons inside the WS2 microcavity so as to guide different modes and modulate polarization of polaritons. It is shown that polaritonic wavepacket of different mode profiles can be generated by changing intensity of the optical Stark beam and the polarization of polaritons can be controlled and changed periodically along the formed waveguide by introduction birefringence that is sensitive to polarization degree of the optical Stark beam.
  • 加载中
  • [1] Komineas S, Shipman SP, Venakides S. Lossless polariton solitons. Phys D Nonlinear Phenom 316, 43–56 (2016). doi: 10.1016/j.physd.2015.10.018

    CrossRef Google Scholar

    [2] Aiqin Hu, Shuai Liu, Jingyi Zhao et al. Controlling plasmon-exciton interactions through photothermal reshaping. Opto-Electron Adv 3, 190017 (2020). doi: 10.29026/oea.2020.190017

    CrossRef Google Scholar

    [3] Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices. Nat Mater 15, 1061–1073 (2016). doi: 10.1038/nmat4668

    CrossRef Google Scholar

    [4] Cancellieri E, Hayat A, Steinberg A , Giacobino E, Bramati A. Ultrafast stark-induced polaritonic switches. Phys Rev Lett 112, 053601 (2014). doi: 10.1103/PhysRevLett.112.053601

    CrossRef Google Scholar

    [5] Liu XZ, Galfsky T, Sun Z, Xia FN, Lin EC et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat Photonics 9, 30–34 (2015). doi: 10.1038/nphoton.2014.304

    CrossRef Google Scholar

    [6] Echtermeyer TJ, Milana S, Sassi U, Eiden A, Wu M et al. Surface plasmon polariton graphene Photodetectors. Nano Lett 16, 8–20 (2016). doi: 10.1021/acs.nanolett.5b02051

    CrossRef Google Scholar

    [7] Zhang WL, Li XJ, Wang SS, Zheng CY, Li XF et al. Polaritonic manipulation based on the spin-selective optical Stark effect in the WS2 and Tamm plasmon hybrid structure. Nanoscale 11, 4571–4577 (2019). doi: 10.1039/C8NR09091B

    CrossRef Google Scholar

    [8] Deng H, Haug H, Yamamoto Y. Exciton-polariton bose-einstein condensation. Rev Mod Phys 82, 1489–1537 (2010). doi: 10.1103/RevModPhys.82.1489

    CrossRef Google Scholar

    [9] Wen XM, Bi YG, Yi FS, Zhang XL, Liu YF et al. Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes. Opto-Electron Adv 4, 200024 (2021). doi: 10.29026/oea.2021.200024

    CrossRef Google Scholar

    [10] Liu FC, Zhou JD, Zhu C, Liu Z. Electric field effect in two-dimensional transition metal dichalcogenides. Adv Funct Mater 27, 1602404 (2017). doi: 10.1002/adfm.201602404

    CrossRef Google Scholar

    [11] Sie EJ, McIver JW, Lee YH, Fu L, Kong J et al. Valley-selective optical Stark effect in monolayer WS2. Nat Mater 14, 290–294 (2015). doi: 10.1038/nmat4156

    CrossRef Google Scholar

    [12] LaMountain T, Bergeron H, Balla I, Stanev TK, Hersam MC et al. Valley-selective optical Stark effect probed by Kerr rotation. Phys Rev B 97, 045307 (2018). doi: 10.1103/PhysRevB.97.045307

    CrossRef Google Scholar

    [13] Bouteyre P, Nguyen HS, Lauret JS, Trippé-Allard G, Delport G et al. Room-temperature cavity polaritons with 3D hybrid perovskite: toward large-surface polaritonic devices. ACS Photonics 6, 1804–1811 (2019). doi: 10.1021/acsphotonics.9b00625

    CrossRef Google Scholar

    [14] Lerario G, Fieramosca A, Barachati F, Ballarini D, Daskalakis KS et al. Room-temperature superfluidity in a polariton condensate. Nat Phys 13, 837–841 (2017). doi: 10.1038/nphys4147

    CrossRef Google Scholar

    [15] Yang Y, Yang MJ, Zhu K, Johnson JC, Berry JJ et al. Stark effect in lead iodide perovskites. Nat Comm 7, 12613 (2016). doi: 10.1038/ncomms12613

    CrossRef Google Scholar

    [16] Zhang WL, Wu XM, Wang F, Ma R, Li XF et al. Stark effect induced microcavity polariton solitons. Opt Express 23, 15762–15767 (2015). doi: 10.1364/OE.23.015762

    CrossRef Google Scholar

    [17] Zhang WL, Rao YJ. Optical Tamm state polaritons in a quantum well microcavity with gold layers. Chin Phys B 21, 057107 (2012). doi: 10.1088/1674-1056/21/5/057107

    CrossRef Google Scholar

    [18] Cuadra J, Baranov DG, Wersäll M, Verre R, Antosiewicz TJ et al. Observation of tunable charged exciton polaritons in hybrid monolayer WS2 – plasmonic nanoantenna system. Nano Lett 18, 1777–1785 (2018). doi: 10.1021/acs.nanolett.7b04965

    CrossRef Google Scholar

    [19] Klembt S, Harder TH, Egorov OA, Winkler K, Ge R et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018). doi: 10.1038/s41586-018-0601-5

    CrossRef Google Scholar

    [20] Cancellieri G, Chiaraluce F, Gambi E, Pierleoni P. All-optical polarization modulator based on spatial soliton coupling. J Light Technol 14, 513–523 (1996). doi: 10.1109/50.485615

    CrossRef Google Scholar

    [21] Novoselov KS, Mishchenko A, Carvalho A, Neto AHC. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016). doi: 10.1126/science.aac9439

    CrossRef Google Scholar

    [22] Shahzadi M, Zhang WL, Khan MT. Exciton-polariton in WS2 microcavity in the presence of the optical Stark effect. Chin Opt Lett 17, 020014 (2019). doi: 10.3788/COL201917.020014

    CrossRef Google Scholar

    [23] Gu J, Chakraborty B, Khatoniar M, Menon VM. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat Nanotechnol 14, 1024–1028 (2019). doi: 10.1038/s41565-019-0543-6

    CrossRef Google Scholar

    [24] Hu T, Wang YF, Wu L, Zhang L, Shan YW et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons. Appl Phys Lett 110, 051101 (2017). doi: 10.1063/1.4974901

    CrossRef Google Scholar

    [25] Giovanni D, Chong WK, Dewi HA, Thirumal K, Neogi I et al. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci Adv 2, e1600477 (2016). doi: 10.1126/sciadv.1600477

    CrossRef Google Scholar

    [26] Shahzadi M, Zheng CY, Wang SS, Zhang WL. Polariton multimode interferometer controlled by optical stark shift in WS2 microcavity. IEEE J Quantum Electron 56, 9000105 (2020).

    Google Scholar

    [27] Voronych O, Buraczewski A, Matuszewski M, Stobińska M. Numerical modeling of exciton–polariton Bose–Einstein condensate in a microcavity. Comput Phys Commun 215, 246–258 (2017). doi: 10.1016/j.cpc.2017.02.021

    CrossRef Google Scholar

    [28] Terças H, Mendonça JT. Exciton-polariton wakefields in semiconductor microcavities. Phys Lett A 380, 822–827 (2016). doi: 10.1016/j.physleta.2016.01.024

    CrossRef Google Scholar

    [29] Qiu L, Chakraborty C, Dhara S, Vamivakas AN. Room-temperature valley coherence in a polaritonic system. Nat Commun 10, 1513 (2019). doi: 10.1038/s41467-019-09490-6

    CrossRef Google Scholar

    [30] Mukherjee B, Tseng F, Gunlycke D, Amara KK, Eda G. Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible. Opt Mater Express 5, 447–455 (2015). doi: 10.1364/OME.5.000447

    CrossRef Google Scholar

    [31] Yu YL, Yu YF, Huang LJ, Peng HW, Xiong LW et al. Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers. Nano Lett 17, 3613–3618 (2017). doi: 10.1021/acs.nanolett.7b00768

    CrossRef Google Scholar

    [32] Kravets VG, Wu F, Auton GH, Yu TC, Imaizumi S et al. Measurements of electrically tunable refractive index of MoS2 monolayer and its usage in optical modulators. npj 2D Mater Appl 3, 36 (2019). doi: 10.1038/s41699-019-0119-1

    CrossRef Google Scholar

    [33] Hichri A, Amara IB, Ayari S, Jaziri S. Exciton center-of-mass localization and dielectric environment effect in monolayer WS2. J Appl Phys 121, 235702 (2017). doi: 10.1063/1.4984790

    CrossRef Google Scholar

    [34] Chakraborty B, Gu J, Sun Z, Khatoniar M, Bushati R et al. Control of strong light–matter interaction in monolayer WS2 through electric field gating. Nano Lett 18, 6455–6460 (2018). doi: 10.1021/acs.nanolett.8b02932

    CrossRef Google Scholar

    [35] Król M, Lekenta K, Mirek R, Łempicka K, Stephan D et al. Valley polarization of exciton-polaritons in monolayer WSe2 in a tunable microcavity. Nanoscale 11, 9574–9579 (2019). doi: 10.1039/C9NR02038A

    CrossRef Google Scholar

    [36] Vella D, Ovchinnikov D, Martino N, Vega-Mayoral V, Dumcenco D et al. Unconventional electroabsorption in monolayer MoS2. 2D Mater 4, 021005 (2017). doi: 10.1088/2053-1583/aa5784

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint