Yan DD, Zhao SY, Zhang YB, Wang HX, Zang ZG. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron Adv 5, 200075 (2022). doi: 10.29026/oea.2022.200075
Citation: Yan DD, Zhao SY, Zhang YB, Wang HX, Zang ZG. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron Adv 5, 200075 (2022). doi: 10.29026/oea.2022.200075

Original Article Open Access

Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots

More Information
  • These authors contributed equally to this work

  • Corresponding author: ZG Zang, E-mail: zangzg@cqu.edu.cn
  • All-inorganic CsPbBr3 perovskite quantum dots (QDs) have received great attention in white light emission because of their outstanding properties. However, their practical application is hindered by poor stability. Herein, we propose a simple strategy to synthesize excellent stability and efficient emission of CsPbBr3 QDs by using 2-hexyldecanoic acid (DA) as a ligand to replace the regular oleic acid (OA) ligand. Thanks to the strong binding energy between DA ligand and QDs, the modified QDs not only show a high photoluminescence quantum yield (PLQY) of 96% but also exhibit high stability against ethanol and water. Thereby warm white light-emitting diodes (WLEDs) are constructed by combining ligand modified CsPbBr3 QDs with red AgInZnS QDs on blue emitting InGaN chips, exhibiting a color rendering index of 93, a power efficiency of 64.8 lm/W, a CIE coordinate of (0.44, 0.42) and correlated color temperature value of 3018 K. In addition, WLEDs based on ligand modified CsPbBr3 QDs also exhibit better thermal performance than that of WLEDs based on the regular CsPbBr3 QDs. The combination of improved efficiency and better thermal stability with high color quality indicates that the modified CsPbBr3 QDs are ideal for WLEDs application.
  • 加载中
  • [1] Sun YR, Giebink NC, Kanno H, Ma BW, Thompson ME et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006). doi: 10.1038/nature04645

    CrossRef Google Scholar

    [2] Schreuder MA, Xiao K, Ivanov IN, Weiss SM, Rosenthal SJ. White light-emitting diodes based on Ultrasmall CdSe nanocrystal electroluminescence. Nano Lett 10, 573–576 (2010). doi: 10.1021/nl903515g

    CrossRef Google Scholar

    [3] Crawford MH. LEDs for solid-state lighting: performance challenges and recent advances. IEEE J Sel Top Quantum Electron 15, 1028–1040 (2009). doi: 10.1109/JSTQE.2009.2013476

    CrossRef Google Scholar

    [4] McKittrick J, Shea-Rohwer LE. Review: down conversion materials for solid-state lighting. J Am Ceram Soc 97, 1327–1352 (2014). doi: 10.1111/jace.12943

    CrossRef Google Scholar

    [5] Schubert EF, Kim JK. Solid-state light sources getting smart. Science 308, 1274–1278 (2005). doi: 10.1126/science.1108712

    CrossRef Google Scholar

    [6] Carlos LD, Ferreira RAS, de Zea Bermudez V, Julián-López B, Escribano P. Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem Soc Rev 40, 536–549 (2011). doi: 10.1039/C0CS00069H

    CrossRef Google Scholar

    [7] George NC, Denault KA, Seshadri R. Phosphors for solid-state white lighting. Annu Rev Mater Res 43, 481–501 (2013). doi: 10.1146/annurev-matsci-073012-125702

    CrossRef Google Scholar

    [8] Huang XY. Red phosphor converts white LEDs. Nat Photonics 8, 748–749 (2014). doi: 10.1038/nphoton.2014.221

    CrossRef Google Scholar

    [9] Eliseeva SV, Bünzli JCG. Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39, 189–227 (2010). doi: 10.1039/B905604C

    CrossRef Google Scholar

    [10] D'Andrade BW, Forrest SR. White organic light-emitting devices for solid-state lighting. Adv Mater 16, 1585–1595 (2004). doi: 10.1002/adma.200400684

    CrossRef Google Scholar

    [11] Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779

    CrossRef Google Scholar

    [12] Sutherland BR, Sargent EH. Perovskite photonic sources. Nat Photonics 10, 295–302 (2016). doi: 10.1038/nphoton.2016.62

    CrossRef Google Scholar

    [13] Wang Y, Li XM, Song JZ, Xiao L, Zeng HB et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater 27, 7101–7108 (2015). doi: 10.1002/adma.201503573

    CrossRef Google Scholar

    [14] Sun SB, Yuan D, Xu Y, Wang AF, Deng ZT. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016). doi: 10.1021/acsnano.5b08193

    CrossRef Google Scholar

    [15] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk MI, Grotevent MJ et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett 15, 5635–5640 (2015). doi: 10.1021/acs.nanolett.5b02404

    CrossRef Google Scholar

    [16] Zhang DD, Eaton SW, Yu Y, Dou LT, Yang PD. Solution-phase synthesis of cesium lead halide perovskite nanowires. J Am Chem Soc 137, 9230–9233 (2015). doi: 10.1021/jacs.5b05404

    CrossRef Google Scholar

    [17] Li CL, Zang ZG, Han C, Hu ZP, Tang XS et al. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 40, 195–202 (2017). doi: 10.1016/j.nanoen.2017.08.013

    CrossRef Google Scholar

    [18] Li CL, Zang ZG, Chen WW, Hu PZ, Tang XS et al. Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Optics Express 24, 15071–15078 (2016). doi: 10.1364/OE.24.015071

    CrossRef Google Scholar

    [19] Akkerman QA, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc 137, 10276–10281 (2015). doi: 10.1021/jacs.5b05602

    CrossRef Google Scholar

    [20] Song JZ, Li JH, Li XM, Xu LM, Dong YH et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27, 7162–7167 (2015). doi: 10.1002/adma.201502567

    CrossRef Google Scholar

    [21] Li JH, Xu LM, Wang T, Song JZ, Chen JW et al. 50-Fold EQE Improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater 29, 1603885 (2017). doi: 10.1002/adma.201603885

    CrossRef Google Scholar

    [22] Ling YC, Tian Y, Wang X, Wang JC, Knox JM et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv Mater 28, 8983–8989 (2016). doi: 10.1002/adma.201602513

    CrossRef Google Scholar

    [23] Bohn BJ, Tong Y, Gramlich M, Lai ML, Döblinger M et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett 18, 5231–5238 (2018). doi: 10.1021/acs.nanolett.8b02190

    CrossRef Google Scholar

    [24] Song JZ, Li JH, Xu LM, Li JH, Zhang FJ et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv Mater 30, 1800764 (2018). doi: 10.1002/adma.201800764

    CrossRef Google Scholar

    [25] Lin KB, Xing J, Quan LN, de Arquer FPG, Gong XW et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). doi: 10.1038/s41586-018-0575-3

    CrossRef Google Scholar

    [26] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics 12, 681–687 (2018). doi: 10.1038/s41566-018-0260-y

    CrossRef Google Scholar

    [27] Vashishtha P, Ng M, Shivarudraiah SB, Halpert JE. High efficiency blue and green light-emitting diodes using ruddlesden–popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater 31, 83–89 (2019). doi: 10.1021/acs.chemmater.8b02999

    CrossRef Google Scholar

    [28] Li ZC, Chen ZM, Yang YC, Xue QF, Yip HL et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat Commun 10, 1027 (2019). doi: 10.1038/s41467-019-09011-5

    CrossRef Google Scholar

    [29] Cao Y, Wang NN, Tian H, Guo JS, Wei YQ et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018). doi: 10.1038/s41586-018-0576-2

    CrossRef Google Scholar

    [30] Song YH, Yoo JS, Kang BK, Choi SH, Ji EK et al. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs. Nanoscale 8, 19523–19526 (2016). doi: 10.1039/C6NR07410C

    CrossRef Google Scholar

    [31] Ma KZ, Du XY, Zhang YW, Chen S. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. J Mater Chem C 5, 9398–9404 (2017). doi: 10.1039/C7TC02847D

    CrossRef Google Scholar

    [32] Kim Y, Yassitepe E, Voznyy O, Comin R, Walters G et al. Efficient luminescence from perovskite quantum dot solids. ACS Appl Mater Interfaces 7, 25007–25013 (2015). doi: 10.1021/acsami.5b09084

    CrossRef Google Scholar

    [33] Li S, Shi ZF, Zhang F, Wang LT, Ma ZZ et al. Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices. Chem Mater 31, 3917–3928 (2019). doi: 10.1021/acs.chemmater.8b05362

    CrossRef Google Scholar

    [34] Quarta D, Imran M, Capodilupo AL, Petralanda U, van Beek B et al. Stable ligand coordination at the surface of colloidal CsPbBr3 nanocrystals. J Phys Chem Lett 10, 3715–3726 (2019). doi: 10.1021/acs.jpclett.9b01634

    CrossRef Google Scholar

    [35] Wang HR, Zhang XY, Wu QQ, Cao F, Yang DW et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat Commun 10, 665 (2019). doi: 10.1038/s41467-019-08425-5

    CrossRef Google Scholar

    [36] Imran M, Ijaz P, Goldoni L, Maggioni D, Petralanda U et al. Simultaneous cationic and anionic ligand exchange for colloidally stable CsPbBr3 nanocrystals. ACS Energy Lett 4, 819–824 (2019). doi: 10.1021/acsenergylett.9b00140

    CrossRef Google Scholar

    [37] Krieg F, Ochsenbein ST, Yakunin S, ten Brinck S, Aellen P et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett 3, 641–646 (2018). doi: 10.1021/acsenergylett.8b00035

    CrossRef Google Scholar

    [38] Yuan X, Hou XM, Li J, Qu CQ, Zhang WJ et al. Thermal degradation of luminescence in inorganic perovskite CsPbBr3 nanocrystals. Phys Chem Chem Phys 19, 8934–8940 (2017). doi: 10.1039/C6CP08824D

    CrossRef Google Scholar

    [39] Zhang M, Tian ZQ, Zhu DL, He H, Guo SW et al. Stable CsPbBr3 perovskite quantum dots with high fluorescence quantum yields. New J Chem 42, 9496–9500 (2018). doi: 10.1039/C8NJ01191E

    CrossRef Google Scholar

    [40] Liu PZ, Chen W, Wang WG, Xu B, Wu D et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem Mater 29, 5168–5173 (2017). doi: 10.1021/acs.chemmater.7b00692

    CrossRef Google Scholar

    [41] Dutta A, Dutta SK, Das Adhikari S, Pradhan N. Phase-stable CsPbI3 nanocrystals: the reaction temperature matters. Angew Chem Int Ed 57, 9083–9087 (2018). doi: 10.1002/anie.201803701

    CrossRef Google Scholar

    [42] Imran M, Caligiuri V, Wang MJ, Goldoni L, Prato M et al. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J Am Chem Soc 140, 2656–2664 (2018). doi: 10.1021/jacs.7b13477

    CrossRef Google Scholar

    [43] Liu F, Ding C, Zhang YH, Ripolles TS, Kamisaka T et al. Colloidal synthesis of air-stable alloyed CsSn1–xPbxI3 perovskite nanocrystals for use in solar cells. J Am Chem Soc 139, 16708–16719 (2017). doi: 10.1021/jacs.7b08628

    CrossRef Google Scholar

    [44] Guria AK, Dutta SK, Adhikari SD, Pradhan N. Doping Mn2+ in lead halide perovskite nanocrystals: successes and challenges. ACS Energy Lett 2, 1014–1021 (2017). doi: 10.1021/acsenergylett.7b00177

    CrossRef Google Scholar

    [45] Pan J, Shang YQ, Yin J, De Bastiani M, Peng W et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J Am Chem Soc 140, 562–565 (2018). doi: 10.1021/jacs.7b10647

    CrossRef Google Scholar

    [46] Almeida G, Infante I, Manna L. Resurfacing halide perovskite nanocrystals. Science 364, 833–834 (2019). doi: 10.1126/science.aax5825

    CrossRef Google Scholar

    [47] Zhang BW, Goldoni L, Zito J, Dang ZY, Almeida G et al. Alkyl phosphonic acids deliver CsPbBr3 nanocrystals with high photoluminescence quantum yield and truncated octahedron shape. Chem Mater 31, 9140–9147 (2019). doi: 10.1021/acs.chemmater.9b03529

    CrossRef Google Scholar

    [48] Li Y, Lv Y, Guo ZQ, Dong LB, Zheng JH et al. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Appl Mater Interfaces 10, 15888–15894 (2018). doi: 10.1021/acsami.8b02857

    CrossRef Google Scholar

    [49] Song YH, Park SY, Yoo JS, Park WK, Kim HS et al. Efficient and stable green-emitting CsPbBr3 perovskite nanocrystals in a microcapsule for light emitting diodes. Chem Eng J 352, 957–963 (2018). doi: 10.1016/j.cej.2018.05.153

    CrossRef Google Scholar

    [50] Le TH, Choi Y, Kim S, Lee U, Heo E et al. Highly elastic and >200% reversibly stretchable down-conversion white light-emitting diodes based on quantum dot gel emitters. Adv Opt Mater 8, 1901972 (2020). doi: 10.1002/adom.201901972

    CrossRef Google Scholar

    [51] Chen M, Hu HC, Tan YS, Yao N, Zhong QX et al. Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy 53, 559–566 (2018). doi: 10.1016/j.nanoen.2018.09.020

    CrossRef Google Scholar

    [52] Chang YJ, Yoon YJ, Li GP, Xu EZ, Yu ST et al. All-inorganic perovskite nanocrystals with a stellar set of stabilities and their use in white light-emitting diodes. ACS Appl Mater Interfaces 10, 37267–37276 (2018). doi: 10.1021/acsami.8b13553

    CrossRef Google Scholar

    [53] Guner T, Demir MM. A review on halide perovskites as color conversion layers in white light emitting diode applications. Phys Status Solidi (A) 215, 1800120 (2018). doi: 10.1002/pssa.201800120

    CrossRef Google Scholar

    [54] Hu YQ, Bai F, Liu XB, Ji QM, Miao XL et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett 2, 2219–2227 (2017). doi: 10.1021/acsenergylett.7b00508

    CrossRef Google Scholar

    [55] Sanehira EM, Marshall AR, Christians JA, Harvey SP, Ciesielski PN et al. Enhanced MOBILITY CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv 3, eaao4204 (2017). doi: 10.1126/sciadv.aao4204

    CrossRef Google Scholar

    [56] Liu F, Zhang YH, Ding C, Kobayashi S, Izuishi T et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11, 10373–10383 (2017). doi: 10.1021/acsnano.7b05442

    CrossRef Google Scholar

    [57] Zang ZG, Zeng XF, Wang M, Hu W, Liu CR et al. Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging. Sens Actuators B-Chem 252, 1179–1186 (2017). doi: 10.1016/j.snb.2017.07.144

    CrossRef Google Scholar

    [58] Yang ZQ, Chen WW, Zu ZQ, Zang ZG, Yang YC et al. Facile synthesis and photoluminescence characterization of AgInZnS hollow nanoparticles. Mater Lett 151, 89–92 (2015). doi: 10.1016/j.matlet.2015.03.055

    CrossRef Google Scholar

    [59] Blum V, Gehrke R, Hanke F, Havu P, Havu V et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180, 2175–2196 (2009). doi: 10.1016/j.cpc.2009.06.022

    CrossRef Google Scholar

    [60] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 77, 3865–3868 (1996). doi: 10.1103/PhysRevLett.77.3865

    CrossRef Google Scholar

    [61] Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102, 073005 (2009). doi: 10.1103/PhysRevLett.102.073005

    CrossRef Google Scholar

    [62] Yang DD, Li XM, Zhou WH, Zhang SL, Meng CF et al. CsPbBr3 Quantum Dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification. Adv Mater 31, 1900767 (2019).

    Google Scholar

    [63] Ravi VK, Santra PK, Joshi N, Chugh J, Singh SK et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J Phys Chem Lett 8, 4988–4994 (2017). doi: 10.1021/acs.jpclett.7b02192

    CrossRef Google Scholar

    [64] Xu WD, Hu Q, Bai S, Bao CX, Miao YF et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics 13, 418–424 (2019).

    Google Scholar

    [65] Gong MG, Sakidja R, Goul R, Ewing D, Casper M et al. High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano 13, 1772–1783 (2019).

    Google Scholar

    [66] Law M, Luther JM, Song Q, Hughes BK, Perkins CL et al. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J Am Chem Soc 130, 5974–5985 (2008). doi: 10.1021/ja800040c

    CrossRef Google Scholar

    [67] Koleilat GI, Levina L, Shukla H, Myrskog SH, Hinds S et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008). doi: 10.1021/nn800093v

    CrossRef Google Scholar

    [68] Beard MC, Midgett AG, Law M, Semonin OE, Ellingson RJ et al. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett 9, 836–845 (2009). doi: 10.1021/nl803600v

    CrossRef Google Scholar

    [69] Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10, 765–771 (2011). doi: 10.1038/nmat3118

    CrossRef Google Scholar

    [70] Liu M, Zhong GH, Yin YM, Miao JS, Li K et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv Sci 4, 1700335 (2017). doi: 10.1002/advs.201700335

    CrossRef Google Scholar

    [71] Smock SR, Williams TJ, Brutchey RL. Quantifying the thermodynamics of ligand binding to CsPbBr3 quantum dots. Angew Chem Int Ed 57, 11711–11715 (2018). doi: 10.1002/anie.201806916

    CrossRef Google Scholar

    [72] Swarnkar A, Chulliyil R, Ravi VK, Irfanullah M, Chowdhury A et al. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew Chem Int Ed 54, 15424–15428 (2015). doi: 10.1002/anie.201508276

    CrossRef Google Scholar

    [73] Brennan MC, Herr JE, Nguyen-Beck TS, Zinna J, Draguta S et al. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J Am Chem Soc 139, 12201–12208 (2017). doi: 10.1021/jacs.7b05683

    CrossRef Google Scholar

    [74] Yan DD, Shi TC, Zang ZG, Zhou TW, Liu ZZ et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small 15, 1901173 (2019).

    Google Scholar

    [75] Mo QH, Chen C, Cai WS, Zhao SY, Yan DD, Zang ZG. Room Temperature synthesis of stable zrconia‐coated CsPbBr3 nanocrystals for white light‐emitting diodes and visible light communication. Laser & Photon. Rev. 15, 2100278 (2021). doi: 10.1002/lpor.202100278

    CrossRef Google Scholar

    [76] Wei Y, Li K, Cheng ZY, Liu MM, Xiao H et al. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: a novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability. Adv Mater 31, 1807592 (2019). doi: 10.1002/adma.201807592

    CrossRef Google Scholar

    [77] Liu SN, Shao GZ, Ding L, Liu JM, Xiang WD et al. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED. Chem Eng J 361, 937–944 (2019). doi: 10.1016/j.cej.2018.12.147

    CrossRef Google Scholar

    [78] Singh BP, Lin SY, Wang HC, Tang AC, Tong HC et al. Inorganic red perovskite quantum dot integrated blue chip: a promising candidate for high color-rendering in w-LEDs. RSC Adv 6, 79410–79414 (2016). doi: 10.1039/C6RA16040A

    CrossRef Google Scholar

    [79] Di XX, Hu ZM, Jiang JT, He ML, Zhou L et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs. Chem Commun 53, 11068–11071 (2017). doi: 10.1039/C7CC06486A

    CrossRef Google Scholar

    [80] Xuan TT, Yang XF, Lou SQ, Huang JJ, Liu Y et al. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale 9, 15286–15290 (2017). doi: 10.1039/C7NR04179A

    CrossRef Google Scholar

    [81] Park DH, Han JS, Kim W, Jang HS. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot- inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dyes Pigm 149, 246–252 (2018). doi: 10.1016/j.dyepig.2017.10.003

    CrossRef Google Scholar

  • Supplementary information for Highly efficient emission and high-CRI warm white light-emitting diodes from ligandmodified CsPbBr3 quantum dots
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(8594) PDF downloads(1576) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint