Zhang YX, Liu XF, Lin H, Wang D, Cao ES et al. Ultrafast multi-target control of tightly focused light fields. Opto-Electron Adv 5, 210026 (2022). doi: 10.29026/oea.2022.210026
Citation: Zhang YX, Liu XF, Lin H, Wang D, Cao ES et al. Ultrafast multi-target control of tightly focused light fields. Opto-Electron Adv 5, 210026 (2022). doi: 10.29026/oea.2022.210026

Original Article Open Access

Ultrafast multi-target control of tightly focused light fields

More Information
  • The control of ultrafast optical field is of great interest in developing ultrafast optics as well as the investigation on various light-matter interactions with ultrashort pulses. However, conventional spatial encoding approaches have only limited steerable targets usually neglecting the temporal effect, thus hindering their broad applications. Here we present a new concept for realizing ultrafast modulation of multi-target focal fields based on the facile combination of time-dependent vectorial diffraction theory with fast Fourier transform. This is achieved by focusing femtosecond pulsed light carrying vectorial-vortex by a single objective lens under tight focusing condition. It is uncovered that the ultrafast temporal degree of freedom within a configurable temporal duration (~400 fs) plays a pivotal role in determining the rich and exotic features of the focused optical field at one time, namely, bright-dark alternation, periodic rotation, and longitudinal/transverse polarization conversion. The underlying control mechanisms have been unveiled. Besides being of academic interest in diverse ultrafast spectral regimes, these peculiar behaviors of the space-time evolutionary beams may underpin prolific ultrafast-related applications such as multifunctional integrated optical chip, high-efficiency laser trapping, microstructure rotation, super-resolution optical microscopy, precise optical measurement, and liveness tracking.
  • 加载中
  • [1] Zhang YQ, Shen JF, Min CJ, Jin YF, Jiang YQ et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett 18, 5538–5543 (2018). doi: 10.1021/acs.nanolett.8b01929

    CrossRef Google Scholar

    [2] Gong LP, Gu B, Rui GH, Cui YP, Zhu ZQ et al. Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles. Photonics Res 6, 138–143 (2018). doi: 10.1364/PRJ.6.000138

    CrossRef Google Scholar

    [3] Brixner T, de Abajo FJG, Schneider J, Pfeiffer W. Nanoscopic ultrafast space-time-resolved spectroscopy. Phys Rev Lett 95, 093901 (2005). doi: 10.1103/PhysRevLett.95.093901

    CrossRef Google Scholar

    [4] Kawashima H, Wefers MM, Nelson KA. Femtosecond pulse shaping, multiple-pulse spectroscopy, and optical control. Annu Rev Phys Chem 46, 627–656 (1995). doi: 10.1146/annurev.pc.46.100195.003211

    CrossRef Google Scholar

    [5] Oron D, Dudovich N, Silberberg Y. Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy. Phys Rev Lett 90, 213902 (2003). doi: 10.1103/PhysRevLett.90.213902

    CrossRef Google Scholar

    [6] Dudovich N, Oron D, Silberberg Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002). doi: 10.1038/nature00933

    CrossRef Google Scholar

    [7] Osellame R, Vazquez RM, Dongre C, Dekker R, Hoekstra HJWM et al. Femtosecond laser fabrication for the integration of optical sensors in microfluidic lab-on-chip devices. In Proceedings of the 16th International Conference on Ultrafast Phenomena XVI 973–975 (Springer, 2009); https://doi.org/10.1007/978-3-540-95946-5_315.

    Google Scholar

    [8] Boas DA, Campbell LE, Yodh AG. Scattering and imaging with diffusing temporal field correlations. Phys Rev Lett 75, 1855–1858 (1995). doi: 10.1103/PhysRevLett.75.1855

    CrossRef Google Scholar

    [9] Ueno H, Nishikawa S, Iino R, Tabata KV, Sakakihara S et al. Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys J 98, 2014–2023 (2010). doi: 10.1016/j.bpj.2010.01.011

    CrossRef Google Scholar

    [10] Weiner AM. Ultrafast Optics (John Wiley & Sons, Hoboken, 2011).

    Google Scholar

    [11] Weiner AM, Leaird DE, Patel JS, Wullert JR. Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator. IEEE J Quant Electron 28, 908–920 (1992). doi: 10.1109/3.135209

    CrossRef Google Scholar

    [12] Vaughan JC, Hornung T, Feurer T, Nelson KA. Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator. Opt Lett 30, 323–325 (2005). doi: 10.1364/OL.30.000323

    CrossRef Google Scholar

    [13] Brixner T, Krampert G, Pfeifer T, Selle R, Gerber G et al. Quantum control by ultrafast polarization shaping. Phys Rev Lett 92, 208301 (2004). doi: 10.1103/PhysRevLett.92.208301

    CrossRef Google Scholar

    [14] Brif C, Chakrabarti R, Rabitz H. Control of quantum phenomena: past, present and future. New J Phys 12, 075008 (2010). doi: 10.1088/1367-2630/12/7/075008

    CrossRef Google Scholar

    [15] Fuchs U, Zeitner UD, Tünnermann A. Hybrid optics for focusing ultrashort laser pulses. Opt Lett 31, 1516–1518 (2006). doi: 10.1364/OL.31.001516

    CrossRef Google Scholar

    [16] Helseth LE. Strongly focused polarized light pulse. Phys Rev E 72, 047602 (2005). doi: 10.1103/PhysRevE.72.047602

    CrossRef Google Scholar

    [17] Chen BS, Pu JX, Korotkova O. Focusing of a femtosecond vortex light pulse through a high numerical aperture objective. Opt Express 18, 10822–10827 (2010). doi: 10.1364/OE.18.010822

    CrossRef Google Scholar

    [18] Romallosa KM, Bantang J, Saloma C. Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses. Phys Rev A 68, 033812 (2003). doi: 10.1103/PhysRevA.68.033812

    CrossRef Google Scholar

    [19] Chong A, Wan CH, Chen J, Zhan QW. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat Photonics 14, 350–354 (2020). doi: 10.1038/s41566-020-0587-z

    CrossRef Google Scholar

    [20] Chen J, Wan CH, Chong A, Zhan QW. Subwavelength focusing of a spatio-temporal wave packet with transverse orbital angular momentum. Opt Express 28, 18472–18478 (2020). doi: 10.1364/OE.394428

    CrossRef Google Scholar

    [21] Nie ZQ, Ding WQ, Li DY, Zhang XR, Wang YX et al. Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams. Opt Express 23, 690–701 (2015). doi: 10.1364/OE.23.000690

    CrossRef Google Scholar

    [22] Nie ZQ, Lin H, Liu XF, Zhai AP, Tian YT et al. Three-dimensional super-resolution longitudinal magnetization spot arrays. Light Sci Appl 6, e17032 (2017). doi: 10.1038/lsa.2017.32

    CrossRef Google Scholar

    [23] Lin SR, Nie ZQ, Yan WC, Liang Y, Lin H et al. All-optical vectorial control of multistate magnetization through anisotropy-mediated spin-orbit coupling. Nanophotonics 8, 2177–2188 (2019). doi: 10.1515/nanoph-2019-0198

    CrossRef Google Scholar

    [24] Hao CL, Nie ZQ, Ye HP, Li H, Luo Y et al. Three-dimensional supercritical resolved light-induced magnetic holography. Sci Adv 3, e1701398 (2017). doi: 10.1126/sciadv.1701398

    CrossRef Google Scholar

    [25] Zhan QW. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 1, 1–57 (2009). doi: 10.1364/AOP.1.000001

    CrossRef Google Scholar

    [26] Cai YJ, Lin Q, Eyyuboğlu HT, Baykal Y. Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere. Opt Express 16, 7665–7673 (2008). doi: 10.1364/OE.16.007665

    CrossRef Google Scholar

    [27] Plewicki M, Weise F, Weber SM, Lindinger A. Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer. Appl Opt 45, 8354–8359 (2006). doi: 10.1364/AO.45.008354

    CrossRef Google Scholar

    [28] Ninck M, Galler A, Feurer T, Brixner T. Programmable common-path vector field synthesizer for femtosecond pulses. Opt Lett 32, 3379–3381 (2007). doi: 10.1364/OL.32.003379

    CrossRef Google Scholar

    [29] Nemati A, Wang Q, Ang NSS, Wang WD, Hong MH et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances. Opto-Electron Adv 4, 200088 (2021). doi: 10.29026/oea.2021.200088

    CrossRef Google Scholar

    [30] Liang Y, Koshelev K, Zhang FC, Lin H, Lin SR et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett 20, 6351–6356 (2020). doi: 10.1021/acs.nanolett.0c01752

    CrossRef Google Scholar

    [31] Bao YJ, Ni JC, Qiu CW. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv Mater 32, 1905659 (2020). doi: 10.1002/adma.201905659

    CrossRef Google Scholar

    [32] Zhu YC, Chen XL, Yuan WZ, Chu ZQ, Wong KY et al. A waveguide metasurface based quasi-far-field transverse-electric superlens. Opto-Electron Adv 4, 210013 (2021). doi: 10.29026/oea.2021.210013

    CrossRef Google Scholar

    [33] Lin H, Xu ZQ, Cao GY, Zhang YP, Zhou JD et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci Appl 9, 137 (2020). doi: 10.1038/s41377-020-00374-9

    CrossRef Google Scholar

    [34] Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [35] Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021).

    Google Scholar

    [36] Zhang L, Chen XQ, Liu S, Zhang Q, Zhao J et al. Space-time-coding digital metasurfaces. Nat Commun 9, 4334 (2018). doi: 10.1038/s41467-018-06802-0

    CrossRef Google Scholar

    [37] Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019). doi: 10.1126/science.aat3100

    CrossRef Google Scholar

    [38] Wang Z, Li TT, Soman A, Mao D, Kananen T et al. On-chip wavefront shaping with dielectric metasurface. Nat Commun 10, 3547 (2019). doi: 10.1038/s41467-019-11578-y

    CrossRef Google Scholar

    [39] Shaltout A, Liu JJ, Kildishev A, Shalaev V. Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2, 860–863 (2015). doi: 10.1364/OPTICA.2.000860

    CrossRef Google Scholar

    [40] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [41] Gu M. Advanced Optical Imaging Theory (Springer, Berlin, Heidelberg, 2000).

    Google Scholar

    [42] Soskin MS, Vasnetsov MV. Singular optics. Prog Opt 42, 219–276 (2001).

    Google Scholar

    [43] Cai Y, He S. Propagation of a Laguerre–Gaussian beam through a slightly misaligned paraxial optical system. Appl Phys B 84, 493 (2006). doi: 10.1007/s00340-006-2321-z

    CrossRef Google Scholar

    [44] Khonina SN. Vortex beams with high-order cylindrical polarization: features of focal distributions. Appl Phys B 125, 100 (2019).

    Google Scholar

    [45] Helseth LE. Optical vortices in focal regions. Opt Commun 229, 85–91 (2004). doi: 10.1016/j.optcom.2003.10.043

    CrossRef Google Scholar

    [46] Wang HF, Shi LP, Lukyanchuk B, Sheppard C, Chong CT. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat Photonics 2, 501–505 (2008). doi: 10.1038/nphoton.2008.127

    CrossRef Google Scholar

    [47] Youngworth KS, Brown TG. Focusing of high numerical aperture cylindrical-vector beams. Opt Express 7, 77–87 (2000). doi: 10.1364/OE.7.000077

    CrossRef Google Scholar

    [48] Zhang YJ, Ding BF, Suyama T. Trapping two types of particles using a double-ring-shaped radially polarized beam. Phys Rev A 81, 023831 (2010). doi: 10.1103/PhysRevA.81.023831

    CrossRef Google Scholar

    [49] Zhu TT, Cao YY, Wang L, Nie ZQ, Cao T et al. Self-induced backaction optical pulling force. Phys Rev Lett 120, 123901 (2018). doi: 10.1103/PhysRevLett.120.123901

    CrossRef Google Scholar

    [50] Nie ZQ, Shi G, Li DY, Zhang XR, Wang YX et al. Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles. Phys Lett A 379, 857–863 (2015). doi: 10.1016/j.physleta.2014.11.029

    CrossRef Google Scholar

    [51] Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19, 780–782 (1994). doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [52] Khonina SN, Golub I. Ultrafast rotating dipole or propeller-shaped patterns: subwavelength shaping of a beam of light on a femtosecond time scale. Opt Lett 41, 1605–1607 (2016). doi: 10.1364/OL.41.001605

    CrossRef Google Scholar

    [53] Pang XY, Miao WR. Spinning spin density vectors along the propagation direction. Opt Lett 43, 4831–4834 (2018). doi: 10.1364/OL.43.004831

    CrossRef Google Scholar

    [54] Brown JM, Wright EM, Moloney JV, Kolesik M. On the relative roles of higher-order nonlinearity and ionization in ultrafast light-matter interactions. Opt Lett 37, 1604–1606 (2012). doi: 10.1364/OL.37.001604

    CrossRef Google Scholar

    [55] Günter G, Anappara AA, Hees J, Sell A, Biasiol G et al. Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 458, 178–181 (2009). doi: 10.1038/nature07838

    CrossRef Google Scholar

    [56] Schwarz C, Hüter O, Brixner T. Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup. J Opt Soc Am B 32, 933–945 (2015). doi: 10.1364/JOSAB.32.000933

    CrossRef Google Scholar

    [57] Gu, M, Lin H, Li XP. Parallel multiphoton microscopy with cylindrically polarized multifocal arrays. Opt Lett 38, 3627–3630 (2013). doi: 10.1364/OL.38.003627

    CrossRef Google Scholar

    [58] Bauer T, Orlov S, Peschel U, Banzer P, Leuchs G. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nat Photonics 8, 23–27 (2014). doi: 10.1038/nphoton.2013.289

    CrossRef Google Scholar

    [59] Bauer T, Banzer P, Karimi E, Orlov S, Rubano A et al. Observation of optical polarization Möbius strips. Science 347, 964–966 (2015). doi: 10.1126/science.1260635

    CrossRef Google Scholar

  • Supplementary information for Ultrafast multi-target control of tightly focused light fields
    Supplemental Movies for Linearly polarized illumination
    Supplemental Movies for Azimuthally polarized illumination
    Supplemental Movies for Radially polarized illumination
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(10675) PDF downloads(1160) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint