Li QL, Perrie W, Li ZQ, Edwardson SP, Dearden G. Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation. Opto-Electron Adv 5, 210036 (2022). doi: 10.29026/oea.2022.210036
Citation: Li QL, Perrie W, Li ZQ, Edwardson SP, Dearden G. Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation. Opto-Electron Adv 5, 210036 (2022). doi: 10.29026/oea.2022.210036

Original Article Open Access

Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation

More Information
  • The optical nonlinearity in polycrystalline zinc selenide (ZnSe), excited with 775 nm, 1 kHz femtosecond laser pulses was investigated via the nonlinear transmission with material thickness and the Z scan technique. The measured two photon absorption coefficient β was intensity dependent, inferring that reverse saturated absorption (RSA) is also relevant during high intensity excitation in ZnSe. At low peak intensity I < 5 GW cm–2, we find β = 3.5 cm GW–1 at 775 nm. The spectral properties of the broad blueish two-photon induced fluorescence (460 nm-500 nm) was studied, displaying self-absorption near the band edge while the upper state lifetime was measured to be τe ~ 3.3 ns. Stimulated emission was observed when pumping a 0.5 mm thick polycrystalline ZnSe sample within an optical cavity, confirmed by significant line narrowing from Δλ = 11 nm (cavity blocked) to Δλ = 2.8 nm at peak wavelength λp = 475 nm while the upper state lifetime also decreased. These results suggest that with more optimum pumping conditions and crystal cooling, polycrystalline ZnSe might reach lasing threshold via two-photon pumping at λ = 775 nm.
  • 加载中
  • [1] Derkowska B, Sahraoui B, Phu XN, Bala W. Nonlinear optical properties in ZnSe crystals. Proc SPIE 4412, 337–341 (2001). doi: 10.1117/12.435856

    CrossRef Google Scholar

    [2] Gavrushchuk EM. Polycrystalline zinc selenide for IR optical applications. Inorg Mater 39, 883–899 (2003). doi: 10.1023/A:1025529017192

    CrossRef Google Scholar

    [3] Yang XH, Hays JM, Shan W, Song JJ, Cantwell E. Two-photon pumped blue lasing in bulk ZnSe and ZnSSe. Appl Phys Lett 62, 1071–1073 (1993). doi: 10.1063/1.108798

    CrossRef Google Scholar

    [4] Yang XH, Hays J, Shan W, Song JJ, Cantwell E et al. Optically pumped lasing of ZnSe at room temperature. Appl Phys Lett 59, 1681–1683 (1991). doi: 10.1063/1.106242

    CrossRef Google Scholar

    [5] Adachi S, Taguchi T. Optical properties of ZnSe. Phys Rev B 43, 9569–9577 (1991). doi: 10.1103/PhysRevB.43.9569

    CrossRef Google Scholar

    [6] Aven M, Marple DTF, Segall B. Some electrical and optical properties of ZnSe. J Appl Phys 32, 2261–2265 (1961). doi: 10.1063/1.1777056

    CrossRef Google Scholar

    [7] Klein CA, Miller RP, Stierwalt DL. Surface and bulk absorption characteristics of chemically vapor-deposited zinc selenide in the infrared. Appl Opt 33, 4304–4313 (1994). doi: 10.1364/AO.33.004304

    CrossRef Google Scholar

    [8] Okhrimchuk AG, Mezentsev VK, Schmitz H, Dubov M, Bennion I. Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics. Laser Phys 19, 1415–1422 (2009). doi: 10.1134/S1054660X09070081

    CrossRef Google Scholar

    [9] Gautron J, Raisin C, Lemasson P. Optical and electro-optical behaviour of polished and etched zinc selenide single crystals. J Phys D Appl Phys 15, 153–161 (1982). doi: 10.1088/0022-3727/15/1/017

    CrossRef Google Scholar

    [10] Hite GE, Marple DTF, Aven M, Segall B. Excitons and the absorption edge in ZnSe. Phys Rev 156, 850–859 (1967). doi: 10.1103/PhysRev.156.850

    CrossRef Google Scholar

    [11] Palik ED. Handbook of Optical Constants of Solids Vol. 2. (Academic Press, Boston, 1991).

    Google Scholar

    [12] Jones G, Woods J. The electrical properties of zinc selenide. J Phys D Appl Phys 9, 799–810 (1976). doi: 10.1088/0022-3727/9/5/013

    CrossRef Google Scholar

    [13] Van Stryland EW, Woodall MA, Vanherzeele H, Soileau MJ. Energy band-gap dependence of two-photon absorption. Opt Lett 10, 490–492 (1985). doi: 10.1364/OL.10.000490

    CrossRef Google Scholar

    [14] Van Stryland EW, Vanherzeele H, Woodall MA, Soileau MJ, Smirl AL et al. Two photon absorption, nonlinear refraction, and optical limiting in semiconductors. Opt Eng 24, 244613 (1985).

    Google Scholar

    [15] Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26, 760–769 (1990). doi: 10.1109/3.53394

    CrossRef Google Scholar

    [16] Said AA, Sheik-Bahae M, Hagan DJ, Wei TH, Wang J et al. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J Opt Soc Am B 9, 405–414 (1992).

    Google Scholar

    [17] Hutchings DC, Van Stryland EW. Nondegenerate two-photon absorption in zinc blende semiconductors. J Opt Soc Am B 9, 2065–2074 (1992). doi: 10.1364/JOSAB.9.002065

    CrossRef Google Scholar

    [18] Krauss TD, Wise FW. Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS. Appl Phys Lett 65, 1739–1741 (1994). doi: 10.1063/1.112901

    CrossRef Google Scholar

    [19] Balu M, Hales J, Hagan DJ, Van Stryland EW. Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan. Opt Express 13, 3594–3599 (2005). doi: 10.1364/OPEX.13.003594

    CrossRef Google Scholar

    [20] Dabbicco M, Brambilla M. Dispersion of the two-photon absorption coefficient in ZnSe. Solid State Commun 114, 515–519 (2000). doi: 10.1016/S0038-1098(00)00102-2

    CrossRef Google Scholar

    [21] Tseng KY, Wong KS, Wong GKL. Femtosecond time-resolved Z-scan investigations of optical nonlinearities in ZnSe. Opt Lett 21, 180–182 (1996). doi: 10.1364/OL.21.000180

    CrossRef Google Scholar

    [22] Van Stryland EW, Woodall MA, Williams WE, Soileau MJ. Two-and three-photon absorption in semiconductors with subsequent absorption by photogenerated carriers. In Bennett H, Guenther A, Milam D, Newnam B. Laser Induced Damage in Optical Materials 589–600 (ASTM International, West Conshohocken, PA, 1983); https://doi.org/10.1520/STP37286S.

    Google Scholar

    [23] Major A, Aitchison JS, Smith PWE, Sorokin E, Sorokina IT. Z-scan characterization of the nonlinear refractive index of single crystal ZnSe in the 1.20–1.95 μm wavelength range. Proc SPIE 5971, 59710H (2005). doi: 10.1117/12.628686

    CrossRef Google Scholar

    [24] Werner K, Hastings MG, Schweinsberg A, Wilmer BL, Austin D et al. Ultrafast mid-infrared high harmonic and supercontinuum generation with n2 characterization in zinc selenide. Opt Express 27, 2867–2885 (2019). doi: 10.1364/OE.27.002867

    CrossRef Google Scholar

    [25] Colak S, Fitzpatrick BJ, Bhargava RN. Electron beam pumped II–VI lasers. J Cryst Growth 72, 504–511 (1985). doi: 10.1016/0022-0248(85)90198-8

    CrossRef Google Scholar

    [26] Potts JE, Smith TL, Cheng H, Yang B, Wessels BW. Electron-beam-pumped lasing in epitaxial ZnSe thin films. J Cryst Growth 86, 935–941 (1988). doi: 10.1016/0022-0248(90)90828-9

    CrossRef Google Scholar

    [27] Seymour R, Fitzpatrick B, Bhargava R. Optically pumped stimulated emission in ZnSe. IEEE J Quantum Electron 14, 462–463 (1978). doi: 10.1109/JQE.1978.1069836

    CrossRef Google Scholar

    [28] Zmudzinski CA, Guan Y, Zory PS. Room temperature photopumped ZnSe lasers. IEEE Photonics Technol Lett 2, 94–96 (1990). doi: 10.1109/68.47058

    CrossRef Google Scholar

    [29] Suemune I, Yamada K, Masato H, Kan Y, Yamanishi M. Lasing in a ZnS0.12Se0.88/ZnSe multilayer structure with photopumping. Appl Phys Lett 54, 981–983 (1989). doi: 10.1063/1.100755

    CrossRef Google Scholar

    [30] Mitsuyu T, Suzuki T, Tomimasu T. Luminescence from ZnSe excited by picosecond mid-infrared FEL pulses. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 144, 172–175 (1998). doi: 10.1016/S0168-583X(98)00306-1

    CrossRef Google Scholar

    [31] Catalano IM, Cingolani A, Ferrara M, Lugarà M. Stimulated photoluminescence of ZnSe. Solid State Commun 43, 371–374 (1982). doi: 10.1016/0038-1098(82)90497-5

    CrossRef Google Scholar

    [32] Johnston WD Jr. Coulomb interaction in semiconductor lasers. Phys Rev B 6, 1455–1464 (1972). doi: 10.1103/PhysRevB.6.1455

    CrossRef Google Scholar

    [33] Daly TP, Mahr H. Picosecond spectroscopy of CdSe at high excitation densities. Phys Rev B 29, 5591–5601 (1984). doi: 10.1103/PhysRevB.29.5591

    CrossRef Google Scholar

    [34] Newbury PR, Shahzad K, Cammack DA. Stimulated emission via inelastic exciton‐exciton scattering in ZnSe epilayers. Appl Phys Lett 58, 1065–1067 (1991). doi: 10.1063/1.104424

    CrossRef Google Scholar

    [35] Baltrameyunas RA, Gladyshchuk AA, Gribkovskiĭ VP, Kuokshtis ÉP, Yablonskiĭ GP. Luminescence and lasing of ZnSe single crystals subjected to one- and two-photon excitation. Sov J Quantum Electron 11, 539–541 (1981). doi: 10.1070/QE1981v011n04ABEH006889

    CrossRef Google Scholar

    [36] Era K, Langer DW. Luminescence of ZnSe near the band edge under strong laser light excitation. J Lumin 1–2, 514–527 (1970).

    Google Scholar

    [37] Weber H. Two-photon-absorption laws for coherent and incoherent radiation. IEEE J Quantum Electron 7, 189–195 (1971). doi: 10.1109/JQE.1971.1076642

    CrossRef Google Scholar

    [38] Couris S, Koudoumas E, Ruth AA, Leach S. Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60 in toluene solution. J Phys B At Mol Opt Phys 28, 4537–4554 (1995). doi: 10.1088/0953-4075/28/20/015

    CrossRef Google Scholar

    [39] Prakash D, Shaaban ER, Shapaan M, Mohamed SH, Othman AA et al. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films. Mater Res Bull 80, 120–126 (2016). doi: 10.1016/j.materresbull.2016.03.039

    CrossRef Google Scholar

    [40] Wang XF, Jia TQ, Li XX, Li CB, Feng DH et al. Ablation and ultrafast dynamics of zinc selenide under femtosecond laser irradiation. Chin Opt Lett 3, 615–617 (2005).

    Google Scholar

    [41] Boyd RW. Nonlinear Optics 3rd ed (Academic Press, San Diego, 2008).

    Google Scholar

    [42] Ganeev RA, Ryasnyansky AI, Ishizawa N, Baba M, Suzuki M et al. Two- and three-photon absorption in CS2. Opt Commun 231, 431–436 (2004). doi: 10.1016/j.optcom.2003.12.032

    CrossRef Google Scholar

    [43] Yan KL, Vu K, Madden S. Internal gain in Er-doped As2S3 chalcogenide planar waveguides. Opt Lett 40, 796–799 (2015). doi: 10.1364/OL.40.000796

    CrossRef Google Scholar

    [44] Krauss TD, Ranka JK, Wise FW, Gaeta AL. Measurements of the tensor properties of third-order nonlinearities in wide-gap semiconductors. Opt Lett 20, 1110–1112 (1995). doi: 10.1364/OL.20.001110

    CrossRef Google Scholar

    [45] Blacker TS, Nicolaou N, Duchen MR, Bain AJ. Polarized two-photon absorption and heterogeneous fluorescence dynamics in NAD(P)H. J Phys Chem B 123, 4705–4717 (2019). doi: 10.1021/acs.jpcb.9b01236

    CrossRef Google Scholar

    [46] de Vito G, Ricci P, Turrini L, Gavryusev V, Müllenbroich C et al. Effects of excitation light polarization on fluorescence emission in two-photon light-sheet microscopy. Biomed Opt Express 11, 4651–4665 (2020). doi: 10.1364/BOE.396388

    CrossRef Google Scholar

    [47] Schimpf DN, Eidam T, Seise E, Hädrich S, Limpert J et al. Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity. Opt Express 17, 18774–18781 (2009). doi: 10.1364/OE.17.018774

    CrossRef Google Scholar

    [48] Torres-Torres C, Trejo-Valdez M, Sobral H, Santiago-Jacinto P, Reyes-Esqueda JA. Stimulated emission and optical third-order nonlinearity in Li-doped ZnO nanorods. J Phys Chem C 113, 13515–13521 (2009). doi: 10.1021/jp809582t

    CrossRef Google Scholar

    [49] Baudrier-Raybaut M, Haïdar R, Kupecek P, Lemasson P, Rosencher E. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432, 374–376 (2004). doi: 10.1038/nature03027

    CrossRef Google Scholar

    [50] Chinh TD, Seibt W, Siegbahn K. Dot patterns from second-harmonic and sum-frequency generation in polycrystalline ZnSe. J Appl Phys 90, 2612–2614 (2001). doi: 10.1063/1.1388576

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(2)

Article Metrics

Article views(7968) PDF downloads(991) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint