Citation: | Wang YL, Min CJ, Zhang YQ, Yuan XC. Spatiotemporal Fourier transform with femtosecond pulses for on-chip devices. Opto-Electron Adv 5, 210047 (2022). doi: 10.29026/oea.2022.210047 |
[1] | Bogaerts W, Pérez D, Capmany J, Miller DAB, Poon J et al. Programmable photonic circuits. Nature 586, 207–216 (2020). doi: 10.1038/s41586-020-2764-0 |
[2] | Li MX, Ling JW, He Y, Javid UA, Xue SX et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun 11, 4123 (2020). doi: 10.1038/s41467-020-17950-7 |
[3] | Marpaung D, Yao JP, Capmany J. Integrated microwave photonics. Nat Photonics 13, 80–90 (2019). doi: 10.1002/lpor.201200032 |
[4] | Kou SS, Yuan GH, Wang Q, Du LP, Balaur E et al. On-chip photonic Fourier transform with surface Plasmon polaritons. Light Sci Appl 5, e16034 (2016). doi: 10.1038/lsa.2016.34 |
[5] | Harris NC, Bunandar D, Pant M, Steinbrecher GR, Mower J et al. Large-scale quantum photonic circuits in silicon. Nanophotonics 5, 456–468 (2016). doi: 10.1515/nanoph-2015-0146 |
[6] | Foster MA, Salem R, Geraghty DF, Turner-Foster AC, Lipson M et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008). doi: 10.1038/nature07430 |
[7] | Divitt S, Zhu WQ, Zhang C, Lezec HJ, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science 364, 890–894 (2019). doi: 10.1126/science.aav9632 |
[8] | Shaltout AM, Lagoudakis KG, Van De Groep J, Kim SJ, Vučković J et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science 365, 374–377 (2019). doi: 10.1126/science.aax2357 |
[9] | Fork RL, Shank CV, Hirlimann C, Yen R, Tomlinson WJ. Femtosecond white-light continuum pulses. Opt Lett 8, 1–3 (1983). doi: 10.1364/OL.8.000001 |
[10] | Hacker M, Stobrawa G, Feurer T. Iterative Fourier transform algorithm for phase-only pulse shaping. Opt Express 9, 191–199 (2001). doi: 10.1364/OE.9.000191 |
[11] | Zhao JL, Jiang HZ, Di JL. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography. Opt Express 16, 2514–2519 (2008). doi: 10.1364/OE.16.002514 |
[12] | Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042 |
[13] | Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035 |
[14] | Wang YL, Zhao B, Min CJ, Zhang YQ, Yang JJ et al. Research progress of femtosecond surface Plasmon polariton. Chin Phys B 29, 027302 (2020). doi: 10.1088/1674-1056/ab6717 |
[15] | Mansuripur M, Zakharian AR, Lesuffleur A, Oh SH, Jones RJ et al. Plasmonic Nano-structures for optical data storage. Opt Express 17, 14001–14014 (2009). doi: 10.1364/OE.17.014001 |
[16] | Wang JC, Lin WH, Cao E, Xu XF, Liang WJ et al. Surface Plasmon resonance sensors on Raman and fluorescence spectroscopy. Sensors 17, 2719 (2017). doi: 10.3390/s17122719 |
[17] | Zhang YQ, Shen JF, Min CJ, Jin YF, Jiang YQ et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett 18, 5538–5543 (2018). doi: 10.1021/acs.nanolett.8b01929 |
[18] | Yu Y, Xiao TH, Wu YZ, Li WJ, Zeng QG et al. Roadmap for single-molecule surface-enhanced Raman spectroscopy. Adv Photonics 2, 014002 (2020). doi: 10.1117/1.AP.2.1.014002 |
[19] | Yamanouchi K. The next frontier. Science 295, 1659–1660 (2002). doi: 10.1126/science.1068449 |
[20] | Keller EL, Brandt NC, Cassabaum AA, Frontiera RR. Ultrafast surface-enhanced Raman spectroscopy. Analyst 140, 4922–4931 (2015). doi: 10.1039/C5AN00869G |
[21] | Cottrell DM, Davis JA, Hazard TM. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Opt Lett 34, 2634–2636 (2009). doi: 10.1364/OL.34.002634 |
[22] | Ren ZJ, Wu Q, Shi YL, Chen C, Wu JM et al. Production of accelerating quad Airy beams and their optical characteristics. Opt Express 22, 15154–15164 (2014). doi: 10.1364/OE.22.015154 |
[23] | Wang LM, Petek H. Focusing surface Plasmon polariton wave packets in space and time. Laser Photonics Rev 7, 1003–1009 (2013). doi: 10.1002/lpor.201300059 |
[24] | Clemmow PC. The Plane Wave Spectrum Representation of Electromagnetic Fields. (Oxford: Oxford University Press, 1997). |
[25] | Born M, Wolf E. Principles of Optics. (Cambridge: Cambridge University Press, 1999). |
[26] | Wang YL, Ming CJ, Zhang YQ, Xu J, Feng F et al. Spatiotemporal manipulation on focusing and propagation of surface Plasmon polariton pulses. Opt Express 28, 33516–33527 (2020). doi: 10.1364/OE.405803 |
[27] | Quéré F, Vincenti H, Borot A, Monchocé S, Hammond TJ et al. Applications of ultrafast wavefront rotation in highly nonlinear optics. J Phys B At Mol Opt Phys 47, 124004 (2014). doi: 10.1088/0953-4075/47/12/124004 |
[28] | Bor Z, Racz B, Szabo G, Hilbert M, Hazim HA. Femtosecond pulse front tilt caused by angular dispersion. Opt Eng 32, 2501–2504 (1993). doi: 10.1117/12.145393 |
[29] | Vincenti H, Quéré F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys Rev Lett 108, 113904 (2012). doi: 10.1103/PhysRevLett.108.113904 |
[30] | Salandrino A, Christodoulides DN. Airy Plasmon: a nondiffracting surface wave. Opt Lett 35, 2082–2084 (2010). doi: 10.1364/OL.35.002082 |
[31] | Li Z, Cheng H, Liu ZC, Chen SQ, Tian JG. Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces. Adv Optical Mater 4, 1230–1235 (2016). doi: 10.1002/adom.201600108 |
[32] | Li L, Li T, Wang SM, Zhang C, Zhu SN. Plasmonic airy beam generated by in-plane diffraction. Phys Rev Lett 107, 126804 (2011). doi: 10.1103/PhysRevLett.107.126804 |
[33] | Spektor G, Kilbane D, Mahro AK, Frank B, Ristok S et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017). doi: 10.1126/science.aaj1699 |
[34] | Da̧browski M, Dai YN, Petek H. Ultrafast photoemission electron microscopy: imaging plasmons in space and time. Chem Rev 120, 6247–6287 (2020). doi: 10.1021/acs.chemrev.0c00146 |
[35] | Crampton KT, Joly AG, El-Khoury P. Femtosecond photoemission electron microscopy of surface plasmon polariton beam steering via nanohole arrays. J Chem Phys 153, 081103 (2020). doi: 10.1063/5.0021032 |
[36] | Feng F, Wei SB, Li L, Min CJ, Yuan XC et al. Spin-orbit coupling controlled near-field propagation and focusing of Bloch surface wave. Opt Express 27, 27536–27545 (2019). doi: 10.1364/OE.27.027536 |
[37] | Pisani F, Fedeli L, Macchi A. Few-cycle surface Plasmon polariton generation by rotating wavefront pulses. ACS Photonics 5, 1068–1073 (2018). doi: 10.1021/acsphotonics.7b01347 |
[38] | MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI. Ultrafast active plasmonics. Nat Photonics 3, 55–58 (2009). doi: 10.1038/nphoton.2008.249 |
[39] | Kravtsov V, Ulbricht R, Atkin JM, Raschke MB. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat Nanotechnol 11, 459–464 (2016). doi: 10.1038/nnano.2015.336 |
Schematics of the excitation and spatiotemporal FT modulation of SPP pulses. (a) Nano-slits in the angular spectrum represented by a reference arc are predesigned in the gold film (200 nm in thickness) on a glass substrate (n =1.515). When illuminated with an angularly dispersed femtosecond pulse, the spatially focused SPP excited by scattering from the slits is temporally modulated through dispersion, while its converging wavefront is spatially modulated by the slits through a displacement ∆ with respect to the reference arc (black dashed curve), thereby realizing both spatial and temporal FT modulation in a SPP focusing structure. (b) In-plane SPP focusing on metal surface. The field at any point N(x,y) near the focus O(0,0) can be calculated by summing the contributions from all points, e.g., M(ξ, ζ) on a convergent SPP wavefront. γ denotes the angle of inclination of the distance with respect to the normal of the arc ∑; β denotes the angle between MO and the y-axis.
(a) Schematic of the spatial FT for a SPP with continuous-wave (CW) incident light. (b) Spatial distribution of the time-averaged field |Ez|2 excited by an 800 nm-wavelength CW source (top) and corresponding temporal wavefront in the SPP focal region (bottom). (c) Schematic of spatiotemporal FT for a SPP pulse and the angularly dispersed femtosecond laser beam, showing the instantaneous ring-shape formed by the SPP pulses in the focal region. (d) Spatial distributions of the time-averaged field |Ez|2 excited by the 756(blue)/800(green)/850(red)-nm wavelength component of the angularly dispersed femtosecond light with θ =0° in the focal region. (e) Spatiotemporal evolution of the wavefront of the SPP pulses in the focal region corresponding to (d). The blue/green/red curves mark the equiphase surfaces of the SPP pulses excited by the 756/800/850-nm wavelength components in the focal region, respectively; the black dashed curves marks wavefront of the pulse with its direction of propagation indicated by purple arrows. (f) The timing diagram for the evolution of the SPP pulse in the focal region corresponding to (e), the time instants being –6.7 fs (before focus), 0 fs (at focus), and 6.7 fs (after focus). (g–i) and (j–l) are similar in (d–f) except with θ = 5° and θ = 10°, respectively. All time-averaged fields and timing diagrams are normalized by their respective maximum values. Other settings are R =40 μm, α =180°, τ=10 fs.
Spatiotemporal FT modulation of the SPP-Airy pulse excited by an arc array of slits [see Fig. 1(a)]. (a) The time-averaged field |Ez|2 of a pulse with centre wavelength 800 nm excited by a y-polarized femtosecond laser beam incident at angle θ =10° to the z-axis but without angular dispersion (left), and an enlargement of field |Ez|2 in the focal region (white dashed square) for the 756/800/850-nm wavelength components of the SPP pulses (right). (b) Same as (a) except with an angular dispersion modulation. The timing diagram for the evolving SPP-Airy pulse in the focal region subject to non-dispersion ((c) and (d)) and dispersion ((e) and (f)); ((c) and (e)) present analytical results and ((d) and (f)) present 3D-FDTD simulation results. The green arrow indicates the direction of propagation path of the SPP pulses at the elapsed time given in the top right corner. Other parameters are: R =30 μm, β0 =π/2, p =14, α =180°, τ=10 fs.