Wang YL, Min CJ, Zhang YQ, Yuan XC. Spatiotemporal Fourier transform with femtosecond pulses for on-chip devices. Opto-Electron Adv 5, 210047 (2022). doi: 10.29026/oea.2022.210047
Citation: Wang YL, Min CJ, Zhang YQ, Yuan XC. Spatiotemporal Fourier transform with femtosecond pulses for on-chip devices. Opto-Electron Adv 5, 210047 (2022). doi: 10.29026/oea.2022.210047

Original Article Open Access

Spatiotemporal Fourier transform with femtosecond pulses for on-chip devices

More Information
  • On-chip manipulation of the spatiotemporal characteristics of optical signals is important in the transmission and processing of information. However, the simultaneous modulation of on-chip optical pulses, both spatially at the nano-scale and temporally over ultra-fast intervals, is challenging. Here, we propose a spatiotemporal Fourier transform method for on-chip control of the propagation of femtosecond optical pulses and verify this method employing surface plasmon polariton (SPP) pulses on metal surface. An analytical model is built for the method and proved by numerical simulations. By varying space- and frequency-dependent parameters, we demonstrate that the traditional SPP focal spot may be bent into a ring shape, and that the direction of propagation of a curved SPP-Airy beam may be reversed at certain moments to create an S-shaped path. Compared with conventional spatial modulation of SPPs, this method offers potentially a variety of extraordinary effects in SPP modulation especially associated with the temporal domain, thereby providing a new platform for on-chip spatiotemporal manipulation of optical pulses with applications including ultrafast on-chip photonic information processing, ultrafast pulse/beam shaping, and optical computing.
  • 加载中
  • [1] Bogaerts W, Pérez D, Capmany J, Miller DAB, Poon J et al. Programmable photonic circuits. Nature 586, 207–216 (2020). doi: 10.1038/s41586-020-2764-0

    CrossRef Google Scholar

    [2] Li MX, Ling JW, He Y, Javid UA, Xue SX et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun 11, 4123 (2020). doi: 10.1038/s41467-020-17950-7

    CrossRef Google Scholar

    [3] Marpaung D, Yao JP, Capmany J. Integrated microwave photonics. Nat Photonics 13, 80–90 (2019). doi: 10.1002/lpor.201200032

    CrossRef Google Scholar

    [4] Kou SS, Yuan GH, Wang Q, Du LP, Balaur E et al. On-chip photonic Fourier transform with surface Plasmon polaritons. Light Sci Appl 5, e16034 (2016). doi: 10.1038/lsa.2016.34

    CrossRef Google Scholar

    [5] Harris NC, Bunandar D, Pant M, Steinbrecher GR, Mower J et al. Large-scale quantum photonic circuits in silicon. Nanophotonics 5, 456–468 (2016). doi: 10.1515/nanoph-2015-0146

    CrossRef Google Scholar

    [6] Foster MA, Salem R, Geraghty DF, Turner-Foster AC, Lipson M et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008). doi: 10.1038/nature07430

    CrossRef Google Scholar

    [7] Divitt S, Zhu WQ, Zhang C, Lezec HJ, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science 364, 890–894 (2019). doi: 10.1126/science.aav9632

    CrossRef Google Scholar

    [8] Shaltout AM, Lagoudakis KG, Van De Groep J, Kim SJ, Vučković J et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science 365, 374–377 (2019). doi: 10.1126/science.aax2357

    CrossRef Google Scholar

    [9] Fork RL, Shank CV, Hirlimann C, Yen R, Tomlinson WJ. Femtosecond white-light continuum pulses. Opt Lett 8, 1–3 (1983). doi: 10.1364/OL.8.000001

    CrossRef Google Scholar

    [10] Hacker M, Stobrawa G, Feurer T. Iterative Fourier transform algorithm for phase-only pulse shaping. Opt Express 9, 191–199 (2001). doi: 10.1364/OE.9.000191

    CrossRef Google Scholar

    [11] Zhao JL, Jiang HZ, Di JL. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography. Opt Express 16, 2514–2519 (2008). doi: 10.1364/OE.16.002514

    CrossRef Google Scholar

    [12] Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [13] Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035

    CrossRef Google Scholar

    [14] Wang YL, Zhao B, Min CJ, Zhang YQ, Yang JJ et al. Research progress of femtosecond surface Plasmon polariton. Chin Phys B 29, 027302 (2020). doi: 10.1088/1674-1056/ab6717

    CrossRef Google Scholar

    [15] Mansuripur M, Zakharian AR, Lesuffleur A, Oh SH, Jones RJ et al. Plasmonic Nano-structures for optical data storage. Opt Express 17, 14001–14014 (2009). doi: 10.1364/OE.17.014001

    CrossRef Google Scholar

    [16] Wang JC, Lin WH, Cao E, Xu XF, Liang WJ et al. Surface Plasmon resonance sensors on Raman and fluorescence spectroscopy. Sensors 17, 2719 (2017). doi: 10.3390/s17122719

    CrossRef Google Scholar

    [17] Zhang YQ, Shen JF, Min CJ, Jin YF, Jiang YQ et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett 18, 5538–5543 (2018). doi: 10.1021/acs.nanolett.8b01929

    CrossRef Google Scholar

    [18] Yu Y, Xiao TH, Wu YZ, Li WJ, Zeng QG et al. Roadmap for single-molecule surface-enhanced Raman spectroscopy. Adv Photonics 2, 014002 (2020). doi: 10.1117/1.AP.2.1.014002

    CrossRef Google Scholar

    [19] Yamanouchi K. The next frontier. Science 295, 1659–1660 (2002). doi: 10.1126/science.1068449

    CrossRef Google Scholar

    [20] Keller EL, Brandt NC, Cassabaum AA, Frontiera RR. Ultrafast surface-enhanced Raman spectroscopy. Analyst 140, 4922–4931 (2015). doi: 10.1039/C5AN00869G

    CrossRef Google Scholar

    [21] Cottrell DM, Davis JA, Hazard TM. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Opt Lett 34, 2634–2636 (2009). doi: 10.1364/OL.34.002634

    CrossRef Google Scholar

    [22] Ren ZJ, Wu Q, Shi YL, Chen C, Wu JM et al. Production of accelerating quad Airy beams and their optical characteristics. Opt Express 22, 15154–15164 (2014). doi: 10.1364/OE.22.015154

    CrossRef Google Scholar

    [23] Wang LM, Petek H. Focusing surface Plasmon polariton wave packets in space and time. Laser Photonics Rev 7, 1003–1009 (2013). doi: 10.1002/lpor.201300059

    CrossRef Google Scholar

    [24] Clemmow PC. The Plane Wave Spectrum Representation of Electromagnetic Fields. (Oxford: Oxford University Press, 1997).

    Google Scholar

    [25] Born M, Wolf E. Principles of Optics. (Cambridge: Cambridge University Press, 1999).

    Google Scholar

    [26] Wang YL, Ming CJ, Zhang YQ, Xu J, Feng F et al. Spatiotemporal manipulation on focusing and propagation of surface Plasmon polariton pulses. Opt Express 28, 33516–33527 (2020). doi: 10.1364/OE.405803

    CrossRef Google Scholar

    [27] Quéré F, Vincenti H, Borot A, Monchocé S, Hammond TJ et al. Applications of ultrafast wavefront rotation in highly nonlinear optics. J Phys B At Mol Opt Phys 47, 124004 (2014). doi: 10.1088/0953-4075/47/12/124004

    CrossRef Google Scholar

    [28] Bor Z, Racz B, Szabo G, Hilbert M, Hazim HA. Femtosecond pulse front tilt caused by angular dispersion. Opt Eng 32, 2501–2504 (1993). doi: 10.1117/12.145393

    CrossRef Google Scholar

    [29] Vincenti H, Quéré F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys Rev Lett 108, 113904 (2012). doi: 10.1103/PhysRevLett.108.113904

    CrossRef Google Scholar

    [30] Salandrino A, Christodoulides DN. Airy Plasmon: a nondiffracting surface wave. Opt Lett 35, 2082–2084 (2010). doi: 10.1364/OL.35.002082

    CrossRef Google Scholar

    [31] Li Z, Cheng H, Liu ZC, Chen SQ, Tian JG. Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces. Adv Optical Mater 4, 1230–1235 (2016). doi: 10.1002/adom.201600108

    CrossRef Google Scholar

    [32] Li L, Li T, Wang SM, Zhang C, Zhu SN. Plasmonic airy beam generated by in-plane diffraction. Phys Rev Lett 107, 126804 (2011). doi: 10.1103/PhysRevLett.107.126804

    CrossRef Google Scholar

    [33] Spektor G, Kilbane D, Mahro AK, Frank B, Ristok S et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017). doi: 10.1126/science.aaj1699

    CrossRef Google Scholar

    [34] Da̧browski M, Dai YN, Petek H. Ultrafast photoemission electron microscopy: imaging plasmons in space and time. Chem Rev 120, 6247–6287 (2020). doi: 10.1021/acs.chemrev.0c00146

    CrossRef Google Scholar

    [35] Crampton KT, Joly AG, El-Khoury P. Femtosecond photoemission electron microscopy of surface plasmon polariton beam steering via nanohole arrays. J Chem Phys 153, 081103 (2020). doi: 10.1063/5.0021032

    CrossRef Google Scholar

    [36] Feng F, Wei SB, Li L, Min CJ, Yuan XC et al. Spin-orbit coupling controlled near-field propagation and focusing of Bloch surface wave. Opt Express 27, 27536–27545 (2019). doi: 10.1364/OE.27.027536

    CrossRef Google Scholar

    [37] Pisani F, Fedeli L, Macchi A. Few-cycle surface Plasmon polariton generation by rotating wavefront pulses. ACS Photonics 5, 1068–1073 (2018). doi: 10.1021/acsphotonics.7b01347

    CrossRef Google Scholar

    [38] MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI. Ultrafast active plasmonics. Nat Photonics 3, 55–58 (2009). doi: 10.1038/nphoton.2008.249

    CrossRef Google Scholar

    [39] Kravtsov V, Ulbricht R, Atkin JM, Raschke MB. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat Nanotechnol 11, 459–464 (2016). doi: 10.1038/nnano.2015.336

    CrossRef Google Scholar

  • Supplementary information for Spatiotemporal Fourier transform with femtosecond pulses for on-chip devices
    Movie1-Fig2(f).mp4
    Movie2-Fig2(i).mp4
    Movie3-Fig2(i).mp4
    Movie4-Fig3(c).mp4
    Movie5-Fig3(d).mp4
    Movie6-Fig3(e).mp4
    Movie7-Fig3(f).mp4
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(6542) PDF downloads(934) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint