Citation: | Li PH, Chen YJ, Wang BY, Li MM, Xiang D et al. Single-molecule optoelectronic devices: physical mechanism and beyond. Opto-Electron Adv 5, 210094 (2022). doi: 10.29026/oea.2022.210094 |
[1] | Xiang D, Wang XL, Jia CC, Lee T, Guo XF. Molecular-scale electronics: from concept to function. Chem Rev 116, 4318–4440 (2016). doi: 10.1021/acs.chemrev.5b00680 |
[2] | Sun LL, Diaz-Fernandez YA, Gschneidtner TA, Westerlund F, Lara-Avila S et al. Single-molecule electronics: from chemical design to functional devices. Chem Soc Rev 43, 7378–7411 (2014). doi: 10.1039/C4CS00143E |
[3] | Chen HL, Stoddart JF. From molecular to supramolecular electronics. Nat Rev Mater 6, 804–828 (2021). doi: 10.1038/s41578-021-00302-2 |
[4] | Hu AQ, Liu S, Zhao JY, Wen T, Zhang WD et al. Controlling plasmon-exciton interactions through photothermal reshaping. Opto-Electron Adv 3, 190017 (2020). doi: 10.29026/oea.2020.190017 |
[5] | Jia CC, Lin ZY, Huang Y, Duan XF. Nanowire electronics: from nanoscale to macroscale. Chem Rev 119, 9074–9135 (2019). doi: 10.1021/acs.chemrev.9b00164 |
[6] | Wang PQ, Jia CC, Huang Y, Duan XF. Van der Waals heterostructures by design: from 1D and 2D to 3D. Matter 4, 552–581 (2021). doi: 10.1016/j.matt.2020.12.015 |
[7] | Jia CC, Migliore A, Xin N, Huang SY, Wang JY et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016). doi: 10.1126/science.aaf6298 |
[8] | Li PH, Jia CC, Guo XF. Structural transition dynamics in carbon electrode-based single-molecule junctions. Chin J Chem 39, 223–231 (2021). doi: 10.1002/cjoc.202000529 |
[9] | Bai J, Li XH, Zhu ZY, Zheng Y, Hong WJ. Single-molecule electrochemical transistors. Adv Mater 33, 2005883 (2021). doi: 10.1002/adma.202005883 |
[10] | Li PH, Jia CC, Guo XF. Molecule-based transistors: from macroscale to single molecule. Chem Rec 21, 1284–1299 (2020). |
[11] | Lee TH, Gonzalez JI, Zheng J, Dickson RM. Single-molecule optoelectronics. Acc Chem Res 38, 534–541 (2004). |
[12] | Chen LJ, Feng AN, Wang MN, Liu JY, Hong WJ et al. Towards single-molecule optoelectronic devices. Sci China Chem 61, 1368–1384 (2018). doi: 10.1007/s11426-018-9356-2 |
[13] | Garrigues AR, Wang LJ, del Barco E, Nijhuis CA. Electrostatic control over temperature-dependent tunnelling across a single-molecule junction. Nat Commun 7, 11595 (2016). doi: 10.1038/ncomms11595 |
[14] | Xin N, Jia CC, Wang JY, Wang SP, Li ML et al. Thermally activated tunneling transition in a photoswitchable single-molecule electrical junction. J Phys Chem Lett 8, 2849–2854 (2017). doi: 10.1021/acs.jpclett.7b01063 |
[15] | Coronado E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat Rev Mater 5, 87–104 (2020). doi: 10.1038/s41578-019-0146-8 |
[16] | Jia CC, Grace IM, Wang PQ, Almeshal A, Huang ZH et al. Redox control of charge transport in vertical ferrocene molecular tunnel junctions. Chem 6, 1172–1182 (2020). doi: 10.1016/j.chempr.2020.02.018 |
[17] | Jia CC, Famili M, Carlotti M, Liu Y, Wang PQ et al. Quantum interference mediated vertical molecular tunneling transistors. Sci Adv 4, eaat8237 (2018). doi: 10.1126/sciadv.aat8237 |
[18] | Famili M, Jia CC, Liu XS, Wang PQ, Grace IM et al. Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 5, 474–484 (2019). doi: 10.1016/j.chempr.2018.12.008 |
[19] | Suda M, Thathong Y, Promarak V, Kojima H, Nakamura M et al. Light-driven molecular switch for reconfigurable spin filters. Nat Commun 10, 2455 (2019). doi: 10.1038/s41467-019-10423-6 |
[20] | Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K et al. Towards single molecule switches. Chem Soc Rev 44, 2998–3022 (2015). doi: 10.1039/C4CS00377B |
[21] | Li H, Qu DH. Recent advances in new-type molecular switches. Sci Chin Chem 58, 916–921 (2015). doi: 10.1007/s11426-015-5417-7 |
[22] | Yang FX, Sun LJ, Duan QX, Dong HL, Jing ZK et al. Vertical-organic-nanocrystal-arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat 2, 99–108 (2021). doi: 10.1002/smm2.1022 |
[23] | Liu ZH, Ren SZ, Guo XF. Switching effects in molecular electronic devices. Top Curr Chem 375, 56 (2017). doi: 10.1007/s41061-017-0144-5 |
[24] | Tam ES, Parks JJ, Shum WW, Zhong YW, Santiago-Berríos MB et al. Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano 5, 5115–5123 (2011). doi: 10.1021/nn201199b |
[25] | Kim Y, Hellmuth TJ, Sysoiev D, Pauly F, Pietsch T et al. Charge transport characteristics of diarylethene photoswitching single-molecule junctions. Nano Lett 12, 3736–3742 (2012). doi: 10.1021/nl3015523 |
[26] | Dulić D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD et al. One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91, 207402 (2003). doi: 10.1103/PhysRevLett.91.207402 |
[27] | Whalley AC, Steigerwald ML, Guo XF, Nuckolls C. Reversible switching in molecular electronic devices. J Am Chem Soc 129, 12590–12591 (2007). doi: 10.1021/ja073127y |
[28] | Jia CC, Wang JY, Yao CJ, Cao Y, Zhong YW et al. Conductance switching and mechanisms in single-molecule junctions. Angew Chem Int Ed 52, 8666–8670 (2013). doi: 10.1002/anie.201304301 |
[29] | Han L, Zuo X, Li H, Li Y, Fang CF et al. Rational design of reversible molecular photoswitches based on diarylethene molecules. J Phys Chem C 123, 2736–2745 (2019). doi: 10.1021/acs.jpcc.8b10079 |
[30] | Koo J, Jang Y, Martin L, Kim D, Jeong H et al. Unidirectional real-time photoswitching of diarylethene molecular monolayer junctions with multilayer graphene electrodes. ACS Appl Mater Interfaces 11, 11645–11653 (2019). doi: 10.1021/acsami.8b19372 |
[31] | Kim D, Jeong H, Hwang WT, Jang Y, Sysoiev D et al. Reversible switching phenomenon in diarylethene molecular devices with reduced graphene oxide electrodes on flexible substrates. Adv Funct Mater 25, 5918–5923 (2015). doi: 10.1002/adfm.201502312 |
[32] | Meng FB, Hervault YM, Shao Q, Hu BH, Norel L et al. Orthogonally modulated molecular transport junctions for resettable electronic logic gates. Nat Commun 5, 3023 (2014). doi: 10.1038/ncomms4023 |
[33] | Cao Y, Dong SH, Liu S, Liu ZF, Guo XF. Toward functional molecular devices based on graphene-molecule junctions. Angew Chem Int Ed 52, 3906–3910 (2013). doi: 10.1002/anie.201208210 |
[34] | Chen XJN, Yeoh YQ, He YB, Zhou CG, Horsley JR et al. Unravelling structural dynamics within a photoswitchable single peptide: a step towards multimodal bioinspired nanodevices. Angew Chem Int Ed 59, 22554–22562 (2020). doi: 10.1002/anie.202004701 |
[35] | Meng LN, Xin N, Hu C, Wang JY, Gui B et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat Commun 10, 1450 (2019). doi: 10.1038/s41467-019-09120-1 |
[36] | Meng LN, Xin N, Wang JY, Xu JY, Ren SZ et al. Atomically precise engineering of single-molecule stereoelectronic effect. Angew Chem Int Ed 60, 12274–12278 (2021). doi: 10.1002/anie.202100168 |
[37] | Seo S, Min M, Lee SM, Lee H. Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes. Nat Commun 4, 1920 (2013). doi: 10.1038/ncomms2937 |
[38] | Lenfant S, Viero Y, Krzeminski C, Vuillaume D, Demeter D et al. New photomechanical molecular switch based on a linear π-conjugated system. J Phys Chem C 121, 12416–12425 (2017). doi: 10.1021/acs.jpcc.7b01240 |
[39] | Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C et al. Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions. J Am Chem Soc 135, 5974–5977 (2013). doi: 10.1021/ja401484j |
[40] | Huang CC, Jevric M, Borges A, Olsen ST, Hamill JM et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat Commun 8, 15436 (2017). doi: 10.1038/ncomms15436 |
[41] | Darwish N, Aragonès AC, Darwish T, Ciampi S, Díez-Pérez I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett 14, 7064–7070 (2014). doi: 10.1021/nl5034599 |
[42] | Kumar S, van Herpt JT, Gengler RYN, Feringa BL, Rudolf P et al. Mixed monolayers of spiropyrans maximize tunneling conductance switching by photoisomerization at the molecule-electrode interface in EGaIn junctions. J Am Chem Soc 138, 12519–12526 (2016). doi: 10.1021/jacs.6b06806 |
[43] | Li T, Jevric M, Hauptmann JR, Hviid R, Wei ZM et al. Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions. Adv Mater 25, 4164–4170 (2013). doi: 10.1002/adma.201300607 |
[44] | Naaman R, Waldeck DH. Chiral-induced spin selectivity effect. J Phys Chem Lett 3, 2178–2187 (2012). |
[45] | Yao YF, Chen YS, Wang HL, Samorì P. Organic photodetectors based on supramolecular nanostructures. SmartMat 1, e1009 (2020). |
[46] | Wang YS, Yang J, Gong YX, Fang MM, Li Z et al. Host–guest materials with room temperature phosphorescence: tunable emission color and thermal printing patterns. SmartMat 1, e1006 (2020). |
[47] | Zhou JF, Wang K, Xu BQ, Dubi Y. Photoconductance from exciton binding in molecular junctions. J Am Chem Soc 140, 70–73 (2018). doi: 10.1021/jacs.7b10479 |
[48] | Fu B, Mosquera MA, Schatz GC, Ratner MA, Hsu LY. Photoinduced anomalous coulomb blockade and the role of triplet states in electron transport through an irradiated molecular transistor. Nano Lett 18, 5015–5023 (2018). doi: 10.1021/acs.nanolett.8b01838 |
[49] | Battacharyya S, Kibel A, Kodis G, Liddell PA, Gervaldo M et al. Optical modulation of molecular conductance. Nano Lett 11, 2709–2714 (2011). doi: 10.1021/nl200977c |
[50] | Pourhossein P, Vijayaraghavan RK, Meskers SCJ, Chiechi RC. Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes. Nat Commun 7, 11749 (2016). doi: 10.1038/ncomms11749 |
[51] | Smith SR, McCreery RL. Photocurrent, photovoltage, and rectification in large-area bilayer molecular electronic junctions. Adv Electron Mater 4, 1800093 (2018). doi: 10.1002/aelm.201800093 |
[52] | Najarian AM, Bayat A, McCreery RL. Orbital control of photocurrents in large area all-carbon molecular junctions. J Am Chem Soc 140, 1900–1909 (2018). doi: 10.1021/jacs.7b12577 |
[53] | Najarian AM, McCreery RL. Long-range activationless photostimulated charge transport in symmetric molecular junctions. ACS Nano 13, 867–877 (2019). doi: 10.1021/acsnano.8b08662 |
[54] | Ward DR, Hüser F, Pauly F, Cuevas JC, Natelson D. Optical rectification and field enhancement in a plasmonic nanogap. Nat Nanotechnol 5, 732–736 (2010). doi: 10.1038/nnano.2010.176 |
[55] | Arielly R, Ofarim A, Noy G, Selzer Y. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. Nano Lett 11, 2968–2972 (2011). doi: 10.1021/nl201517k |
[56] | Zhao ZK, Guo CY, Ni LF, Zhao XY, Zhang SR et al. In situ photoconductivity measurements of imidazole in optical fiber break-junctions. Nanoscale Horiz 6, 386–392 (2021). doi: 10.1039/D1NH00031D |
[57] | Noy G, Ophir A, Selzer Y. Response of molecular junctions to surface plasmon polaritons. Angew Chem Int Ed 49, 5734–5736 (2010). doi: 10.1002/anie.201000972 |
[58] | Vadai M, Nachman N, Ben-Zion M, Bürkle M, Pauly F et al. Plasmon-induced conductance enhancement in single-molecule junctions. J Phys Chem Lett 4, 2811–2816 (2013). doi: 10.1021/jz4014008 |
[59] | Fung ED, Adak O, Lovat G, Scarabelli D, Venkataraman L. Too hot for photon-assisted transport: hot-electrons dominate conductance enhancement in illuminated single-molecule junctions. Nano Lett 17, 1255–1261 (2017). doi: 10.1021/acs.nanolett.6b05091 |
[60] | Fereiro JA, McCreery RL, Bergren AJ. Direct optical determination of interfacial transport barriers in molecular tunnel junctions. J Am Chem Soc 135, 9584–9587 (2013). doi: 10.1021/ja403123a |
[61] | Nachman N, Selzer Y. Thermometry of plasmonic heating by inelastic electron tunneling spectroscopy (IETS). Nano Lett 17, 5855–5861 (2017). doi: 10.1021/acs.nanolett.7b03153 |
[62] | Reddy H, Wang K, Kudyshev Z, Zhu LX, Yan S et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020). doi: 10.1126/science.abb3457 |
[63] | Kazuma E, Jung J, Ueba H, Trenary M, Kim Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018). doi: 10.1126/science.aao0872 |
[64] | Zhang WQ, Liu HS, Lu JS, Ni LF, Liu HT et al. Atomic switches of metallic point contacts by plasmonic heating. Light Sci Appl 8, 34 (2019). doi: 10.1038/s41377-019-0144-z |
[65] | Aragonès AC, Darwish N, Ciampi S, Sanz F, Gooding JJ et al. Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nat Commun 8, 15056 (2017). doi: 10.1038/ncomms15056 |
[66] | Vezzoli A, Brooke RJ, Higgins SJ, Schwarzacher W, Nichols RJ. Single-molecule photocurrent at a metal-molecule-semiconductor junction. Nano Lett 17, 6702–6707 (2017). doi: 10.1021/acs.nanolett.7b02762 |
[67] | Vezzoli A, Brooke RJ, Ferri N, Brooke C, Higgins SJ et al. Charge transport at a molecular GaAs nanoscale junction. Faraday Discuss 210, 397–408 (2018). doi: 10.1039/C8FD00016F |
[68] | Kuhnke K, Große C, Merino P, Kern K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem Rev 117, 5174–5222 (2017). doi: 10.1021/acs.chemrev.6b00645 |
[69] | Rosławska A, Leon CC, Grewal A, Merino P, Kuhnke K et al. Atomic-scale dynamics probed by photon correlations. ACS Nano 14, 6366–6375 (2020). doi: 10.1021/acsnano.0c03704 |
[70] | Persson BNJ, Baratoff A. Theory of photon emission in electron tunneling to metallic particles. Phys Rev Lett 68, 3224–3227 (1992). doi: 10.1103/PhysRevLett.68.3224 |
[71] | Wang X, Braun K, Zhang D, Peisert H, Adler H et al. Enhancement of radiative plasmon decay by hot electron tunneling. ACS Nano 9, 8176–8183 (2015). doi: 10.1021/acsnano.5b02361 |
[72] | Wang P, Krasavin AV, Nasir ME, Dickson W, Zayats AV. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat Nanotechnol 13, 159–164 (2018). doi: 10.1038/s41565-017-0017-7 |
[73] | Du W, Wang T, Chu HS, Wu L, Liu RR et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat Photonics 10, 274–280 (2016). doi: 10.1038/nphoton.2016.43 |
[74] | Berndt R, Gaisch R, Gimzewski JK, Reihl B, Schlittler RR et al. Photon emission at molecular resolution induced by a scanning tunneling microscope. Science 262, 1425–1427 (1993). doi: 10.1126/science.262.5138.1425 |
[75] | Dong ZC, Zhang XL, Gao HY, Luo Y, Zhang C et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nat Photonics 4, 50–54 (2010). doi: 10.1038/nphoton.2009.257 |
[76] | Qiu XH, Nazin GV, Ho W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003). doi: 10.1126/science.1078675 |
[77] | Doppagne B, Chong MC, Bulou H, Boeglin A, Scheurer F et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018). doi: 10.1126/science.aat1603 |
[78] | Xu JY, Zhu X, Tan SJ, Zhang Y, Li B et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science 371, 818–822 (2021). doi: 10.1126/science.abd1827 |
[79] | Zhang L, Yu YJ, Chen LG, Luo Y, Yang B et al. Electrically driven single-photon emission from an isolated single molecule. Nat Commun 8, 580 (2017). doi: 10.1038/s41467-017-00681-7 |
[80] | Doppagne B, Chong MC, Lorchat E, Berciaud S, Romeo M et al. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys Rev Lett 118, 127401 (2017). doi: 10.1103/PhysRevLett.118.127401 |
[81] | Chen G, Luo Y, Gao HY, Jiang J, Yu YJ et al. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys Rev Lett 122, 177401 (2019). doi: 10.1103/PhysRevLett.122.177401 |
[82] | Kimura K, Miwa K, Imada H, Imai-Imada M, Kawahara S et al. Selective triplet exciton formation in a single molecule. Nature 570, 210–213 (2019). doi: 10.1038/s41586-019-1284-2 |
[83] | Zhang Y, Meng QS, Zhang L, Luo Y, Yu YJ et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat Commun 8, 15225 (2017). doi: 10.1038/ncomms15225 |
[84] | Kröger J, Doppagne B, Scheurer F, Schull G. Fano description of single-hydrocarbon fluorescence excited by a scanning tunneling microscope. Nano Lett 18, 3407–3413 (2018). doi: 10.1021/acs.nanolett.8b00304 |
[85] | Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K et al. Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys Rev Lett 119, 013901 (2017). doi: 10.1103/PhysRevLett.119.013901 |
[86] | Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016). doi: 10.1038/nature19765 |
[87] | Zhang Y, Luo Y, Zhang Y, Yu YJ, Kuang YM et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 531, 623–627 (2016). doi: 10.1038/nature17428 |
[88] | Miwa K, Imada H, Imai-Imada M, Kimura K, Galperin M et al. Many-body state description of single-molecule electroluminescence driven by a scanning tunneling microscope. Nano Lett 19, 2803–2811 (2019). doi: 10.1021/acs.nanolett.8b04484 |
[89] | Luo Y, Chen G, Zhang Y, Zhang L, Yu YJ et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity. Phys Rev Lett 122, 233901 (2019). doi: 10.1103/PhysRevLett.122.233901 |
[90] | Reecht G, Scheurer F, Speisser V, Dappe YJ, Mathevet F et al. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope. Phys Rev Lett 112, 047403 (2014). doi: 10.1103/PhysRevLett.112.047403 |
[91] | Chong MC, Sosa-Vargas L, Bulou H, Boeglin A, Scheurer F et al. Ordinary and hot electroluminescence from single-molecule devices: controlling the emission color by chemical engineering. Nano Lett 16, 6480–6484 (2016). doi: 10.1021/acs.nanolett.6b02997 |
[92] | Chong MC, Afshar-Imani N, Scheurer F, Cardoso C, Ferretti A et al. Bright electroluminescence from single graphene nanoribbon junctions. Nano Lett 18, 175–181 (2018). doi: 10.1021/acs.nanolett.7b03797 |
[93] | Marquardt CW, Grunder S, Błaszczyk A, Dehm S, Hennrich F et al. Electroluminescence from a single nanotube-molecule-nanotube junction. Nat Nanotechnol 5, 863–867 (2010). doi: 10.1038/nnano.2010.230 |
[94] | Tefashe UM, Nguyen QV, Lafolet F, Lacroix JC, McCreery RL. Robust bipolar light emission and charge transport in symmetric molecular junctions. J Am Chem Soc 139, 7436–7439 (2017). doi: 10.1021/jacs.7b02563 |
Diarylethene units used in single-molecule switches. (a) Diarylethene photoisomerization mechanism. (b) Potential energy curves of the molecular switching. The switching process is initiated by an excitation to the first excited state. (c) Diarylethene bridged between the electrode ends. (d) Molecular structures with special design for single-molecule switches. (e) A graphene-diarylethene-graphene single-molecule switch. (f) Self-assembled monolayer devices with diarylethene units. (g) Molecular isomerization under external controls of electrochemical potential and light irradiation. Figure reproduced with permission from: (a) ref.24, American Chemical Society; (b) ref.26, American Physical Society; (c) ref.27, American Chemical Society; (d) ref.28, John Wiley and Sones; (e) ref.7, American Association for the Advancement of Science; (f) ref.30, American Chemical Society; (g) ref.32, under a Creative Commons Attribution 3.0 Unported Licence.
Azobenzene units used in single-molecule switches. (a) Structures of trans and cis isomers of azobenzene. (b) Azobenzene as the core unit in the macromolecule. (c) Chemical structures of molecules whose configurational change of the azobenzene unit occurs directly in the molecular backbone. (d) Schematic of azobenzene as the side group of bridging molecule in the junction. (e) Dipole projection on the molecular backbone. The arrow denotes the direction of the dipole projection. (f) Four different conformational states due to the asymmetry caused by the introduction of additional azobenzene side group in cis form in the terphenyl backbone. (g) Vertical distance between two graphene electrodes is regulated by the conformational changes in aryl azobenzene molecules with light irradiation. (h) Vertical tunneling self-assembled monolayer device with an azobenzene derivative on Au electrode. Figure reproduced with permission from: (a, c) ref.33, (b) ref.34, (f) ref.36, John Wiley and Sons; (d, e) ref.35, under a Creative Commons Attribution 4.0 International License; (g) ref.37, Springer Nature; (h) ref.38, American Chemical Society.
Other units used in single-molecule switches. (a) DHP/CPD single-molecule junction. (b) DHA/VHF single-molecule junction. (c) SP/MC single-molecule junction. (d) Schematic diagram of a vertical tunneling molecular switch with rGO thin films as the transparent top contact and the molecular structures of DHA and VHF. (e) Single-molecule switches with chirality molecules. The spin-polarization direction of the current switches with the chirality inversion. (f) Schematic diagram of SP SAMs in EGaIn/Ga2O3//SAM/AuTS junctions in their open and closed forms. Figure reproduced with permission from: (a) ref.39, American Chemical Society; (b) ref.40, under a Creative Commons Attribution 4.0 International License; (c) ref.41, American Chemical Society; (d) ref.43, John Wiley and Sons; (e) refs.19, 44, under a Creative Commons Attribution 4.0 International License; (f) ref.42, American Chemical Society.
Photoconductance of single-molecule devices. (a) Schematic illustration of the Au/NH-PTCDI-NH/Au junction under light irradiation. (b) SAM-templated addressable nanogap devices comprised of AminoPyr or SC18. (c) Schematic presentation of the charge transport of a molecular junction affected by the excitation. (d) Bonding geometry of a porphyrin-C60 dyad molecule in the gold-ITO tunnel junction. (e) Schematic diagram of carbon/bilayer/carbon tunneling junctions. (f) Energy level diagram for a BTB–AQ bilayer junction. Figure reproduced with permission from: (a, c) ref.47, American Chemical Society; (b) ref.50, under a Creative Commons Attribution 4.0 International License; (d) ref.49, American Chemical Society; (e, f) ref.51, John Wiley and Sons.
Photo-assisted transport mechanism in tunnelling junctions. (a) A vacuum gold tunnelling junction. (b) Plasmonic enhancement of the electromagnetic field in the junctions. (c) Schematic representation of the mechanically controllable break fiber junction chip. The inset shows a zoomed view of the suspended fiber/Cr/Au bridge. (d) Strong shift of the electrode energy level in imidazole single-molecule junctions caused by photon absorption. Figure reproduced with permission from: (a) ref.54, Springer Nature; (b) ref.55, American Chemical Society; (c, d) ref.56, The Royal Society of Chemistry.
“Hot electron” effect of single-molecule devices. (a) Schematic demonstration of an illuminated metal-molecule-metal junction with 4,4′-bipyridine (BP) molecule. (b) Nonradiative decay of SPP with generated hot electrons and holes. (c) Nonequilibrium distribution of hot electrons and holes in biased junctions. (d) Experimental setup and strategy to map hot-carrier energy distributions. (e) Schematic illustration of the real-time observation of the plasmon-induced chemical reaction. Figure reproduced with permission from: (a) ref.59, American Chemical Society; (b–d) ref.62, (e) ref.63, American Association for the Advancement of Science.
Photovoltaic effect in single-molecule devices. (a) A GaAs-molecule-Au molecular junction. (b) Schematic band diagram for the illuminated metal-molecule-semiconductor junction under reverse biases. (c) I–V characteristics of the Au-GaAs junction. Figure reproduced with permission from: (a, b) ref.66, American Chemical Society; (c) ref.67, The Royal Society of Chemistry.
Electroluminescence of plasmon. (a) Photon emission induced by inelastic tunneling through a nano-gap between a sharp Au tip and an Au substrate. (b) Schematic diagram and mechanism diagram of how hot electrons excite plasmon electroluminescence. (c) Illustration of the molecular tunneling junction with a SAM of SCn. (d) Blinking of plasmon sources obtained from molecular tunneling junction with a SC12 SAM. (e) Corresponding spectra of plasmon electroluminescence excited at different biases. Figure reproduced with permission from: (a) ref.71, American Chemical Society; (b) ref.72, (c–e) ref.73, Springer Nature.
Electroluminescence from molecules in a STM nanocavity. (a) A single ZnPc molecule in a STM nanocavity, where the Au (111) substrate is covered with sodium chloride. (b) Schematic demonstration of the luminescence mechanism for a neutral ZnPc. (c) STM-induced light emission spectrum (black line) of the ZnPc linear tetramer. (d) Phosphorescence scanning tunnel luminescence map of the PTCDA/NaCl/Ag (111) system. (e) Schematic images of the exciton formation mechanism; the arrows represent electrons. Arrows up and down represent the direction of electron spin. (f) Peak characteristics of fluorescence and phosphorescence. Figure reproduced with permission from: (a, b) ref.77, American Association for the Advancement of Science; (c) ref.80, American Physical Society; (d−f) ref.82, Springer Nature.
Coupling of molecular electroluminescence and plasmon nanocavity. (a) Two different junction structures: on top of the molecule or in close proximity to the molecule. (b) STM-induced luminescence of the situation that the tip is in close proximity to the molecule which cause Fano resonance. (c) Excitation of molecular fluorescence through intermolecular energy transfer. (d) Schematic illustration of the process of intermolecular energy transfer. (e) Exciton splitting diagram for different coherent dipole–dipole coupling modes. Figure reproduced with permission from: (a, b) ref.83, under a Creative Commons Attribution 4.0 International License; (c, d) ref.86, (e) ref.87, Springer Nature.
Electroluminescence in single-molecule junctions. (a) A polythiophene molecular wire suspended between the metal substrate and the tip of STM. (b) Fluorescent junctions with different emitting units suspending between the substrate and the tip of the STM by oligothiophene chains. (c) A single graphene nanoribbon junction. (d) Device structure of the nanotube–molecule–nanotube junction. (e) Chemical structure of the molecule, which consists of a central 2,6-dibenzylamino core-substituted NDI chromophore (blue), two OPE rods (red) and phenanthrene anchor units (green). (f) Energy-level model with the HOMO and LUMO molecular orbitals of the OPE and NDI subunits. Figure reproduced with permission from: (a) ref.90, American Physical Society; (b) ref.91, American Chemical Society; (c) ref.92, American Chemical Society; (d–f) ref.93, Springer Nature.