Li PH, Chen YJ, Wang BY, Li MM, Xiang D et al. Single-molecule optoelectronic devices: physical mechanism and beyond. Opto-Electron Adv 5, 210094 (2022). doi: 10.29026/oea.2022.210094
Citation: Li PH, Chen YJ, Wang BY, Li MM, Xiang D et al. Single-molecule optoelectronic devices: physical mechanism and beyond. Opto-Electron Adv 5, 210094 (2022). doi: 10.29026/oea.2022.210094

Review Open Access

Single-molecule optoelectronic devices: physical mechanism and beyond

More Information
  • Single-molecule devices not only promise to provide an alternative strategy to break through the miniaturization and functionalization bottlenecks faced by traditional semiconductor devices, but also provide a reliable platform for exploration of the intrinsic properties of matters at the single-molecule level. Because the regulation of the electrical properties of single-molecule devices will be a key factor in enabling further advances in the development of molecular electronics, it is necessary to clarify the interactions between the charge transport occurring in the device and the external fields, particularly the optical field. This review mainly introduces the optoelectronic effects that are involved in single-molecule devices, including photoisomerization switching, photoconductance, plasmon-induced excitation, photovoltaic effect, and electroluminescence. We also summarize the optoelectronic mechanisms of single-molecule devices, with particular emphasis on the photoisomerization, photoexcitation, and photo-assisted tunneling processes. Finally, we focus the discussion on the opportunities and challenges arising in the single-molecule optoelectronics field and propose further possible breakthroughs.
  • 加载中
  • [1] Xiang D, Wang XL, Jia CC, Lee T, Guo XF. Molecular-scale electronics: from concept to function. Chem Rev 116, 4318–4440 (2016). doi: 10.1021/acs.chemrev.5b00680

    CrossRef Google Scholar

    [2] Sun LL, Diaz-Fernandez YA, Gschneidtner TA, Westerlund F, Lara-Avila S et al. Single-molecule electronics: from chemical design to functional devices. Chem Soc Rev 43, 7378–7411 (2014). doi: 10.1039/C4CS00143E

    CrossRef Google Scholar

    [3] Chen HL, Stoddart JF. From molecular to supramolecular electronics. Nat Rev Mater 6, 804–828 (2021). doi: 10.1038/s41578-021-00302-2

    CrossRef Google Scholar

    [4] Hu AQ, Liu S, Zhao JY, Wen T, Zhang WD et al. Controlling plasmon-exciton interactions through photothermal reshaping. Opto-Electron Adv 3, 190017 (2020). doi: 10.29026/oea.2020.190017

    CrossRef Google Scholar

    [5] Jia CC, Lin ZY, Huang Y, Duan XF. Nanowire electronics: from nanoscale to macroscale. Chem Rev 119, 9074–9135 (2019). doi: 10.1021/acs.chemrev.9b00164

    CrossRef Google Scholar

    [6] Wang PQ, Jia CC, Huang Y, Duan XF. Van der Waals heterostructures by design: from 1D and 2D to 3D. Matter 4, 552–581 (2021). doi: 10.1016/j.matt.2020.12.015

    CrossRef Google Scholar

    [7] Jia CC, Migliore A, Xin N, Huang SY, Wang JY et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016). doi: 10.1126/science.aaf6298

    CrossRef Google Scholar

    [8] Li PH, Jia CC, Guo XF. Structural transition dynamics in carbon electrode-based single-molecule junctions. Chin J Chem 39, 223–231 (2021). doi: 10.1002/cjoc.202000529

    CrossRef Google Scholar

    [9] Bai J, Li XH, Zhu ZY, Zheng Y, Hong WJ. Single-molecule electrochemical transistors. Adv Mater 33, 2005883 (2021). doi: 10.1002/adma.202005883

    CrossRef Google Scholar

    [10] Li PH, Jia CC, Guo XF. Molecule-based transistors: from macroscale to single molecule. Chem Rec 21, 1284–1299 (2020).

    Google Scholar

    [11] Lee TH, Gonzalez JI, Zheng J, Dickson RM. Single-molecule optoelectronics. Acc Chem Res 38, 534–541 (2004).

    Google Scholar

    [12] Chen LJ, Feng AN, Wang MN, Liu JY, Hong WJ et al. Towards single-molecule optoelectronic devices. Sci China Chem 61, 1368–1384 (2018). doi: 10.1007/s11426-018-9356-2

    CrossRef Google Scholar

    [13] Garrigues AR, Wang LJ, del Barco E, Nijhuis CA. Electrostatic control over temperature-dependent tunnelling across a single-molecule junction. Nat Commun 7, 11595 (2016). doi: 10.1038/ncomms11595

    CrossRef Google Scholar

    [14] Xin N, Jia CC, Wang JY, Wang SP, Li ML et al. Thermally activated tunneling transition in a photoswitchable single-molecule electrical junction. J Phys Chem Lett 8, 2849–2854 (2017). doi: 10.1021/acs.jpclett.7b01063

    CrossRef Google Scholar

    [15] Coronado E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat Rev Mater 5, 87–104 (2020). doi: 10.1038/s41578-019-0146-8

    CrossRef Google Scholar

    [16] Jia CC, Grace IM, Wang PQ, Almeshal A, Huang ZH et al. Redox control of charge transport in vertical ferrocene molecular tunnel junctions. Chem 6, 1172–1182 (2020). doi: 10.1016/j.chempr.2020.02.018

    CrossRef Google Scholar

    [17] Jia CC, Famili M, Carlotti M, Liu Y, Wang PQ et al. Quantum interference mediated vertical molecular tunneling transistors. Sci Adv 4, eaat8237 (2018). doi: 10.1126/sciadv.aat8237

    CrossRef Google Scholar

    [18] Famili M, Jia CC, Liu XS, Wang PQ, Grace IM et al. Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 5, 474–484 (2019). doi: 10.1016/j.chempr.2018.12.008

    CrossRef Google Scholar

    [19] Suda M, Thathong Y, Promarak V, Kojima H, Nakamura M et al. Light-driven molecular switch for reconfigurable spin filters. Nat Commun 10, 2455 (2019). doi: 10.1038/s41467-019-10423-6

    CrossRef Google Scholar

    [20] Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K et al. Towards single molecule switches. Chem Soc Rev 44, 2998–3022 (2015). doi: 10.1039/C4CS00377B

    CrossRef Google Scholar

    [21] Li H, Qu DH. Recent advances in new-type molecular switches. Sci Chin Chem 58, 916–921 (2015). doi: 10.1007/s11426-015-5417-7

    CrossRef Google Scholar

    [22] Yang FX, Sun LJ, Duan QX, Dong HL, Jing ZK et al. Vertical-organic-nanocrystal-arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat 2, 99–108 (2021). doi: 10.1002/smm2.1022

    CrossRef Google Scholar

    [23] Liu ZH, Ren SZ, Guo XF. Switching effects in molecular electronic devices. Top Curr Chem 375, 56 (2017). doi: 10.1007/s41061-017-0144-5

    CrossRef Google Scholar

    [24] Tam ES, Parks JJ, Shum WW, Zhong YW, Santiago-Berríos MB et al. Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano 5, 5115–5123 (2011). doi: 10.1021/nn201199b

    CrossRef Google Scholar

    [25] Kim Y, Hellmuth TJ, Sysoiev D, Pauly F, Pietsch T et al. Charge transport characteristics of diarylethene photoswitching single-molecule junctions. Nano Lett 12, 3736–3742 (2012). doi: 10.1021/nl3015523

    CrossRef Google Scholar

    [26] Dulić D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD et al. One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91, 207402 (2003). doi: 10.1103/PhysRevLett.91.207402

    CrossRef Google Scholar

    [27] Whalley AC, Steigerwald ML, Guo XF, Nuckolls C. Reversible switching in molecular electronic devices. J Am Chem Soc 129, 12590–12591 (2007). doi: 10.1021/ja073127y

    CrossRef Google Scholar

    [28] Jia CC, Wang JY, Yao CJ, Cao Y, Zhong YW et al. Conductance switching and mechanisms in single-molecule junctions. Angew Chem Int Ed 52, 8666–8670 (2013). doi: 10.1002/anie.201304301

    CrossRef Google Scholar

    [29] Han L, Zuo X, Li H, Li Y, Fang CF et al. Rational design of reversible molecular photoswitches based on diarylethene molecules. J Phys Chem C 123, 2736–2745 (2019). doi: 10.1021/acs.jpcc.8b10079

    CrossRef Google Scholar

    [30] Koo J, Jang Y, Martin L, Kim D, Jeong H et al. Unidirectional real-time photoswitching of diarylethene molecular monolayer junctions with multilayer graphene electrodes. ACS Appl Mater Interfaces 11, 11645–11653 (2019). doi: 10.1021/acsami.8b19372

    CrossRef Google Scholar

    [31] Kim D, Jeong H, Hwang WT, Jang Y, Sysoiev D et al. Reversible switching phenomenon in diarylethene molecular devices with reduced graphene oxide electrodes on flexible substrates. Adv Funct Mater 25, 5918–5923 (2015). doi: 10.1002/adfm.201502312

    CrossRef Google Scholar

    [32] Meng FB, Hervault YM, Shao Q, Hu BH, Norel L et al. Orthogonally modulated molecular transport junctions for resettable electronic logic gates. Nat Commun 5, 3023 (2014). doi: 10.1038/ncomms4023

    CrossRef Google Scholar

    [33] Cao Y, Dong SH, Liu S, Liu ZF, Guo XF. Toward functional molecular devices based on graphene-molecule junctions. Angew Chem Int Ed 52, 3906–3910 (2013). doi: 10.1002/anie.201208210

    CrossRef Google Scholar

    [34] Chen XJN, Yeoh YQ, He YB, Zhou CG, Horsley JR et al. Unravelling structural dynamics within a photoswitchable single peptide: a step towards multimodal bioinspired nanodevices. Angew Chem Int Ed 59, 22554–22562 (2020). doi: 10.1002/anie.202004701

    CrossRef Google Scholar

    [35] Meng LN, Xin N, Hu C, Wang JY, Gui B et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat Commun 10, 1450 (2019). doi: 10.1038/s41467-019-09120-1

    CrossRef Google Scholar

    [36] Meng LN, Xin N, Wang JY, Xu JY, Ren SZ et al. Atomically precise engineering of single-molecule stereoelectronic effect. Angew Chem Int Ed 60, 12274–12278 (2021). doi: 10.1002/anie.202100168

    CrossRef Google Scholar

    [37] Seo S, Min M, Lee SM, Lee H. Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes. Nat Commun 4, 1920 (2013). doi: 10.1038/ncomms2937

    CrossRef Google Scholar

    [38] Lenfant S, Viero Y, Krzeminski C, Vuillaume D, Demeter D et al. New photomechanical molecular switch based on a linear π-conjugated system. J Phys Chem C 121, 12416–12425 (2017). doi: 10.1021/acs.jpcc.7b01240

    CrossRef Google Scholar

    [39] Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C et al. Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions. J Am Chem Soc 135, 5974–5977 (2013). doi: 10.1021/ja401484j

    CrossRef Google Scholar

    [40] Huang CC, Jevric M, Borges A, Olsen ST, Hamill JM et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat Commun 8, 15436 (2017). doi: 10.1038/ncomms15436

    CrossRef Google Scholar

    [41] Darwish N, Aragonès AC, Darwish T, Ciampi S, Díez-Pérez I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett 14, 7064–7070 (2014). doi: 10.1021/nl5034599

    CrossRef Google Scholar

    [42] Kumar S, van Herpt JT, Gengler RYN, Feringa BL, Rudolf P et al. Mixed monolayers of spiropyrans maximize tunneling conductance switching by photoisomerization at the molecule-electrode interface in EGaIn junctions. J Am Chem Soc 138, 12519–12526 (2016). doi: 10.1021/jacs.6b06806

    CrossRef Google Scholar

    [43] Li T, Jevric M, Hauptmann JR, Hviid R, Wei ZM et al. Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions. Adv Mater 25, 4164–4170 (2013). doi: 10.1002/adma.201300607

    CrossRef Google Scholar

    [44] Naaman R, Waldeck DH. Chiral-induced spin selectivity effect. J Phys Chem Lett 3, 2178–2187 (2012).

    Google Scholar

    [45] Yao YF, Chen YS, Wang HL, Samorì P. Organic photodetectors based on supramolecular nanostructures. SmartMat 1, e1009 (2020).

    Google Scholar

    [46] Wang YS, Yang J, Gong YX, Fang MM, Li Z et al. Host–guest materials with room temperature phosphorescence: tunable emission color and thermal printing patterns. SmartMat 1, e1006 (2020).

    Google Scholar

    [47] Zhou JF, Wang K, Xu BQ, Dubi Y. Photoconductance from exciton binding in molecular junctions. J Am Chem Soc 140, 70–73 (2018). doi: 10.1021/jacs.7b10479

    CrossRef Google Scholar

    [48] Fu B, Mosquera MA, Schatz GC, Ratner MA, Hsu LY. Photoinduced anomalous coulomb blockade and the role of triplet states in electron transport through an irradiated molecular transistor. Nano Lett 18, 5015–5023 (2018). doi: 10.1021/acs.nanolett.8b01838

    CrossRef Google Scholar

    [49] Battacharyya S, Kibel A, Kodis G, Liddell PA, Gervaldo M et al. Optical modulation of molecular conductance. Nano Lett 11, 2709–2714 (2011). doi: 10.1021/nl200977c

    CrossRef Google Scholar

    [50] Pourhossein P, Vijayaraghavan RK, Meskers SCJ, Chiechi RC. Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes. Nat Commun 7, 11749 (2016). doi: 10.1038/ncomms11749

    CrossRef Google Scholar

    [51] Smith SR, McCreery RL. Photocurrent, photovoltage, and rectification in large-area bilayer molecular electronic junctions. Adv Electron Mater 4, 1800093 (2018). doi: 10.1002/aelm.201800093

    CrossRef Google Scholar

    [52] Najarian AM, Bayat A, McCreery RL. Orbital control of photocurrents in large area all-carbon molecular junctions. J Am Chem Soc 140, 1900–1909 (2018). doi: 10.1021/jacs.7b12577

    CrossRef Google Scholar

    [53] Najarian AM, McCreery RL. Long-range activationless photostimulated charge transport in symmetric molecular junctions. ACS Nano 13, 867–877 (2019). doi: 10.1021/acsnano.8b08662

    CrossRef Google Scholar

    [54] Ward DR, Hüser F, Pauly F, Cuevas JC, Natelson D. Optical rectification and field enhancement in a plasmonic nanogap. Nat Nanotechnol 5, 732–736 (2010). doi: 10.1038/nnano.2010.176

    CrossRef Google Scholar

    [55] Arielly R, Ofarim A, Noy G, Selzer Y. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. Nano Lett 11, 2968–2972 (2011). doi: 10.1021/nl201517k

    CrossRef Google Scholar

    [56] Zhao ZK, Guo CY, Ni LF, Zhao XY, Zhang SR et al. In situ photoconductivity measurements of imidazole in optical fiber break-junctions. Nanoscale Horiz 6, 386–392 (2021). doi: 10.1039/D1NH00031D

    CrossRef Google Scholar

    [57] Noy G, Ophir A, Selzer Y. Response of molecular junctions to surface plasmon polaritons. Angew Chem Int Ed 49, 5734–5736 (2010). doi: 10.1002/anie.201000972

    CrossRef Google Scholar

    [58] Vadai M, Nachman N, Ben-Zion M, Bürkle M, Pauly F et al. Plasmon-induced conductance enhancement in single-molecule junctions. J Phys Chem Lett 4, 2811–2816 (2013). doi: 10.1021/jz4014008

    CrossRef Google Scholar

    [59] Fung ED, Adak O, Lovat G, Scarabelli D, Venkataraman L. Too hot for photon-assisted transport: hot-electrons dominate conductance enhancement in illuminated single-molecule junctions. Nano Lett 17, 1255–1261 (2017). doi: 10.1021/acs.nanolett.6b05091

    CrossRef Google Scholar

    [60] Fereiro JA, McCreery RL, Bergren AJ. Direct optical determination of interfacial transport barriers in molecular tunnel junctions. J Am Chem Soc 135, 9584–9587 (2013). doi: 10.1021/ja403123a

    CrossRef Google Scholar

    [61] Nachman N, Selzer Y. Thermometry of plasmonic heating by inelastic electron tunneling spectroscopy (IETS). Nano Lett 17, 5855–5861 (2017). doi: 10.1021/acs.nanolett.7b03153

    CrossRef Google Scholar

    [62] Reddy H, Wang K, Kudyshev Z, Zhu LX, Yan S et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020). doi: 10.1126/science.abb3457

    CrossRef Google Scholar

    [63] Kazuma E, Jung J, Ueba H, Trenary M, Kim Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018). doi: 10.1126/science.aao0872

    CrossRef Google Scholar

    [64] Zhang WQ, Liu HS, Lu JS, Ni LF, Liu HT et al. Atomic switches of metallic point contacts by plasmonic heating. Light Sci Appl 8, 34 (2019). doi: 10.1038/s41377-019-0144-z

    CrossRef Google Scholar

    [65] Aragonès AC, Darwish N, Ciampi S, Sanz F, Gooding JJ et al. Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nat Commun 8, 15056 (2017). doi: 10.1038/ncomms15056

    CrossRef Google Scholar

    [66] Vezzoli A, Brooke RJ, Higgins SJ, Schwarzacher W, Nichols RJ. Single-molecule photocurrent at a metal-molecule-semiconductor junction. Nano Lett 17, 6702–6707 (2017). doi: 10.1021/acs.nanolett.7b02762

    CrossRef Google Scholar

    [67] Vezzoli A, Brooke RJ, Ferri N, Brooke C, Higgins SJ et al. Charge transport at a molecular GaAs nanoscale junction. Faraday Discuss 210, 397–408 (2018). doi: 10.1039/C8FD00016F

    CrossRef Google Scholar

    [68] Kuhnke K, Große C, Merino P, Kern K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem Rev 117, 5174–5222 (2017). doi: 10.1021/acs.chemrev.6b00645

    CrossRef Google Scholar

    [69] Rosławska A, Leon CC, Grewal A, Merino P, Kuhnke K et al. Atomic-scale dynamics probed by photon correlations. ACS Nano 14, 6366–6375 (2020). doi: 10.1021/acsnano.0c03704

    CrossRef Google Scholar

    [70] Persson BNJ, Baratoff A. Theory of photon emission in electron tunneling to metallic particles. Phys Rev Lett 68, 3224–3227 (1992). doi: 10.1103/PhysRevLett.68.3224

    CrossRef Google Scholar

    [71] Wang X, Braun K, Zhang D, Peisert H, Adler H et al. Enhancement of radiative plasmon decay by hot electron tunneling. ACS Nano 9, 8176–8183 (2015). doi: 10.1021/acsnano.5b02361

    CrossRef Google Scholar

    [72] Wang P, Krasavin AV, Nasir ME, Dickson W, Zayats AV. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat Nanotechnol 13, 159–164 (2018). doi: 10.1038/s41565-017-0017-7

    CrossRef Google Scholar

    [73] Du W, Wang T, Chu HS, Wu L, Liu RR et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat Photonics 10, 274–280 (2016). doi: 10.1038/nphoton.2016.43

    CrossRef Google Scholar

    [74] Berndt R, Gaisch R, Gimzewski JK, Reihl B, Schlittler RR et al. Photon emission at molecular resolution induced by a scanning tunneling microscope. Science 262, 1425–1427 (1993). doi: 10.1126/science.262.5138.1425

    CrossRef Google Scholar

    [75] Dong ZC, Zhang XL, Gao HY, Luo Y, Zhang C et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nat Photonics 4, 50–54 (2010). doi: 10.1038/nphoton.2009.257

    CrossRef Google Scholar

    [76] Qiu XH, Nazin GV, Ho W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003). doi: 10.1126/science.1078675

    CrossRef Google Scholar

    [77] Doppagne B, Chong MC, Bulou H, Boeglin A, Scheurer F et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018). doi: 10.1126/science.aat1603

    CrossRef Google Scholar

    [78] Xu JY, Zhu X, Tan SJ, Zhang Y, Li B et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science 371, 818–822 (2021). doi: 10.1126/science.abd1827

    CrossRef Google Scholar

    [79] Zhang L, Yu YJ, Chen LG, Luo Y, Yang B et al. Electrically driven single-photon emission from an isolated single molecule. Nat Commun 8, 580 (2017). doi: 10.1038/s41467-017-00681-7

    CrossRef Google Scholar

    [80] Doppagne B, Chong MC, Lorchat E, Berciaud S, Romeo M et al. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys Rev Lett 118, 127401 (2017). doi: 10.1103/PhysRevLett.118.127401

    CrossRef Google Scholar

    [81] Chen G, Luo Y, Gao HY, Jiang J, Yu YJ et al. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys Rev Lett 122, 177401 (2019). doi: 10.1103/PhysRevLett.122.177401

    CrossRef Google Scholar

    [82] Kimura K, Miwa K, Imada H, Imai-Imada M, Kawahara S et al. Selective triplet exciton formation in a single molecule. Nature 570, 210–213 (2019). doi: 10.1038/s41586-019-1284-2

    CrossRef Google Scholar

    [83] Zhang Y, Meng QS, Zhang L, Luo Y, Yu YJ et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat Commun 8, 15225 (2017). doi: 10.1038/ncomms15225

    CrossRef Google Scholar

    [84] Kröger J, Doppagne B, Scheurer F, Schull G. Fano description of single-hydrocarbon fluorescence excited by a scanning tunneling microscope. Nano Lett 18, 3407–3413 (2018). doi: 10.1021/acs.nanolett.8b00304

    CrossRef Google Scholar

    [85] Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K et al. Single-molecule investigation of energy dynamics in a coupled plasmon-exciton system. Phys Rev Lett 119, 013901 (2017). doi: 10.1103/PhysRevLett.119.013901

    CrossRef Google Scholar

    [86] Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016). doi: 10.1038/nature19765

    CrossRef Google Scholar

    [87] Zhang Y, Luo Y, Zhang Y, Yu YJ, Kuang YM et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 531, 623–627 (2016). doi: 10.1038/nature17428

    CrossRef Google Scholar

    [88] Miwa K, Imada H, Imai-Imada M, Kimura K, Galperin M et al. Many-body state description of single-molecule electroluminescence driven by a scanning tunneling microscope. Nano Lett 19, 2803–2811 (2019). doi: 10.1021/acs.nanolett.8b04484

    CrossRef Google Scholar

    [89] Luo Y, Chen G, Zhang Y, Zhang L, Yu YJ et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity. Phys Rev Lett 122, 233901 (2019). doi: 10.1103/PhysRevLett.122.233901

    CrossRef Google Scholar

    [90] Reecht G, Scheurer F, Speisser V, Dappe YJ, Mathevet F et al. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope. Phys Rev Lett 112, 047403 (2014). doi: 10.1103/PhysRevLett.112.047403

    CrossRef Google Scholar

    [91] Chong MC, Sosa-Vargas L, Bulou H, Boeglin A, Scheurer F et al. Ordinary and hot electroluminescence from single-molecule devices: controlling the emission color by chemical engineering. Nano Lett 16, 6480–6484 (2016). doi: 10.1021/acs.nanolett.6b02997

    CrossRef Google Scholar

    [92] Chong MC, Afshar-Imani N, Scheurer F, Cardoso C, Ferretti A et al. Bright electroluminescence from single graphene nanoribbon junctions. Nano Lett 18, 175–181 (2018). doi: 10.1021/acs.nanolett.7b03797

    CrossRef Google Scholar

    [93] Marquardt CW, Grunder S, Błaszczyk A, Dehm S, Hennrich F et al. Electroluminescence from a single nanotube-molecule-nanotube junction. Nat Nanotechnol 5, 863–867 (2010). doi: 10.1038/nnano.2010.230

    CrossRef Google Scholar

    [94] Tefashe UM, Nguyen QV, Lafolet F, Lacroix JC, McCreery RL. Robust bipolar light emission and charge transport in symmetric molecular junctions. J Am Chem Soc 139, 7436–7439 (2017). doi: 10.1021/jacs.7b02563

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint