Yan SQ, Zuo Y, Xiao SS, Oxenløwe LK, Ding YH. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron Adv 5, 210159 (2022). doi: 10.29026/oea.2022.210159
Citation: Yan SQ, Zuo Y, Xiao SS, Oxenløwe LK, Ding YH. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron Adv 5, 210159 (2022). doi: 10.29026/oea.2022.210159

Original Article Open Access

Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth

More Information
  • Silicon photonics integrated with graphene provides a promising solution to realize integrated photodetectors operating at the communication window thanks to graphene’s ultrafast response and compatibility with CMOS fabrication process. However, current hybrid graphene/silicon photodetectors suffer from low responsivity due to the weak light-graphene interaction. Plasmonic structures have been explored to enhance the responsivity, but the intrinsic metallic Ohmic absorption of the plasmonic mode limits its performance. In this work, by combining the silicon slot and the plasmonic slot waveguide, we demonstrate a novel double slot structure supporting high-performance photodetection, taking advantages of both silicon photonics and plasmonics. With the optimized structural parameters, the double slot structure significantly promotes graphene absorption while maintaining low metallic absorption within the double slot waveguide. Based on the double slot structure, the demonstrated photodetector holds a high responsivity of 603.92 mA/W and a large bandwidth of 78 GHz. The high-performance photodetector provides a competitive solution for the silicon photodetector. Moreover, the double slot structure could be beneficial to a broader range of hybrid two-dimensional material/silicon devices to achieve stronger light-matter interaction with lower metallic absorption.
  • 加载中
  • [1] Schwab K. The Fourth Industrial Revolution (Crown Business, New York, 2017).

    Google Scholar

    [2] Saltz JS. The need for new processes, methodologies and tools to support big data teams and improve big data project effectiveness. In 2015 IEEE International Conference on Big Data (Big Data) 2066–2071 (IEEE, 2015);http://doi.org/10.1109/BigData.2015.7363988.

    Google Scholar

    [3] Haurylau M, Chen GQ, Chen H, Zhang JD, Nelson NA et al. On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Sel Top Quantum Electron 12, 1699–1705 (2006). doi: 10.1109/JSTQE.2006.880615

    CrossRef Google Scholar

    [4] Chen GQ, Chen H, Haurylau M, Nelson NA, Albonesi DH et al. Predictions of CMOS compatible on-chip optical interconnect. Integration 40, 434–446 (2007).

    Google Scholar

    [5] Asakawa K, Sugimoto Y, Nakamura S. Silicon photonics for telecom and data-com applications. Opto-Electron Adv 3, 200011 (2020).

    Google Scholar

    [6] Thomson D, Zilkie A, Bowers JE, Komljenovic T, Reed GT et al. Roadmap on silicon photonics. J Opt 18, 073003 (2016). doi: 10.1088/2040-8978/18/7/073003

    CrossRef Google Scholar

    [7] Schall D, Neumaier D, Mohsin M, Chmielak B, Bolten J et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 1, 781–784 (2014). doi: 10.1021/ph5001605

    CrossRef Google Scholar

    [8] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018). doi: 10.1038/s41586-018-0551-y

    CrossRef Google Scholar

    [9] He MB, Xu MY, Ren YX, Jian J, Ruan ZL et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat Photonics 13, 359–364 (2019). doi: 10.1038/s41566-019-0378-6

    CrossRef Google Scholar

    [10] Takahashi Y, Inui Y, Chihara M, Asano T, Terawaki R et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498, 470–474 (2013). doi: 10.1038/nature12237

    CrossRef Google Scholar

    [11] Yan SQ, Zhu XL, Frandsen LH, Xiao SS, Mortensen NA et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat Commun 8, 14411 (2017). doi: 10.1038/ncomms14411

    CrossRef Google Scholar

    [12] Paesani S, Ding YH, Santagati R, Chakhmakhchyan L, Vigliar C et al. Generation and sampling of quantum states of light in a silicon chip. Nat Phys 15, 925–929 (2019). doi: 10.1038/s41567-019-0567-8

    CrossRef Google Scholar

    [13] Wang JW, Paesani S, Ding YH, Santagati R, Skrzypczyk P et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018). doi: 10.1126/science.aar7053

    CrossRef Google Scholar

    [14] Casalino M, Coppola G, De La Rue RM, Logan DF. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev 10, 895–921 (2016). doi: 10.1002/lpor.201600065

    CrossRef Google Scholar

    [15] Michel J, Liu JF, Kimerling LC. High-performance Ge-on-Si photodetectors. Nat Photonics 4, 527–534 (2010). doi: 10.1038/nphoton.2010.157

    CrossRef Google Scholar

    [16] Salamin Y, Ma P, Baeuerle B, Emboras A, Fedoryshyn Y et al. 100 GHz plasmonic photodetector. ACS Photonics 5, 3291–3297 (2018). doi: 10.1021/acsphotonics.8b00525

    CrossRef Google Scholar

    [17] Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun 146, 351–355 (2008). doi: 10.1016/j.ssc.2008.02.024

    CrossRef Google Scholar

    [18] Geim AK, Novoselov KS. The rise of graphene. Nat Mater 6, 183–191 (2007). doi: 10.1038/nmat1849

    CrossRef Google Scholar

    [19] Xia FN, Mueller T, Lin YM, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nat Nanotechnol 4, 839–843 (2009). doi: 10.1038/nnano.2009.292

    CrossRef Google Scholar

    [20] Ding YH, Cheng Z, Zhu XL, Yvind K, Dong JJ et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics 9, 317–325 (2020). doi: 10.1515/nanoph-2019-0167

    CrossRef Google Scholar

    [21] Ma P, Salamin Y, Baeuerle B, Josten A, Heni W et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 6, 154–161 (2019). doi: 10.1021/acsphotonics.8b01234

    CrossRef Google Scholar

    [22] Guo JS, Li J, Liu CY, Yin YL, Wang WH et al. High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci Appl 9, 29 (2020). doi: 10.1038/s41377-020-0263-6

    CrossRef Google Scholar

    [23] Wang YL, Zhang Y, Jiang ZB, Deng WT, Zhou D et al. Ultra-compact high-speed polarization division multiplexing optical receiving chip enabled by graphene-on-plasmonic slot waveguide photodetectors. Adv Opt Mater 9, 2001215 (2021). doi: 10.1002/adom.202001215

    CrossRef Google Scholar

    [24] Veronis G, Fan SH. Modes of subwavelength plasmonic slot waveguides. J Light Technol 25, 2511–2521 (2007). doi: 10.1109/JLT.2007.903544

    CrossRef Google Scholar

    [25] Yan SQ, Zhu XL, Dong JJ, Ding YH, Xiao SS. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics 9, 1877–1900 (2020). doi: 10.1515/nanoph-2020-0074

    CrossRef Google Scholar

    [26] Fang YR, Sun MT. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4, e294–e294 (2015). doi: 10.1038/lsa.2015.67

    CrossRef Google Scholar

    [27] Ma ZZ, Kikunaga K, Wang H, Sun S, Amin R et al. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics 7, 932–940 (2020). doi: 10.1021/acsphotonics.9b01452

    CrossRef Google Scholar

    [28] Muench JE, Ruocco A, Giambra MA, Miseikis V, Zhang DK et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett 19, 7632–7644 (2019). doi: 10.1021/acs.nanolett.9b02238

    CrossRef Google Scholar

    [29] Yan SQ, Zuo Y, Xiao SS, Oxenløwe LK, Ding YH. High-performance silicon/graphene photodetector employing double slot structure. in 2021 Conference on Lasers and Electro-Optics 1–2 (Optica Publishing Group, 2021);http://doi.org/10.1364/CLEO_SI.2021.STh5B.2.

    Google Scholar

    [30] Datta I, Chae SH, Bhatt GR, Tadayon MA, Li BC et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat Photonics 14, 256–262 (2020). doi: 10.1038/s41566-020-0590-4

    CrossRef Google Scholar

    [31] Liu YD, Fang HL, Rasmita A, Zhou Y, Li JT et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci Adv 5, eaav4506 (2019). doi: 10.1126/sciadv.aav4506

    CrossRef Google Scholar

    [32] Mu HR, Liu ZK, Bao XZ, Wan ZC, Liu GY et al. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals. Front Optoelectron 13, 139–148 (2020). doi: 10.1007/s12200-020-1018-y

    CrossRef Google Scholar

    [33] Sun ZP, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat Photonics 10, 227–238 (2016). doi: 10.1038/nphoton.2016.15

    CrossRef Google Scholar

    [34] Zhong CY, Li JY, Lin HT. Graphene-based all-optical modulators. Front Optoelectron 13, 114–128 (2020). doi: 10.1007/s12200-020-1020-4

    CrossRef Google Scholar

    [35] Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282

    CrossRef Google Scholar

    [36] Cheng Z, Cao R, Wei KK, Yao YH, Liu XY et al. 2D materials enabled next-generation integrated optoelectronics: from fabrication to applications. Adv Sci 8, 2003834 (2021). doi: 10.1002/advs.202003834

    CrossRef Google Scholar

    [37] Yao YH, Cheng Z, Dong JJ, Zhang XL. Performance of integrated optical switches based on 2D materials and beyond. Front Optoelectron 13, 129–138 (2020). doi: 10.1007/s12200-020-1058-3

    CrossRef Google Scholar

    [38] Ding R, Baehr-Jones T, Liu Y, Bojko R, Witzens J et al. Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt Express 18, 15618–15623 (2010). doi: 10.1364/OE.18.015618

    CrossRef Google Scholar

    [39] Martínez A, Blasco J, Sanchis P, Galán JV, García-Rupérez J et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett 10, 1506–1511 (2010). doi: 10.1021/nl9041017

    CrossRef Google Scholar

    [40] Zhang L, Yue Y, Beausoleil RG, Willner AE. Flattened dispersion in silicon slot waveguides. Opt Express 18, 20529–20534 (2010). doi: 10.1364/OE.18.020529

    CrossRef Google Scholar

    [41] Dell’Olio F, Passaro VMN. Optical sensing by optimized silicon slot waveguides. Opt Express 15, 4977–4993 (2007). doi: 10.1364/OE.15.004977

    CrossRef Google Scholar

    [42] Wang JQ, Cheng ZZ, Chen ZF, Wan X, Zhu BQ et al. High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 8, 13206–13211 (2016). doi: 10.1039/C6NR03122F

    CrossRef Google Scholar

    [43] Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9, 780–793 (2014). doi: 10.1038/nnano.2014.215

    CrossRef Google Scholar

    [44] Ding YH, Ou HY, Peucheret C. Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals. Opt Lett 38, 2732–2734 (2013). doi: 10.1364/OL.38.002732

    CrossRef Google Scholar

    [45] Deng QZ, Liu L, Li XB, Zhou ZP. Strip-slot waveguide mode converter based on symmetric multimode interference. Opt Lett 39, 5665–5668 (2014). doi: 10.1364/OL.39.005665

    CrossRef Google Scholar

    [46] Liang XL, Sperling BA, Calizo I, Cheng GJ, Hacker CA et al. Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011). doi: 10.1021/nn203377t

    CrossRef Google Scholar

    [47] Yang SJ, Choi S, Ngome FOO, Kim KJ, Choi SY et al. All-dry transfer of graphene film by van der waals interactions. Nano Lett 19, 3590–3596 (2019). doi: 10.1021/acs.nanolett.9b00555

    CrossRef Google Scholar

    [48] Freitag M, Low T, Xia FN, Avouris P. Photoconductivity of biased graphene. Nat Photonics 7, 53–59 (2013). doi: 10.1038/nphoton.2012.314

    CrossRef Google Scholar

    [49] Punckt C, Muckel F, Wolff S, Aksay IA, Chavarin CA et al. The effect of degree of reduction on the electrical properties of functionalized graphene sheets. Appl Phys Lett 102, 023114 (2013). doi: 10.1063/1.4775582

    CrossRef Google Scholar

    [50] Marconi S, Giambra MA, Montanaro A, Mišeikis V, Soresi S et al. Photo thermal effect graphene detector featuring 105 Gbit s−1 NRZ and 120 Gbit s−1 PAM4 direct detection. Nat Commun 12, 806 (2021). doi: 10.1038/s41467-021-21137-z

    CrossRef Google Scholar

    [51] Wang YM, Yang SM, Lambada DR, Shafique S. A graphene-silicon Schottky photodetector with graphene oxide interlayer. Sens Actuator A Phys 314, 112232 (2020). doi: 10.1016/j.sna.2020.112232

    CrossRef Google Scholar

    [52] Schuler S, Schall D, Neumaier D, Schwarz B, Watanabe K et al. Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 5, 4758–4763 (2018). doi: 10.1021/acsphotonics.8b01128

    CrossRef Google Scholar

    [53] Lischke S, Peczek A, Morgan JS, Sun K, Steckler D et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat Photonics 15, 925–931 (2021). doi: 10.1038/s41566-021-00893-w

    CrossRef Google Scholar

    [54] Xue Y, Han Y, Tong YY, Yan Z, Wang Y et al. High-performance III-V photodetectors on a monolithic InP/SOI platform. Optica 8, 1204–1209 (2021). doi: 10.1364/OPTICA.431357

    CrossRef Google Scholar

  • Supplementary Information for Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint