Citation: | Yan SQ, Zuo Y, Xiao SS, Oxenløwe LK, Ding YH. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron Adv 5, 210159 (2022). doi: 10.29026/oea.2022.210159 |
[1] | Schwab K. The Fourth Industrial Revolution (Crown Business, New York, 2017). |
[2] | Saltz JS. The need for new processes, methodologies and tools to support big data teams and improve big data project effectiveness. In 2015 IEEE International Conference on Big Data (Big Data) 2066–2071 (IEEE, 2015);http://doi.org/10.1109/BigData.2015.7363988. |
[3] | Haurylau M, Chen GQ, Chen H, Zhang JD, Nelson NA et al. On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Sel Top Quantum Electron 12, 1699–1705 (2006). doi: 10.1109/JSTQE.2006.880615 |
[4] | Chen GQ, Chen H, Haurylau M, Nelson NA, Albonesi DH et al. Predictions of CMOS compatible on-chip optical interconnect. Integration 40, 434–446 (2007). |
[5] | Asakawa K, Sugimoto Y, Nakamura S. Silicon photonics for telecom and data-com applications. Opto-Electron Adv 3, 200011 (2020). |
[6] | Thomson D, Zilkie A, Bowers JE, Komljenovic T, Reed GT et al. Roadmap on silicon photonics. J Opt 18, 073003 (2016). doi: 10.1088/2040-8978/18/7/073003 |
[7] | Schall D, Neumaier D, Mohsin M, Chmielak B, Bolten J et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 1, 781–784 (2014). doi: 10.1021/ph5001605 |
[8] | Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018). doi: 10.1038/s41586-018-0551-y |
[9] | He MB, Xu MY, Ren YX, Jian J, Ruan ZL et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat Photonics 13, 359–364 (2019). doi: 10.1038/s41566-019-0378-6 |
[10] | Takahashi Y, Inui Y, Chihara M, Asano T, Terawaki R et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498, 470–474 (2013). doi: 10.1038/nature12237 |
[11] | Yan SQ, Zhu XL, Frandsen LH, Xiao SS, Mortensen NA et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat Commun 8, 14411 (2017). doi: 10.1038/ncomms14411 |
[12] | Paesani S, Ding YH, Santagati R, Chakhmakhchyan L, Vigliar C et al. Generation and sampling of quantum states of light in a silicon chip. Nat Phys 15, 925–929 (2019). doi: 10.1038/s41567-019-0567-8 |
[13] | Wang JW, Paesani S, Ding YH, Santagati R, Skrzypczyk P et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018). doi: 10.1126/science.aar7053 |
[14] | Casalino M, Coppola G, De La Rue RM, Logan DF. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev 10, 895–921 (2016). doi: 10.1002/lpor.201600065 |
[15] | Michel J, Liu JF, Kimerling LC. High-performance Ge-on-Si photodetectors. Nat Photonics 4, 527–534 (2010). doi: 10.1038/nphoton.2010.157 |
[16] | Salamin Y, Ma P, Baeuerle B, Emboras A, Fedoryshyn Y et al. 100 GHz plasmonic photodetector. ACS Photonics 5, 3291–3297 (2018). doi: 10.1021/acsphotonics.8b00525 |
[17] | Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun 146, 351–355 (2008). doi: 10.1016/j.ssc.2008.02.024 |
[18] | Geim AK, Novoselov KS. The rise of graphene. Nat Mater 6, 183–191 (2007). doi: 10.1038/nmat1849 |
[19] | Xia FN, Mueller T, Lin YM, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nat Nanotechnol 4, 839–843 (2009). doi: 10.1038/nnano.2009.292 |
[20] | Ding YH, Cheng Z, Zhu XL, Yvind K, Dong JJ et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics 9, 317–325 (2020). doi: 10.1515/nanoph-2019-0167 |
[21] | Ma P, Salamin Y, Baeuerle B, Josten A, Heni W et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 6, 154–161 (2019). doi: 10.1021/acsphotonics.8b01234 |
[22] | Guo JS, Li J, Liu CY, Yin YL, Wang WH et al. High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci Appl 9, 29 (2020). doi: 10.1038/s41377-020-0263-6 |
[23] | Wang YL, Zhang Y, Jiang ZB, Deng WT, Zhou D et al. Ultra-compact high-speed polarization division multiplexing optical receiving chip enabled by graphene-on-plasmonic slot waveguide photodetectors. Adv Opt Mater 9, 2001215 (2021). doi: 10.1002/adom.202001215 |
[24] | Veronis G, Fan SH. Modes of subwavelength plasmonic slot waveguides. J Light Technol 25, 2511–2521 (2007). doi: 10.1109/JLT.2007.903544 |
[25] | Yan SQ, Zhu XL, Dong JJ, Ding YH, Xiao SS. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics 9, 1877–1900 (2020). doi: 10.1515/nanoph-2020-0074 |
[26] | Fang YR, Sun MT. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4, e294–e294 (2015). doi: 10.1038/lsa.2015.67 |
[27] | Ma ZZ, Kikunaga K, Wang H, Sun S, Amin R et al. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics 7, 932–940 (2020). doi: 10.1021/acsphotonics.9b01452 |
[28] | Muench JE, Ruocco A, Giambra MA, Miseikis V, Zhang DK et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett 19, 7632–7644 (2019). doi: 10.1021/acs.nanolett.9b02238 |
[29] | Yan SQ, Zuo Y, Xiao SS, Oxenløwe LK, Ding YH. High-performance silicon/graphene photodetector employing double slot structure. in 2021 Conference on Lasers and Electro-Optics 1–2 (Optica Publishing Group, 2021);http://doi.org/10.1364/CLEO_SI.2021.STh5B.2. |
[30] | Datta I, Chae SH, Bhatt GR, Tadayon MA, Li BC et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat Photonics 14, 256–262 (2020). doi: 10.1038/s41566-020-0590-4 |
[31] | Liu YD, Fang HL, Rasmita A, Zhou Y, Li JT et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci Adv 5, eaav4506 (2019). doi: 10.1126/sciadv.aav4506 |
[32] | Mu HR, Liu ZK, Bao XZ, Wan ZC, Liu GY et al. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals. Front Optoelectron 13, 139–148 (2020). doi: 10.1007/s12200-020-1018-y |
[33] | Sun ZP, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat Photonics 10, 227–238 (2016). doi: 10.1038/nphoton.2016.15 |
[34] | Zhong CY, Li JY, Lin HT. Graphene-based all-optical modulators. Front Optoelectron 13, 114–128 (2020). doi: 10.1007/s12200-020-1020-4 |
[35] | Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282 |
[36] | Cheng Z, Cao R, Wei KK, Yao YH, Liu XY et al. 2D materials enabled next-generation integrated optoelectronics: from fabrication to applications. Adv Sci 8, 2003834 (2021). doi: 10.1002/advs.202003834 |
[37] | Yao YH, Cheng Z, Dong JJ, Zhang XL. Performance of integrated optical switches based on 2D materials and beyond. Front Optoelectron 13, 129–138 (2020). doi: 10.1007/s12200-020-1058-3 |
[38] | Ding R, Baehr-Jones T, Liu Y, Bojko R, Witzens J et al. Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt Express 18, 15618–15623 (2010). doi: 10.1364/OE.18.015618 |
[39] | Martínez A, Blasco J, Sanchis P, Galán JV, García-Rupérez J et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett 10, 1506–1511 (2010). doi: 10.1021/nl9041017 |
[40] | Zhang L, Yue Y, Beausoleil RG, Willner AE. Flattened dispersion in silicon slot waveguides. Opt Express 18, 20529–20534 (2010). doi: 10.1364/OE.18.020529 |
[41] | Dell’Olio F, Passaro VMN. Optical sensing by optimized silicon slot waveguides. Opt Express 15, 4977–4993 (2007). doi: 10.1364/OE.15.004977 |
[42] | Wang JQ, Cheng ZZ, Chen ZF, Wan X, Zhu BQ et al. High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 8, 13206–13211 (2016). doi: 10.1039/C6NR03122F |
[43] | Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9, 780–793 (2014). doi: 10.1038/nnano.2014.215 |
[44] | Ding YH, Ou HY, Peucheret C. Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals. Opt Lett 38, 2732–2734 (2013). doi: 10.1364/OL.38.002732 |
[45] | Deng QZ, Liu L, Li XB, Zhou ZP. Strip-slot waveguide mode converter based on symmetric multimode interference. Opt Lett 39, 5665–5668 (2014). doi: 10.1364/OL.39.005665 |
[46] | Liang XL, Sperling BA, Calizo I, Cheng GJ, Hacker CA et al. Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011). doi: 10.1021/nn203377t |
[47] | Yang SJ, Choi S, Ngome FOO, Kim KJ, Choi SY et al. All-dry transfer of graphene film by van der waals interactions. Nano Lett 19, 3590–3596 (2019). doi: 10.1021/acs.nanolett.9b00555 |
[48] | Freitag M, Low T, Xia FN, Avouris P. Photoconductivity of biased graphene. Nat Photonics 7, 53–59 (2013). doi: 10.1038/nphoton.2012.314 |
[49] | Punckt C, Muckel F, Wolff S, Aksay IA, Chavarin CA et al. The effect of degree of reduction on the electrical properties of functionalized graphene sheets. Appl Phys Lett 102, 023114 (2013). doi: 10.1063/1.4775582 |
[50] | Marconi S, Giambra MA, Montanaro A, Mišeikis V, Soresi S et al. Photo thermal effect graphene detector featuring 105 Gbit s−1 NRZ and 120 Gbit s−1 PAM4 direct detection. Nat Commun 12, 806 (2021). doi: 10.1038/s41467-021-21137-z |
[51] | Wang YM, Yang SM, Lambada DR, Shafique S. A graphene-silicon Schottky photodetector with graphene oxide interlayer. Sens Actuator A Phys 314, 112232 (2020). doi: 10.1016/j.sna.2020.112232 |
[52] | Schuler S, Schall D, Neumaier D, Schwarz B, Watanabe K et al. Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 5, 4758–4763 (2018). doi: 10.1021/acsphotonics.8b01128 |
[53] | Lischke S, Peczek A, Morgan JS, Sun K, Steckler D et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat Photonics 15, 925–931 (2021). doi: 10.1038/s41566-021-00893-w |
[54] | Xue Y, Han Y, Tong YY, Yan Z, Wang Y et al. High-performance III-V photodetectors on a monolithic InP/SOI platform. Optica 8, 1204–1209 (2021). doi: 10.1364/OPTICA.431357 |
Supplementary Information for Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth |
(a) 3D schematic of the proposed photodetector based on the double slot structure. The red dashed region indicates the core part of the double slot structure. (b) The normalized x-direction distribution of the electrical field within the cross section of the core part of the double slot structure. The height (h) of the Au is set as 25 nm while the gap (w) width is set as 80 nm. (c) Theoretical calculation results of the graphene absorption (green curve), metallic absorption (red curve) and graphene absorption percentage (blue curve) as a function of w under different waveguide (WG) lengths, when the h is set as 25 nm. (d) The graphene absorption (green curve), metallic absorption (red curve) and graphene absorption percentage (blue curve) as a function of h under different waveguide (WG) lengths, when the w is set as 80 nm.
(a) Microscopic image of the double slot graphene photodetector. (b) SEM image of the zoom-in region of the double slot structure. (c) Measured relative transmittance of the double slot structure with (yellow dots and curve) and without graphene (red dots and curve) coverage.
(a) The measured I-V curve of the proposed device. Blue curve is the case when there is no light illumination, while the red curve is the case when there is light illumination. (b) Zoom-in view of the I-V curve with the bias voltage from 1.4 V to 2.0 V. (c) Zoom-in view of the I-V curve with the bias voltage from −1.9 V to −1.4 V. (d) The relationship between the photocurrent and the bias voltage when the input optical power is 0.386 mW. (e) The responsivity as a function of the input optical power when the applied bias voltage is 1.9 V. (f) The maximum responsivity obtained with different lengths.
The frequency response obtained by VNA (yellow curve) and FB (green curve) for the devices with detection length of (a) 30 μm, (b) 40 μm, and (c) 50 μm. The inset shows both the eye diagrams of the received 10 Gbit/s and 15 Gbit/s optical NRZ signal.
(a) The metallic absorption caused by the metal contact pad as a function of its position. (b) The graphene and metallic absorption coefficients as a function of the gap width (w) of the double slot waveguide using mainstream SOI substrates with different top silicon layer thicknesses. Solid line: 260 nm top silicon layer. Dashed line: 250 nm top silicon layer. Dash-dot line: 220 nm top silicon layer. (c) The absorption variation as a function of the misalignment. The inset figure shows the optical mode distribution when the misalignment is 40 nm. The purple curve represents the variation of graphene absorption while the brown curve represents the variation of metallic absorption. (d) Graphene absorption coefficient as a function of the gap width (w) under different filling materials in the slot when the h is 25 nm.