Citation: | Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058 |
[1] | Garcia M, Edmiston C, Marinov R, Vail A, Gruev V. Bio-inspired color-polarization imager for real-time in situ imaging. Optica 4, 1263–1271 (2017). doi: 10.1364/OPTICA.4.001263 |
[2] | Tyo JS, Goldstein DL, Chenault DB, Shaw JA. Review of passive imaging polarimetry for remote sensing applications. Appl Opt 45, 5453–5469 (2006). doi: 10.1364/AO.45.005453 |
[3] | González NB, Kneer F. Narrow-band full Stokes polarimetry of small structures on the Sun with speckle methods. A&A 480, 265–275 (2008). |
[4] | Hu YQ, Wang XD, Luo XH, Ou XN, Li L et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics 9, 3755–3780 (2020). doi: 10.1515/nanoph-2020-0220 |
[5] | Pu MB, Guo YH, Ma XL, Li X, Luo XG. Methodologies for on-demand dispersion engineering of waves in metasurfaces. Adv Opt Mater 7, 1801376 (2019). doi: 10.1002/adom.201801376 |
[6] | Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147 |
[7] | Luo XG. Metamaterials and metasurfaces. Adv Opt Mater 7, 1900885 (2019). doi: 10.1002/adom.201900885 |
[8] | Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). |
[9] | Xie X, Pu MB, Jin JJ, Xu MF, Guo YH et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902 |
[10] | Guo YH, Zhang SC, Pu MB, He Q, Jin JJ et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[11] | Xie X, Li X, Pu MB, Ma XL, Liu KP et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv Funct Mater 28, 1706673 (2018). doi: 10.1002/adfm.201706673 |
[12] | Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[13] | Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030 |
[14] | Anand V, Han M, Maksimovic J, Ng SH, Katkus T et al. Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm. Opto-Electron Sci 1, 210006 (2022). doi: 10.29026/oes.2022.210006 |
[15] | Tang DL, Shao ZL, Zhou YJ, Lei Y, Chen L et al. Simultaneous Surface Display and Holography Enabled by Flat Liquid Crystal Elements. Laser Photonics Rev 16, 2100491 (2022). |
[16] | Luo XG. Metasurface waves in digital optics. J Phys Photonics 2, 041003 (2020). doi: 10.1088/2515-7647/ab9bf8 |
[17] | Luo XG, Zhang F, Pu MB, and Xu MF. Catenary optics: A perspective of applications and challenges. J Phys: Condens Matter 34, 381501 (2022). |
[18] | Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022). |
[19] | Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014 |
[20] | Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015). doi: 10.1364/OPTICA.2.000716 |
[21] | Chen WT, Török P, Foreman MR, Liao CY, Tsai WY et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016). doi: 10.1088/0957-4484/27/22/224002 |
[22] | Ding F, Pors A, Chen YT, Zenin VA, Bozhevolnyi SI. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics 4, 943–949 (2017). doi: 10.1021/acsphotonics.6b01046 |
[23] | Zhang HF, Zhang XQ, Xu Q, Tian CX, Wang Q et al. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Adv Opt Mater 6, 1700773 (2018). doi: 10.1002/adom.201700773 |
[24] | Xu MF, He Q, Pu MB, Zhang F, Li L et al. Emerging Long‐Range Order from a Freeform Disordered Metasurface. Adv Mater 32, 2108709 (2022). doi: 10.1103/PhysRevLett.118.113901 |
[25] | Liu MZ, Huo PC, Zhu WQ, Zhang C, Zhang S et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat Commun 12, 2230 (2021). doi: 10.1038/s41467-021-22462-z |
[26] | Mueller JPB, Leosson K, Capasso F. Ultracompact metasurface in-line polarimeter. Optica 3, 42–47 (2016). doi: 10.1364/OPTICA.3.000042 |
[27] | Lee K, Yun H, Mun SE, Lee GY, Sung J et al. Ultracompact broadband plasmonic polarimeter. Laser Photonics Rev 12, 1700297 (2018). doi: 10.1002/lpor.201700297 |
[28] | Li LF, Wang JZ, Kang L, Liu W, Yu L et al. Monolithic full-stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene-silicon photodetector. ACS Nano 14, 16634–16642 (2020). doi: 10.1021/acsnano.0c00724 |
[29] | Zhang C, Hu JP, Dong YG, Zeng AJ, Huang HJ et al. High efficiency all-dielectric pixelated metasurface for near-infrared full-Stokes polarization detection. Photonics Res 9, 583–589 (2021). doi: 10.1364/PRJ.415342 |
[30] | Yan C, Li X, Pu MB, Ma XL, Zhang F et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Appl Phys Lett 114, 161904 (2019). doi: 10.1063/1.5091475 |
[31] | Rubin NA, D'Aversa G, Chevalier P, Shi ZJ, Chen WT et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839 |
[32] | Dai YM, Zhang YQ, Xie YP, Wang DP, Wang XY et al. Multifunctional geometric phase optical element for high-efficiency full Stokes imaging polarimetry. Photonics Res 7, 1066–1074 (2019). doi: 10.1364/PRJ.7.001066 |
[33] | Arbabi E, Kamali SM, Arbabi A, Faraon A. Full-stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics 5, 3132–3140 (2018). doi: 10.1021/acsphotonics.8b00362 |
[34] | Yang ZY, Wang ZK, Wang YX, Feng X, Zhao M et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat Commun 9, 4607 (2018). doi: 10.1038/s41467-018-07056-6 |
[35] | Wang YX, Wang ZK, Feng X, Zhao M, Zeng C et al. Dielectric metalens-based Hartmann–Shack array for a high-efficiency optical multiparameter detection system. Photonics Res 8, 04000482 (2020). |
[36] | Zhang YX, Jin JJ, Pu MB, He Q, Guo YH et al. Full stokes polarimetry for wide-angle incident light. Phys Status Solidi 14, 2000044 (2020). |
[37] | Wu PC, Chen JW, Yin CW, Lai YC, Chung TL et al. Visible metasurfaces for on-chip polarimetry. ACS Photonics 5, 2568–2573 (2018). doi: 10.1021/acsphotonics.7b01527 |
[38] | Basiri A, Chen XH, Bai J, Amrollahi P, Carpenter J et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci Appl 8, 78 (2019). doi: 10.1038/s41377-019-0184-4 |
[39] | Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494 |
[40] | Khorasaninejad M, Zhu AY, Roques-Carmes C, Chen WT, Oh J et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett 16, 7229–7234 (2016). doi: 10.1021/acs.nanolett.6b03626 |
[41] | Dou KH, Xie X, Pu MB, Li X, Ma XL et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020). |
[42] | Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6 |
[43] | Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4 |
[44] | Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10, 355 (2019). doi: 10.1038/s41467-019-08305-y |
[45] | Fan ZB, Qiu HY, Zhang HL, Pang XN, Zhou LD et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl 8, 67 (2019). doi: 10.1038/s41377-019-0178-2 |
[46] | Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater 5, 604–620 (2020). doi: 10.1038/s41578-020-0203-3 |
[47] | Ou K, Yu FL, Li GH, Wang WJ, Miroshnichenko AE et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci Adv 6, eabc0711 (2020). doi: 10.1126/sciadv.abc0711 |
[48] | Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). |
[49] | Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017). doi: 10.1364/OPTICA.4.000625 |
[50] | Yang ZY, Albrow-Owen T, Cai WW, Hasan T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021). doi: 10.1126/science.abe0722 |
[51] | Feng X, Wang YX, Wei YX, Hu T, Xiao SY et al. Optical multiparameter detection system based on a broadband achromatic metalens array. Adv Opt Mater 9, 2100772 (2021). doi: 10.1002/adom.202100772 |
[52] | Zhang F, Pu MB, Guo YH, Ma XL, Li X et al. Synthetic vector optical fields with spatial and temporal tunability. Sci China Phys Mech Astron 65, 254211 (2022). |
[53] | Wang SM, Wu PC, Su VC, Lai YC, Chu CH et al. Broadband achromatic optical metasurface devices. Nat Commun 8, 187 (2017). doi: 10.1038/s41467-017-00166-7 |
[54] | Wang YJ, Chen QM, Yang WH, Ji ZH, Jin LM et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9 |
[55] | Shrestha S, Overvig AC, Lu M, Stein A, Yu NF. Broadband achromatic dielectric metalenses. Light Sci Appl 7, 85 (2018). doi: 10.1038/s41377-018-0078-x |
Supplementary information for Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization |
The schematic of the continuous broadband achromatic imaging polarimeter. The device is composed of 2×3 sub-arrays, each of which can be regarded as an achromatic focusing lens under a specific polarization basis. The focal spots remain at the same plane under different incident lights in 9-12 μm. The schematic in the white frame on the right shows the principle of polarization-dependent phase optimization.
Optical responses of the unit cells. (a) Schematic illustration of the subwavelength structures. (b) Phase response of the database to X-polarization at discrete sampling wavelengths. (c) The amplitude and phase profiles of the unit cells (l1, w1, l2, w2, l3, w3) are marked with white pentagrams in Fig. 2(b). The phase profiles have approximately linear relations with wavelength. The inset is the magnetic energy density profile for the unit cell with l1 and w1 at wavelengths 9, 9.5, 10, 10.5, 11, 11.5, and 12 μm. The black line is the outline of the unit cell. The magnetic energy is strongly concentrated in the dielectric nanopillar.
Simulation results of X- and Y-polarization-sensitive metalenses designed with (a) polarization-dependent optimization method versus (b) conventional design method for X-polarized incident light. The upper diagram shows the intensity distribution in the x-z plane, and the white dashed line is the position of the focal plane. The middle figure is the focal plane intensity profile. The lower part is the normalized intensity profile along the white line.
Characterization of the polarimeter. (a) Schematic diagram of the process of fabricating polarimeter. (b) Local SEM image of the polarimeter. The inset is an oblique view of the part of the polarimeter, revealing the high aspect ratio of nanopillars. (c) The optical setup for polarimetry. Optical elements: linear polarizer (LP), quarter-wave plate (QWP), metasurface (MS).
Optical Performances of the broadband achromatic metalenses for linear polarization. (a) The X and Y polarization-sensitive metalenses measured intensity distributions in the x-z plane at sampled incident wavelengths for 9.3, 9.6, 10.3, and 10.6 μm under X polarized incidence. The white dashed lines are the position of the focal plane. (b) The measured focal plane intensity distributions. (c) The extracted focal lengths of the simulation and experiment are a function of wavelength, and all focal lengths are around the target 1 cm. (d) The measured and simulated FWHMs of the focal spots versus the sampled wavelengths. (e) The measured and simulated focusing efficiencies. The blue solids represent the corresponding theoretical results at 9, 9.3, 9.5, 9.6, 10, 10.3, 10.5, 10.6, 11, 11.5, and 12 μm, and the red solids represent the experimental results at 9.3, 9.6, 10.3, and 10.6 μm. Exp.: experiment. Sim.: simulation.
Characterization results of the polarimeter. Measured intensity distributions at the focal plane and normalized Stokes parameters for different incident polarizations (shown with black arrows) with wavelengths of (a) 9.3 μm, (b) 9.6 μm, (c) 10.3 μm, and (d) 10.6 μm. The theoretically normalized Stokes parameters for X, Y, A, B, L, R, 30º linear polarization and elliptically polarization (the ratio of the major axis to the minor axis is
Polarization imaging. (a) Polarization imaging of the polarization mask. (b) Theoretical results (top) and experimental results (bottom) of Stokes parameters S0–S3 corresponding to (a). (c) Polarization imaging of the resolution target. (d) Theoretical results (top) and experimental results (bottom) of Stokes parameters S0–S3 corresponding to (c).