Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058
Citation: Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058

Original Article Open Access

Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization

More Information
  • Imaging polarimetry is one of the most widely used analytical technologies for object detection and analysis. To date, most metasurface-based polarimetry techniques are severely limited by narrow operating bandwidths and inevitable crosstalk, leading to detrimental effects on imaging quality and measurement accuracy. Here, we propose a crosstalk-free broadband achromatic full Stokes imaging polarimeter consisting of polarization-sensitive dielectric metalenses, implemented by the principle of polarization-dependent phase optimization. Compared with the single-polarization optimization method, the average crosstalk has been reduced over three times under incident light with arbitrary polarization ranging from 9 μm to 12 μm, which guarantees the measurement of the polarization state more precisely. The experimental results indicate that the designed polarization-sensitive metalenses can effectively eliminate the chromatic aberration with polarization selectivity and negligible crosstalk. The measured average relative errors are 7.08%, 8.62%, 7.15%, and 7.59% at 9.3, 9.6, 10.3, and 10.6 μm, respectively. Simultaneously, the broadband full polarization imaging capability of the device is also verified. This work is expected to have potential applications in wavefront detection, remote sensing, light-field imaging, and so forth.
  • 加载中
  • [1] Garcia M, Edmiston C, Marinov R, Vail A, Gruev V. Bio-inspired color-polarization imager for real-time in situ imaging. Optica 4, 1263–1271 (2017). doi: 10.1364/OPTICA.4.001263

    CrossRef Google Scholar

    [2] Tyo JS, Goldstein DL, Chenault DB, Shaw JA. Review of passive imaging polarimetry for remote sensing applications. Appl Opt 45, 5453–5469 (2006). doi: 10.1364/AO.45.005453

    CrossRef Google Scholar

    [3] González NB, Kneer F. Narrow-band full Stokes polarimetry of small structures on the Sun with speckle methods. A&A 480, 265–275 (2008).

    Google Scholar

    [4] Hu YQ, Wang XD, Luo XH, Ou XN, Li L et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics 9, 3755–3780 (2020). doi: 10.1515/nanoph-2020-0220

    CrossRef Google Scholar

    [5] Pu MB, Guo YH, Ma XL, Li X, Luo XG. Methodologies for on-demand dispersion engineering of waves in metasurfaces. Adv Opt Mater 7, 1801376 (2019). doi: 10.1002/adom.201801376

    CrossRef Google Scholar

    [6] Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [7] Luo XG. Metamaterials and metasurfaces. Adv Opt Mater 7, 1900885 (2019). doi: 10.1002/adom.201900885

    CrossRef Google Scholar

    [8] Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015).

    Google Scholar

    [9] Xie X, Pu MB, Jin JJ, Xu MF, Guo YH et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [10] Guo YH, Zhang SC, Pu MB, He Q, Jin JJ et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [11] Xie X, Li X, Pu MB, Ma XL, Liu KP et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv Funct Mater 28, 1706673 (2018). doi: 10.1002/adfm.201706673

    CrossRef Google Scholar

    [12] Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [13] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [14] Anand V, Han M, Maksimovic J, Ng SH, Katkus T et al. Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm. Opto-Electron Sci 1, 210006 (2022). doi: 10.29026/oes.2022.210006

    CrossRef Google Scholar

    [15] Tang DL, Shao ZL, Zhou YJ, Lei Y, Chen L et al. Simultaneous Surface Display and Holography Enabled by Flat Liquid Crystal Elements. Laser Photonics Rev 16, 2100491 (2022).

    Google Scholar

    [16] Luo XG. Metasurface waves in digital optics. J Phys Photonics 2, 041003 (2020). doi: 10.1088/2515-7647/ab9bf8

    CrossRef Google Scholar

    [17] Luo XG, Zhang F, Pu MB, and Xu MF. Catenary optics: A perspective of applications and challenges. J Phys: Condens Matter 34, 381501 (2022).

    Google Scholar

    [18] Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022).

    Google Scholar

    [19] Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [20] Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015). doi: 10.1364/OPTICA.2.000716

    CrossRef Google Scholar

    [21] Chen WT, Török P, Foreman MR, Liao CY, Tsai WY et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016). doi: 10.1088/0957-4484/27/22/224002

    CrossRef Google Scholar

    [22] Ding F, Pors A, Chen YT, Zenin VA, Bozhevolnyi SI. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics 4, 943–949 (2017). doi: 10.1021/acsphotonics.6b01046

    CrossRef Google Scholar

    [23] Zhang HF, Zhang XQ, Xu Q, Tian CX, Wang Q et al. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Adv Opt Mater 6, 1700773 (2018). doi: 10.1002/adom.201700773

    CrossRef Google Scholar

    [24] Xu MF, He Q, Pu MB, Zhang F, Li L et al. Emerging Long‐Range Order from a Freeform Disordered Metasurface. Adv Mater 32, 2108709 (2022). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [25] Liu MZ, Huo PC, Zhu WQ, Zhang C, Zhang S et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat Commun 12, 2230 (2021). doi: 10.1038/s41467-021-22462-z

    CrossRef Google Scholar

    [26] Mueller JPB, Leosson K, Capasso F. Ultracompact metasurface in-line polarimeter. Optica 3, 42–47 (2016). doi: 10.1364/OPTICA.3.000042

    CrossRef Google Scholar

    [27] Lee K, Yun H, Mun SE, Lee GY, Sung J et al. Ultracompact broadband plasmonic polarimeter. Laser Photonics Rev 12, 1700297 (2018). doi: 10.1002/lpor.201700297

    CrossRef Google Scholar

    [28] Li LF, Wang JZ, Kang L, Liu W, Yu L et al. Monolithic full-stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene-silicon photodetector. ACS Nano 14, 16634–16642 (2020). doi: 10.1021/acsnano.0c00724

    CrossRef Google Scholar

    [29] Zhang C, Hu JP, Dong YG, Zeng AJ, Huang HJ et al. High efficiency all-dielectric pixelated metasurface for near-infrared full-Stokes polarization detection. Photonics Res 9, 583–589 (2021). doi: 10.1364/PRJ.415342

    CrossRef Google Scholar

    [30] Yan C, Li X, Pu MB, Ma XL, Zhang F et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Appl Phys Lett 114, 161904 (2019). doi: 10.1063/1.5091475

    CrossRef Google Scholar

    [31] Rubin NA, D'Aversa G, Chevalier P, Shi ZJ, Chen WT et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839

    CrossRef Google Scholar

    [32] Dai YM, Zhang YQ, Xie YP, Wang DP, Wang XY et al. Multifunctional geometric phase optical element for high-efficiency full Stokes imaging polarimetry. Photonics Res 7, 1066–1074 (2019). doi: 10.1364/PRJ.7.001066

    CrossRef Google Scholar

    [33] Arbabi E, Kamali SM, Arbabi A, Faraon A. Full-stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics 5, 3132–3140 (2018). doi: 10.1021/acsphotonics.8b00362

    CrossRef Google Scholar

    [34] Yang ZY, Wang ZK, Wang YX, Feng X, Zhao M et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat Commun 9, 4607 (2018). doi: 10.1038/s41467-018-07056-6

    CrossRef Google Scholar

    [35] Wang YX, Wang ZK, Feng X, Zhao M, Zeng C et al. Dielectric metalens-based Hartmann–Shack array for a high-efficiency optical multiparameter detection system. Photonics Res 8, 04000482 (2020).

    Google Scholar

    [36] Zhang YX, Jin JJ, Pu MB, He Q, Guo YH et al. Full stokes polarimetry for wide-angle incident light. Phys Status Solidi 14, 2000044 (2020).

    Google Scholar

    [37] Wu PC, Chen JW, Yin CW, Lai YC, Chung TL et al. Visible metasurfaces for on-chip polarimetry. ACS Photonics 5, 2568–2573 (2018). doi: 10.1021/acsphotonics.7b01527

    CrossRef Google Scholar

    [38] Basiri A, Chen XH, Bai J, Amrollahi P, Carpenter J et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci Appl 8, 78 (2019). doi: 10.1038/s41377-019-0184-4

    CrossRef Google Scholar

    [39] Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494

    CrossRef Google Scholar

    [40] Khorasaninejad M, Zhu AY, Roques-Carmes C, Chen WT, Oh J et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett 16, 7229–7234 (2016). doi: 10.1021/acs.nanolett.6b03626

    CrossRef Google Scholar

    [41] Dou KH, Xie X, Pu MB, Li X, Ma XL et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020).

    Google Scholar

    [42] Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [43] Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [44] Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10, 355 (2019). doi: 10.1038/s41467-019-08305-y

    CrossRef Google Scholar

    [45] Fan ZB, Qiu HY, Zhang HL, Pang XN, Zhou LD et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl 8, 67 (2019). doi: 10.1038/s41377-019-0178-2

    CrossRef Google Scholar

    [46] Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater 5, 604–620 (2020). doi: 10.1038/s41578-020-0203-3

    CrossRef Google Scholar

    [47] Ou K, Yu FL, Li GH, Wang WJ, Miroshnichenko AE et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci Adv 6, eabc0711 (2020). doi: 10.1126/sciadv.abc0711

    CrossRef Google Scholar

    [48] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021).

    Google Scholar

    [49] Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017). doi: 10.1364/OPTICA.4.000625

    CrossRef Google Scholar

    [50] Yang ZY, Albrow-Owen T, Cai WW, Hasan T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021). doi: 10.1126/science.abe0722

    CrossRef Google Scholar

    [51] Feng X, Wang YX, Wei YX, Hu T, Xiao SY et al. Optical multiparameter detection system based on a broadband achromatic metalens array. Adv Opt Mater 9, 2100772 (2021). doi: 10.1002/adom.202100772

    CrossRef Google Scholar

    [52] Zhang F, Pu MB, Guo YH, Ma XL, Li X et al. Synthetic vector optical fields with spatial and temporal tunability. Sci China Phys Mech Astron 65, 254211 (2022).

    Google Scholar

    [53] Wang SM, Wu PC, Su VC, Lai YC, Chu CH et al. Broadband achromatic optical metasurface devices. Nat Commun 8, 187 (2017). doi: 10.1038/s41467-017-00166-7

    CrossRef Google Scholar

    [54] Wang YJ, Chen QM, Yang WH, Ji ZH, Jin LM et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9

    CrossRef Google Scholar

    [55] Shrestha S, Overvig AC, Lu M, Stein A, Yu NF. Broadband achromatic dielectric metalenses. Light Sci Appl 7, 85 (2018). doi: 10.1038/s41377-018-0078-x

    CrossRef Google Scholar

  • Supplementary information for Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(9822) PDF downloads(1322) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint