Dang LY, Huang LG, Shi LL, Li FH, Yin GL et al. Ultra-high spectral purity laser derived from weak external distributed perturbation. Opto-Electron Adv 6, 210149 (2023). doi: 10.29026/oea.2023.210149
Citation: Dang LY, Huang LG, Shi LL, Li FH, Yin GL et al. Ultra-high spectral purity laser derived from weak external distributed perturbation. Opto-Electron Adv 6, 210149 (2023). doi: 10.29026/oea.2023.210149

Article Open Access

Ultra-high spectral purity laser derived from weak external distributed perturbation

More Information
  • These authors contributed equally to this work

  • *Corresponding author: T Zhu, E-mail: zhutao@cqu.edu.cn
  • Ultra-high spectral purity lasers are of considerable research interests in numerous fields such as coherent optical communication, microwave photonics, distributed optical fiber sensing, gravitational wave detection, optical clock, and so on. Herein, to deeply purify laser spectrum with compact size under normal condition, we propose a novel and practical idea to effectively suppress the spontaneous radiation of the laser cavity through weak external distributed perturbation. Subsequently, a laser configuration consisting of a main lasing cavity and an external distributed feedback cavity is proposed. The feedback signal with continuous spatio-temporal phase transition controlled by a distributed feedback structure is injected into the main cavity, which can deeply suppress the coupling rate from the spontaneous radiation to the stimulated emission and extremely purify the laser spectrum. Eventually, an ultra-narrow linewidth on-chip laser system with a side mode suppression ratio greater than 80 dB, an output linewidth of 10 Hz, and a relative intensity noise less than -150 dB/Hz is successfully obtained under normal conditions. The proposed concept in this work provides a new perspective for extreme regulation of laser parameters by using weak external distributed perturbation, which can be valid for various gain-type lasers with wide wavelength bands.
  • 加载中
  • [1] Roos C, Zeiger T, Rohde H, Nägerl HC, Eschner J et al. Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys Rev Lett 83, 4713–4716 (1999). doi: 10.1103/PhysRevLett.83.4713

    CrossRef Google Scholar

    [2] Coddington I, Swann WC, Lorini L, Bergquist JC, Le Coq Y et al. Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter. Nat Photonics 1, 283–287 (2007). doi: 10.1038/nphoton.2007.71

    CrossRef Google Scholar

    [3] Ip E, Lau APT, Barros DJF, Kahn JM. Coherent detection in optical fiber systems. Opt Express 16, 753–791 (2008). doi: 10.1364/OE.16.000753

    CrossRef Google Scholar

    [4] Wang C, Chen QY, Chen HL, Liu J, Song Y F et al. Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electron Adv 4, 200032 (2021). doi: 10.29026/oea.2021.200032

    CrossRef Google Scholar

    [5] Kwee P, Bogan C, Danzmann K, Frede M, Kim H et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO. Opt Express 20, 10617–10634 (2012). doi: 10.1364/OE.20.010617

    CrossRef Google Scholar

    [6] Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008). doi: 10.1038/nature07279

    CrossRef Google Scholar

    [7] Passy R, Gisin N, von der Weid JP, Gilgen HH. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources. J Lightw Technol 12, 1622–1630 (1994). doi: 10.1109/50.320946

    CrossRef Google Scholar

    [8] Claus D, Alekseenko I, Grabherr M, Pedrini G, Hibst R. Snap-shot topography measurement via dual-VCSEL and dual wavelength digital holographic interferometry. Light Adv Manuf 2, 29 (2021). doi: 10.37188/lam.2021.029

    CrossRef Google Scholar

    [9] Preu S, Döhler GH, Malzer S, Wang LJ, Gossard AC. Tunable, continuous-wave Terahertz photomixer sources and applications. J Appl Phys 109, 061301 (2011). doi: 10.1063/1.3552291

    CrossRef Google Scholar

    [10] Yu CX, Augst SJ, Redmond SM, Goldizen KC, Murphy DV et al. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt Lett 36, 2686–2688 (2011). doi: 10.1364/OL.36.002686

    CrossRef Google Scholar

    [11] Ma YX, Wang XL, Leng JY, Xiao H, Dong XL et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique. Opt Lett 36, 951–953 (2011). doi: 10.1364/OL.36.000951

    CrossRef Google Scholar

    [12] Ludlow AD, Boyd MM, Ye J, Peik E, Schmidt PO. Optical atomic clocks. Rev Mod Phys 87, 637–701 (2015). doi: 10.1103/RevModPhys.87.637

    CrossRef Google Scholar

    [13] Barwood GP, Huang G, Klein HA, Johnson LAM, King SA et al. Agreement between two 88Sr+ optical clocks to 4 parts in 1017. Phys Rev A 89, 050501 (2014). doi: 10.1103/PhysRevA.89.050501

    CrossRef Google Scholar

    [14] Cygan A, Lisak D, Morzyński P, Bober M, Zawada M et al. Cavity mode-width spectroscopy with widely tunable ultra narrow laser. Opt Express 21, 29744–29754 (2013). doi: 10.1364/OE.21.029744

    CrossRef Google Scholar

    [15] Stern B, Ji XC, Dutt A, Lipson M. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt Lett 42, 4541–4544 (2017). doi: 10.1364/OL.42.004541

    CrossRef Google Scholar

    [16] Spirin VV, Escobedo JLB, Korobko DA, Mégret P, Fotiadi AA. Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator. Opt Express 28, 478–484 (2020). doi: 10.1364/OE.28.000478

    CrossRef Google Scholar

    [17] Kessler T, Hagemann C, Grebing C, Legero T, Sterr U et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat Photonics 6, 687–692 (2012). doi: 10.1038/nphoton.2012.217

    CrossRef Google Scholar

    [18] Zhang AQ, Feng XH, Wan MG, Li ZH, Guan BO. Tunable single frequency fiber laser based on FP-LD injection locking. Opt Express 21, 12874–12880 (2013). doi: 10.1364/OE.21.012874

    CrossRef Google Scholar

    [19] Brunner D, Luna R, Latorre ADI, Porte X, Fischer I. Semiconductor laser linewidth reduction by six orders of magnitude via delayed optical feedback. Opt Lett 42, 163–166 (2017). doi: 10.1364/OL.42.000163

    CrossRef Google Scholar

    [20] Zhao Y, Peng Y, Yang T, Li Y, Wang Q et al. External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry–Perot cavity optical feedback. Opt Lett 36, 34–36 (2011). doi: 10.1364/OL.36.000034

    CrossRef Google Scholar

    [21] Lewoczko-Adamczyk W, Pyrlik C, Häger J, Schwertfeger S, Wicht A et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity. Opt Express 23, 9705–9709 (2015). doi: 10.1364/OE.23.009705

    CrossRef Google Scholar

    [22] Komljenovic T, Srinivasan S, Norberg E, Davenport M, Fish G et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quantum Electron 21, 1501909 (2015).

    Google Scholar

    [23] Ludlow AD, Huang X, Notcutt M, Zanon-Willette T, Foreman SM et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10-15. Opt Lett 32, 641–643 (2007). doi: 10.1364/OL.32.000641

    CrossRef Google Scholar

    [24] Webster SA, Oxborrow M, Gill P. Vibration insensitive optical cavity. Phys Rev A 75, 011801 (2007). doi: 10.1103/PhysRevA.75.011801

    CrossRef Google Scholar

    [25] Millo J, Magalhães DV, Mandache C, Le Coq Y, English EML et al. Ultrastable lasers based on vibration insensitive cavities. Phys Rev A 79, 053829 (2009). doi: 10.1103/PhysRevA.79.053829

    CrossRef Google Scholar

    [26] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys Rev Lett 93, 250602 (2004). doi: 10.1103/PhysRevLett.93.250602

    CrossRef Google Scholar

    [27] Jiang YY, Ludlow AD, Lemke ND, Fox RW, Sherman JA et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat Photonics 5, 158–161 (2011). doi: 10.1038/nphoton.2010.313

    CrossRef Google Scholar

    [28] Nicolodi D, Argence B, Zhang W, Le Targat R, Santarelli G et al. Spectral purity transfer between optical wavelengths at the 10−18 level. Nat Photonics 8, 219–223 (2014). doi: 10.1038/nphoton.2013.361

    CrossRef Google Scholar

    [29] Huang H, Duan J, Dong B, Norman J, Jung D et al. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photonics 5, 016103 (2020). doi: 10.1063/1.5120029

    CrossRef Google Scholar

    [30] Liang W, Ilchenko VS, Eliyahu D, Savchenkov AA, Matsko AB et al. Ultralow noise miniature external cavity semiconductor laser. Nat Commun 6, 7371 (2015). doi: 10.1038/ncomms8371

    CrossRef Google Scholar

    [31] Jin W, Yang QF, Chang L, Shen BQ, Wang HM et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat Photonics 15, 346–353 (2021). doi: 10.1038/s41566-021-00761-7

    CrossRef Google Scholar

    [32] Wong YL, Carroll JE. A travelling-wave rate equation analysis for semiconductor lasers. Solid State Electron 30, 13–19 (1987). doi: 10.1016/0038-1101(87)90024-4

    CrossRef Google Scholar

    [33] Cassidy DT. Comparison of rate-equation and Fabry-Perot approaches to modeling a diode laser. Appl Opt 22, 3321–3326 (1983). doi: 10.1364/AO.22.003321

    CrossRef Google Scholar

    [34] Lau EK, Lakhani A, Tucker RS, Wu MC. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt Express 17, 7790–7799 (2009). doi: 10.1364/OE.17.007790

    CrossRef Google Scholar

    [35] Li FH, Lan TY, Huang LG, Ikechukwu IP, Liu WM et al. Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide. Opto-Electron Adv 2, 190012 (2019). doi: 10.29026/oea.2019.190012

    CrossRef Google Scholar

    [36] Henry CH. Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron 18, 259–264 (1982). doi: 10.1109/JQE.1982.1071522

    CrossRef Google Scholar

    [37] Li H, Abraham NB. Power spectrum of frequency noise of semiconductor lasers with optical feedback from a high-finesse resonator. Appl Phys Lett 53, 2257–2259 (1988). doi: 10.1063/1.100271

    CrossRef Google Scholar

    [38] Laurent P, Clairon A, Breant C. Frequency noise analysis of optically self-locked diode lasers. IEEE J Quantum Electron 25, 1131–1142 (1989). doi: 10.1109/3.29238

    CrossRef Google Scholar

    [39] Huang X, Zhao QL, Lin W, Li C, Yang CS et al. Linewidth suppression mechanism of self-injection locked single-frequency fiber laser. Opt Express 24, 18907–18916 (2016). doi: 10.1364/OE.24.018907

    CrossRef Google Scholar

    [40] Lim J, Savchenkov AA, Dale E, Liang W, Eliyahu D et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat Commun 8, 8 (2017). doi: 10.1038/s41467-017-00021-9

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint