Citation: | Dang LY, Huang LG, Shi LL, Li FH, Yin GL et al. Ultra-high spectral purity laser derived from weak external distributed perturbation. Opto-Electron Adv 6, 210149 (2023). doi: 10.29026/oea.2023.210149 |
[1] | Roos C, Zeiger T, Rohde H, Nägerl HC, Eschner J et al. Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys Rev Lett 83, 4713–4716 (1999). doi: 10.1103/PhysRevLett.83.4713 |
[2] | Coddington I, Swann WC, Lorini L, Bergquist JC, Le Coq Y et al. Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter. Nat Photonics 1, 283–287 (2007). doi: 10.1038/nphoton.2007.71 |
[3] | Ip E, Lau APT, Barros DJF, Kahn JM. Coherent detection in optical fiber systems. Opt Express 16, 753–791 (2008). doi: 10.1364/OE.16.000753 |
[4] | Wang C, Chen QY, Chen HL, Liu J, Song Y F et al. Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electron Adv 4, 200032 (2021). doi: 10.29026/oea.2021.200032 |
[5] | Kwee P, Bogan C, Danzmann K, Frede M, Kim H et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO. Opt Express 20, 10617–10634 (2012). doi: 10.1364/OE.20.010617 |
[6] | Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008). doi: 10.1038/nature07279 |
[7] | Passy R, Gisin N, von der Weid JP, Gilgen HH. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources. J Lightw Technol 12, 1622–1630 (1994). doi: 10.1109/50.320946 |
[8] | Claus D, Alekseenko I, Grabherr M, Pedrini G, Hibst R. Snap-shot topography measurement via dual-VCSEL and dual wavelength digital holographic interferometry. Light Adv Manuf 2, 29 (2021). doi: 10.37188/lam.2021.029 |
[9] | Preu S, Döhler GH, Malzer S, Wang LJ, Gossard AC. Tunable, continuous-wave Terahertz photomixer sources and applications. J Appl Phys 109, 061301 (2011). doi: 10.1063/1.3552291 |
[10] | Yu CX, Augst SJ, Redmond SM, Goldizen KC, Murphy DV et al. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt Lett 36, 2686–2688 (2011). doi: 10.1364/OL.36.002686 |
[11] | Ma YX, Wang XL, Leng JY, Xiao H, Dong XL et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique. Opt Lett 36, 951–953 (2011). doi: 10.1364/OL.36.000951 |
[12] | Ludlow AD, Boyd MM, Ye J, Peik E, Schmidt PO. Optical atomic clocks. Rev Mod Phys 87, 637–701 (2015). doi: 10.1103/RevModPhys.87.637 |
[13] | Barwood GP, Huang G, Klein HA, Johnson LAM, King SA et al. Agreement between two 88Sr+ optical clocks to 4 parts in 1017. Phys Rev A 89, 050501 (2014). doi: 10.1103/PhysRevA.89.050501 |
[14] | Cygan A, Lisak D, Morzyński P, Bober M, Zawada M et al. Cavity mode-width spectroscopy with widely tunable ultra narrow laser. Opt Express 21, 29744–29754 (2013). doi: 10.1364/OE.21.029744 |
[15] | Stern B, Ji XC, Dutt A, Lipson M. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt Lett 42, 4541–4544 (2017). doi: 10.1364/OL.42.004541 |
[16] | Spirin VV, Escobedo JLB, Korobko DA, Mégret P, Fotiadi AA. Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator. Opt Express 28, 478–484 (2020). doi: 10.1364/OE.28.000478 |
[17] | Kessler T, Hagemann C, Grebing C, Legero T, Sterr U et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat Photonics 6, 687–692 (2012). doi: 10.1038/nphoton.2012.217 |
[18] | Zhang AQ, Feng XH, Wan MG, Li ZH, Guan BO. Tunable single frequency fiber laser based on FP-LD injection locking. Opt Express 21, 12874–12880 (2013). doi: 10.1364/OE.21.012874 |
[19] | Brunner D, Luna R, Latorre ADI, Porte X, Fischer I. Semiconductor laser linewidth reduction by six orders of magnitude via delayed optical feedback. Opt Lett 42, 163–166 (2017). doi: 10.1364/OL.42.000163 |
[20] | Zhao Y, Peng Y, Yang T, Li Y, Wang Q et al. External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry–Perot cavity optical feedback. Opt Lett 36, 34–36 (2011). doi: 10.1364/OL.36.000034 |
[21] | Lewoczko-Adamczyk W, Pyrlik C, Häger J, Schwertfeger S, Wicht A et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity. Opt Express 23, 9705–9709 (2015). doi: 10.1364/OE.23.009705 |
[22] | Komljenovic T, Srinivasan S, Norberg E, Davenport M, Fish G et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quantum Electron 21, 1501909 (2015). |
[23] | Ludlow AD, Huang X, Notcutt M, Zanon-Willette T, Foreman SM et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10-15. Opt Lett 32, 641–643 (2007). doi: 10.1364/OL.32.000641 |
[24] | Webster SA, Oxborrow M, Gill P. Vibration insensitive optical cavity. Phys Rev A 75, 011801 (2007). doi: 10.1103/PhysRevA.75.011801 |
[25] | Millo J, Magalhães DV, Mandache C, Le Coq Y, English EML et al. Ultrastable lasers based on vibration insensitive cavities. Phys Rev A 79, 053829 (2009). doi: 10.1103/PhysRevA.79.053829 |
[26] | Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys Rev Lett 93, 250602 (2004). doi: 10.1103/PhysRevLett.93.250602 |
[27] | Jiang YY, Ludlow AD, Lemke ND, Fox RW, Sherman JA et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat Photonics 5, 158–161 (2011). doi: 10.1038/nphoton.2010.313 |
[28] | Nicolodi D, Argence B, Zhang W, Le Targat R, Santarelli G et al. Spectral purity transfer between optical wavelengths at the 10−18 level. Nat Photonics 8, 219–223 (2014). doi: 10.1038/nphoton.2013.361 |
[29] | Huang H, Duan J, Dong B, Norman J, Jung D et al. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photonics 5, 016103 (2020). doi: 10.1063/1.5120029 |
[30] | Liang W, Ilchenko VS, Eliyahu D, Savchenkov AA, Matsko AB et al. Ultralow noise miniature external cavity semiconductor laser. Nat Commun 6, 7371 (2015). doi: 10.1038/ncomms8371 |
[31] | Jin W, Yang QF, Chang L, Shen BQ, Wang HM et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat Photonics 15, 346–353 (2021). doi: 10.1038/s41566-021-00761-7 |
[32] | Wong YL, Carroll JE. A travelling-wave rate equation analysis for semiconductor lasers. Solid State Electron 30, 13–19 (1987). doi: 10.1016/0038-1101(87)90024-4 |
[33] | Cassidy DT. Comparison of rate-equation and Fabry-Perot approaches to modeling a diode laser. Appl Opt 22, 3321–3326 (1983). doi: 10.1364/AO.22.003321 |
[34] | Lau EK, Lakhani A, Tucker RS, Wu MC. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt Express 17, 7790–7799 (2009). doi: 10.1364/OE.17.007790 |
[35] | Li FH, Lan TY, Huang LG, Ikechukwu IP, Liu WM et al. Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide. Opto-Electron Adv 2, 190012 (2019). doi: 10.29026/oea.2019.190012 |
[36] | Henry CH. Theory of the linewidth of semiconductor lasers. IEEE J Quantum Electron 18, 259–264 (1982). doi: 10.1109/JQE.1982.1071522 |
[37] | Li H, Abraham NB. Power spectrum of frequency noise of semiconductor lasers with optical feedback from a high-finesse resonator. Appl Phys Lett 53, 2257–2259 (1988). doi: 10.1063/1.100271 |
[38] | Laurent P, Clairon A, Breant C. Frequency noise analysis of optically self-locked diode lasers. IEEE J Quantum Electron 25, 1131–1142 (1989). doi: 10.1109/3.29238 |
[39] | Huang X, Zhao QL, Lin W, Li C, Yang CS et al. Linewidth suppression mechanism of self-injection locked single-frequency fiber laser. Opt Express 24, 18907–18916 (2016). doi: 10.1364/OE.24.018907 |
[40] | Lim J, Savchenkov AA, Dale E, Liang W, Eliyahu D et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat Commun 8, 8 (2017). doi: 10.1038/s41467-017-00021-9 |
Principle of laser spectral purification based on distributed weak perturbation. (a) A novel laser configuration. (b) Evolution of laser phase fluctuation and noise coupling strength with different round trips. (c) Spectral distribution at different noise levels.
Simulation results of laser linewidth evolution. (a) Output linewidth evolution with the feedback length under different feedback coefficients. (b) Linewidth curve at the different feedback ratios. Two-dimensional pseudocolor maps of the spectra vary (c) with the length and (d) with feedback ratio.
An on-chip laser system based on weak external distributed perturbation. ISO: optical isolator; OC: optical coupler; PD: photoelectric detector; DAS: data acquisition system.
Power spectra of the RF signal generated by beating two distributed feedback DFB lasers and spectral purity. (a) Comparison curves of the frequency spectrum from beat frequency signal. (b) Lorentz fitting curve of the linewidth with a distributed feedback. (c) Comparison curves of the frequency noise PSD. (d) Comparison curves of the RIN spectrum, where a red curve indicates the compressed result.
Coherence of on-chip laser with different feedback ratios. (a) Evolution curves of the frequency noise PSD under different feedback ratios. (b) Evolution curves of output linewidth with the feedback ratio.
Self-adaptive compression process of laser linewidth. (a) Transient spectrum and (b) corresponding Lorentzian linewidth when switching on the feedback. (c) Transient spectrum and (d) corresponding Lorentzian linewidth when tuning the frequency of the main laser cavity.