Citation: | Han DD, Zhang YL, Chen ZD, Li JC, Ma JN et al. Carnivorous plants inspired shape-morphing slippery surfaces. Opto-Electron Adv 6, 210163 (2023). doi: 10.29026/oea.2023.210163 |
[1] | Kreder MJ, Alvarenga J, Kim P, Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery. Nat Rev Mater 1, 15003 (2016). doi: 10.1038/natrevmats.2015.3 |
[2] | Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 49, 3688–3715 (2020). doi: 10.1039/D0CS00036A |
[3] | Park K C, Kim P, Grinthal A, He N, Fox D et al. Condensation on slippery asymmetric bumps. Nature 531, 78–82 (2016). doi: 10.1038/nature16956 |
[4] | Villegas M, Zhang YX, Abu Jarad N, Soleymani L, Didar TF. Liquid-infused surfaces: a review of theory, design, and applications. ACS Nano 13, 8517–8536 (2019). doi: 10.1021/acsnano.9b04129 |
[5] | Zhao YZ, Su YL, Hou XY, Hong MH. Directional sliding of water: biomimetic snake scale surfaces. Opto-Electron Adv 4, 210008 (2021). doi: 10.29026/oea.2021.210008 |
[6] | Liu XQ, Bai BF, Chen QD, Sun HB. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2, 190021 (2019). |
[7] | Cao MY, Jin X, Peng Y, Yu CM, Li K et al. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia. Adv Mater 29, 1606869 (2017). doi: 10.1002/adma.201606869 |
[8] | Wong WSY, Li MF, Nisbet DR, Craig VSJ, Wang ZK et al. Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci Adv 2, e1600417 (2016). doi: 10.1126/sciadv.1600417 |
[9] | Li DF, Liu C, Yang YY, Wang LD, Shen YJ. Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci Appl 9, 84 (2020). doi: 10.1038/s41377-020-0323-y |
[10] | Jin GX, Hu XY, Ma ZC, Li CH, Zhang YL et al. Femtosecond laser fabrication of 3D templates for mass production of artificial compound eyes. Nanotechnol Precis Eng 2, 110–117 (2019). doi: 10.1016/j.npe.2019.10.005 |
[11] | Ellison AM, Gotelli NJ. Evolutionary ecology of carnivorous plants. Trends Ecol Evol 16, 623–629 (2001). doi: 10.1016/S0169-5347(01)02269-8 |
[12] | Jürgens A, Sciligo A, Witt T, El-Sayed AM, Suckling DM. Pollinator-prey conflict in carnivorous plants. Biol Rev 87, 602–615 (2012). doi: 10.1111/j.1469-185X.2011.00213.x |
[13] | Suda H, Mano H, Toyota M, Fukushima K, Mimura T et al. Calcium dynamics during trap closure visualized in transgenic venus flytrap. Nat Plants 6, 1219–1224 (2020). doi: 10.1038/s41477-020-00773-1 |
[14] | Volkov AG, Adesina T, Markin VS, Jovanov E. Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146, 323–324 (2008). |
[15] | Han B, Zhang YL, Zhu L, Li Y, Ma ZC et al. Plasmonic-assisted graphene oxide artificial muscles. Adv Mater 31, 1806386 (2019). |
[16] | Lim H, Park T, Na J, Park C, Kim B et al. Construction of a photothermal venus flytrap from conductive polymer bimorphs. NPG Asia Mater 9, e399 (2017). doi: 10.1038/am.2017.101 |
[17] | Zhu L, Gao YY, Han B, Zhang YL, Sun HB. Laser fabrication of graphene-based electrothermal actuators enabling predicable deformation. Opt Lett 44, 1363–1366 (2019). doi: 10.1364/OL.44.001363 |
[18] | Forterre Y, Skotheim JM, Dumais J, Mahadevan L. How the venus flytrap snaps. Nature 433, 421–425 (2005). doi: 10.1038/nature03185 |
[19] | Lunni D, Cianchetti M, Filippeschi C, Sinibaldi E, Mazzolai B. Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv Mater Interfaces 7, 1901310 (2020). doi: 10.1002/admi.201901310 |
[20] | Must I, Sinibaldi E, Mazzolai B. A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nat Commun 10, 344 (2019). doi: 10.1038/s41467-018-08173-y |
[21] | Taccola S, Greco F, Sinibaldi E, Mondini A, Mazzolai B et al. Toward a new generation of electrically controllable hygromorphic soft actuators. Adv Mater 27, 1668–1675 (2015). doi: 10.1002/adma.201404772 |
[22] | Chen HW, Zhang PF, Zhang LW, Liu HL, Jiang Y et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532, 85–89 (2016). doi: 10.1038/nature17189 |
[23] | Bohn HF, Federle W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci USA 101, 14138–14143 (2004). doi: 10.1073/pnas.0405885101 |
[24] | Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011). doi: 10.1038/nature10447 |
[25] | Gulfam R, Orejon D, Choi CH, Zhang P. Phase-change slippery liquid-infused porous surfaces with thermo-responsive wetting and shedding states. ACS Appl Mater Interfaces 12, 34306–34316 (2020). doi: 10.1021/acsami.0c06441 |
[26] | Gao CL, Wang L, Lin YC, Li JT, Liu YF et al. Droplets manipulated on photothermal organogel surfaces. Adv Funct Mater 28, 1803072 (2018). doi: 10.1002/adfm.201803072 |
[27] | Wang J, Sun LY, Zou MH, Gao W, Liu CH et al. Bioinspired shape-memory graphene film with tunable wettability. Sci Adv 3, e1700004 (2017). doi: 10.1126/sciadv.1700004 |
[28] | Li P, Cao MY, Bai HY, Zhao TH, Ning YZ et al. Unidirectional liquid manipulation via an integrated mesh with orthogonal anisotropic slippery tracks. Adv Funct Mater 29, 1904446 (2019). doi: 10.1002/adfm.201904446 |
[29] | Chen C, Huang ZC, Jiao YL, Shi LA, Zhang YY et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage. ACS Nano 13, 5742–5752 (2019). doi: 10.1021/acsnano.9b01180 |
[30] | Lv FY, Zhao F, Cheng DL, Dong ZG, Jia HW et al. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport. Adv Colloid Interface Sci 299, 102564 (2022). doi: 10.1016/j.cis.2021.102564 |
[31] | Maeda Y, Lv FY, Zhang P, Takata Y, Orejon D. Condensate droplet size distribution and heat transfer on hierarchical slippery lubricant infused porous surfaces. Appl Therm Eng 176, 115386 (2020). doi: 10.1016/j.applthermaleng.2020.115386 |
[32] | Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX 1, 1 (2020). doi: 10.1186/s43074-020-00006-w |
[33] | Qiao Z, Wan ZY, Xie GQ, Wang J, Qian LJ et al. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX 1, 13 (2020). doi: 10.1186/s43074-020-00013-x |
[34] | Kim Y, Van Den Berg J, Crosby AJ. Autonomous snapping and jumping polymer gels. Nat Mater 20, 1695–1701 (2021). doi: 10.1038/s41563-020-00909-w |
[35] | Manna U, Raman N, Welsh MA, Zayas-Gonzalez YM, Blackwell HE et al. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach. Adv Funct Mater 26, 3599–3611 (2016). doi: 10.1002/adfm.201505522 |
[36] | Binks BP, Whitby CP. Silica particle-stabilized emulsions of silicone oil and water: aspects of emulsification. Langmuir 20, 1130–1137 (2004). doi: 10.1021/la0303557 |
[37] | Horozov TS, Binks BP, Gottschalk-Gaudig T. Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles. Phys Chem Chem Phys 9, 6398–6404 (2007). doi: 10.1039/b709807n |
[38] | Gonzalez C, Resa JM, Lanz J, Iglesias M, Goenaga JM. Measurements of density and refractive index of soybean oil + short aliphatic alcohols. Int J Thermophys 27, 1463–1481 (2006). doi: 10.1007/s10765-006-0094-6 |
[39] | Nogueira CA Jr, Carmo FR, Santiago DF, Nogueira VM, Fernandes FAN et al. Viscosities and densities of ternary blends of diesel + soybean biodiesel + soybean oil. J Chem Eng Data 57, 3233–3241 (2012). doi: 10.1021/je300838n |
[40] | Žemaitis A, Gaidys M, Brikas M, Gečys P, Račiukaitis G et al. Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model. Sci Rep 8, 17376 (2018). doi: 10.1038/s41598-018-35604-z |
[41] | Žemaitis A, Gaidys M, Gečys P, Račiukaitis G, Gedvilas M. Rapid high-quality 3D micro-machining by optimised efficient ultrashort laser ablation. Opt Lasers Eng 114, 83–89 (2019). doi: 10.1016/j.optlaseng.2018.11.001 |
[42] | Zou TT, Zhao B, Xin W, Wang Y, Wang B et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci Appl 9, 69 (2020). doi: 10.1038/s41377-020-0311-2 |
[43] | Zhang YL, Guo L, Xia H, Chen QD, Feng J et al. Photoreduction of graphene oxides: methods, properties, and applications. Adv Opt Mater 2, 10–28 (2014). doi: 10.1002/adom.201300317 |
[44] | Jiang HB, Zhao B, Liu Y, Li SY, Liu J et al. Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications. J Mater Sci 55, 480–497 (2020). doi: 10.1007/s10853-019-03981-z |
[45] | Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE et al. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9, 1772–1780 (2013). doi: 10.1039/C2SM27032C |
[46] | Furmidge CGL. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J Colloid Sci 17, 309–324 (1962). doi: 10.1016/0095-8522(62)90011-9 |
[47] | Dai XM, Stogin BB, Yang SK, Wong TS. Slippery wenzel state. ACS Nano 9, 9260–9267 (2015). doi: 10.1021/acsnano.5b04151 |
[48] | Zhang SN, Huang JY, Chen Z, Lai YK. Bioinspired special wettability surfaces: from fundamental research to water harvesting applications. Small 13, 1602992 (2017). doi: 10.1002/smll.201602992 |
[49] | Han DD, Zhang YL, Jiang HB, Xia H, Feng J et al. Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv Mater 27, 332–338 (2015). doi: 10.1002/adma.201403587 |
[50] | Han DD, Zhang YL, Liu Y, Liu YQ, Jiang HB et al. Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers. Adv Funct Mater 25, 4548–4557 (2015). doi: 10.1002/adfm.201501511 |
[51] | Liu YQ, Chen ZD, Han DD, Mao JW, Ma JN et al. Bioinspired soft robots based on the moisture-responsive graphene oxide. Adv Sci 8, 2002464 (2021). doi: 10.1002/advs.202002464 |
[52] | You R, Liu YQ, Hao YL, Han DD, Zhang YL et al. Laser fabrication of graphene-based flexible electronics. Adv Mater 32, 1901981 (2020). doi: 10.1002/adma.201901981 |
[53] | Žemaitis A, Mimidis A, Papadopoulos A, Gečys P, Račiukaitis G et al. Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes. RSC Adv 10, 37956–37961 (2020). doi: 10.1039/D0RA05665K |
[54] | Zhang YL, Liu YQ, Han DD, Ma JN, Wang D et al. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers. Adv Mater 31, 1901585 (2019). doi: 10.1002/adma.201901585 |
[55] | Xu WH, Zhou XF, Hao CL, Zheng HX, Liu Y et al. SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl Sci Rev 6, 540–550 (2019). doi: 10.1093/nsr/nwz025 |
[56] | Indrišiūnas S, Voisiat B, Gedvilas M, Račiukaitis G. New opportunities for custom-shape patterning using polarization control in confocal laser beam interference setup. J Laser Appl 29, 011501 (2017). doi: 10.2351/1.4976679 |
[57] | Gedvilas M, Voisiat B, Indrišiūnas S, Račiukaitis G, Veiko V et al. Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses. Thin Solid Films 634, 134–140 (2017). doi: 10.1016/j.tsf.2017.05.010 |
Supplementary information for Carnivorous plants inspired shape-morphing slippery surfaces | |
Movie S1 | |
Movie S2 | |
Basic concept of hybrid bionic moisture responsive shape-morphing slippery surface inspired from multi-form carnivorous plants. The Nepenthes pitcher plant catches insects passively with the help of a lubricant-infused slippery surface. The Dionaea muscipula preys actively through a stimuli-responsive actuation mechanism. We combined the slippery surfaces (passive prey) and stimuli-responsive actuation (active prey), so we proposed a hybrid bionic moisture deformable slippery surface-based GO, which enables both active and passive droplet manipulation. GO: graphene oxide; RGO, reduced GO.
Fabrication, morphology, and element characterization of the moisture responsive shape-morphing slippery surface. (a) Fabrication processing of the moisture responsive shape-morphing slippery surface. A femtosecond (fs) laser was used to reduce GO and induce microstructures similar to the Nepenthes pitcher plant. A waterproof lubricant was infused into the LRGO surface to form the slippery surface. (b) The scanning electron microscope (SEM) image of the Nepenthes pitcher plant. (c) The SEM image of the LRGO surface. (d, e) The confocal laser scanning microscope (CLSM) images of the LRGO. (f) The Raman spectra, (g) Fourier transform infrared (FTIR) spectra, (h) X-ray photoelectron spectroscopy (XPS) survey spectra, and (i) C1s XPS spectra of the GO and LRGO sides of the bilayer actuator.
The properties of the lubricant-infused slippery surface. (a) Schematic illustration of the water droplet sliding behavior. (b) The lubricant-infused slippery surface's water contact angle (CA) and sliding angle (SA). The scale bar is 1 mm. (c) The photographs of a droplet (R6G labeled) sliding behavior on a tilted surface. (d) The overturning behavior of a ladybird on a general paper surface. The scale bar is 5 mm. (e) The overturning and sliding behavior of a ladybird on our lubricant-infused slippery surface. The scale bar is 5 mm. (f) The durability of CA and SA on oil-infused LRGO surface for 1000 cycles. (g) Sliding displacement of a water droplet vs. time. The tilted angles θ = 5°, 10°, and 15°, respectively. (h) The sliding behavior of various liquid droplets on our lubricant-infused slippery surface. The tilted angle θ = 30°.
Moisture-response deformations of the oil-LRGO/GO actuator. (a) Schematic illustration of the moisture responsive shape-morphing mechanism. Under the moisture actuation, water molecules are selectively adsorbed by the GO layer, which leads to the swelling of the GO side. The strain mismatch induces bending deformation. (b) Curvature-RH curves of the oil-LRGO/GO, LRGO/GO, and GO films on RH. (c) Responsive/recovery properties of the oil-LRGO/GO and LRGO/GO actuator. (d) The stability of the oil-LRGO/GO and LRGO/GO actuator for cycling use (1000 times). (e) The moisture-response Dionaea muscipula actuator with a slippery inner surface. The left scheme is the working model. The right images are the photographs of the deformation and droplet sliding behavior of the Dionaea muscipula actuator. The scale bar is 2 cm.
The manipulation of droplets on moisture responsive shape-morphing slippery surface. (a) Schematic illustration for the active and passive manipulation of a droplet containing live tubificidaes using the shape-morphing slippery surface. (b) The photographs of shape-morphing slippery frog tongue. The scale bar is 1.5 cm. (c) A smart water droplet harvesting flower. Every flower petal is made of the shape-morphing slippery surface (oil-LRGO/GO). The scale bar is 1.5 cm. (d) Moisture triggered active approach to water droplets containing live tubificidaes and the passive sliding behavior on the shape-morphing slippery surface. The scale bar is 0.5 cm. (e) The corresponding trajectory of the water droplet peripheries during the dynamic process. (f) The curvature changes of the shape-morphing slippery surface in (d). (g) The open-circuit voltage and (h) short-circuit current.