Wang YQ, Zhang JH, Zheng YC, Xu YR, Xu JQ et al. Brillouin scattering spectrum for liquid detection and applications in oceanography. Opto-Electron Adv 6, 220016 (2023). doi: 10.29026/oea.2023.220016
Citation: Wang YQ, Zhang JH, Zheng YC, Xu YR, Xu JQ et al. Brillouin scattering spectrum for liquid detection and applications in oceanography. Opto-Electron Adv 6, 220016 (2023). doi: 10.29026/oea.2023.220016

Article Open Access

Brillouin scattering spectrum for liquid detection and applications in oceanography

More Information
  • The Brillouin scattering spectrum has been used to investigate the properties of a liquid medium. Here, we propose an improved method based on the double-edge technique to obtain the Brillouin spectrum of a liquid. We calculated the transmission ratios and deduced the Brillouin shift and linewidth to construct the Brillouin spectrum by extracting the Brillouin edge signal through filtered double-edge data. We built a detection system to test the performance of this method and measured the Brillouin spectrum for distilled water at different temperatures and compared it with the theoretical prediction. The observed difference between the experimental and theoretical values for Brillouin shift and linewidth is less than 4.3 MHz and 3.2 MHz, respectively. Moreover, based on the double-edge technique, the accuracy of the extracted temperatures and salinity is approximately 0.1 °C and 0.5%, respectively, indicating significant potential for application in water detection and oceanography.
  • 加载中
  • [1] Strutt JW. On the light from the sky, its polarization and colour. Lond Edinb Dublin Philos Mag J Sci 41, 274–279 (1871). doi: 10.1080/14786447108640479

    CrossRef Google Scholar

    [2] Einstein A. Theorie der opaleszenz von homogenen flüssigkeiten und flüssigkeitsgemischen in der nähe des kritischen zustandes. Ann Phys 338, 1275–1298 (1910). doi: 10.1002/andp.19103381612

    CrossRef Google Scholar

    [3] Fabelinskii IL. Molecular Scattering of Light (Springer, New York, 1968).

    Google Scholar

    [4] Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv 4, 200019 (2021). doi: 10.29026/oea.2021.200019

    CrossRef Google Scholar

    [5] Mandelstam LI. Light scattering by inhomogeneous media. Zh Russ Fiz Khim Ova 58, 381 (1926).

    Google Scholar

    [6] Brillouin L. Diffusion de la lumière et des rayons X par un corps transparent homogène. Ann Phys 9, 88–122 (1922). doi: 10.1051/anphys/192209170088

    CrossRef Google Scholar

    [7] Boley CD, Desai RC, Tenti G. Kinetic models and Brillouin scattering in a molecular gas. Can J Phys 50, 2158–2173 (1972). doi: 10.1139/p72-286

    CrossRef Google Scholar

    [8] Ma Y, Li H, Gu ZY, Ubachs W, Yu Y et al. Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air. Opt Express 22, 2092–2104 (2014). doi: 10.1364/OE.22.002092

    CrossRef Google Scholar

    [9] Gu Z, Ubachs W, Marques Jr W, van de Water W. Rayleigh-Brillouin scattering in binary-gas mixtures. Phys Rev Lett 114, 243902 (2015). doi: 10.1103/PhysRevLett.114.243902

    CrossRef Google Scholar

    [10] Wang YQ, Ubachs W, de Moraes CAM, Marques Jr W. Rayleigh-Brillouin scattering in binary mixtures of disparate-mass constituents: SF6−He, SF6−D2, and SF6−H2. Phys Rev E 103, 013102 (2021).

    Google Scholar

    [11] Xu JQ, Witschas B, Kabelka PG, Liang K. High-spectral-resolution lidar for measuring tropospheric temperature profiles by means of Rayleigh–Brillouin scattering. Opt Lett 46, 3320–3323 (2021). doi: 10.1364/OL.424526

    CrossRef Google Scholar

    [12] Ma QH, Yang CX, Bruno D, Zhang J. Molecular simulation of Rayleigh-Brillouin scattering in binary gas mixtures and extraction of the rotational relaxation numbers. Phys Rev E 104, 035109 (2021). doi: 10.1103/PhysRevE.104.035109

    CrossRef Google Scholar

    [13] Mountain R D. Thermal relaxation and Brillouin scattering in liquids. J Res Natl Bur Stand A Phys Chem 70A, 207–220 (1966). doi: 10.6028/jres.070A.017

    CrossRef Google Scholar

    [14] Montrose CJ, Solovyev VA, Litovitz TA. Brillouin scattering and relaxation in liquids. J Acoust Soc Am 43, 117–130 (1968). doi: 10.1121/1.1910741

    CrossRef Google Scholar

    [15] Yoshida H, Hatae T, Fujita H, Nakatsuka M, Kitamura S. A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt Express 17, 13654–13662 (2009). doi: 10.1364/oe.17.013654

    CrossRef Google Scholar

    [16] Chaban I, Shin HD, Klieber C, Busselez R, Gusev V et al. Time-domain Brillouin scattering as a local temperature probe in liquids. MRS Adv 4, 9–14 (2019). doi: 10.1557/adv.2018.650

    CrossRef Google Scholar

    [17] Liu ML, Wu HB, Liu XM, Wang YR, Lei M et al. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron Adv 4, 200029 (2021). doi: 10.29026/oea.2021.200029

    CrossRef Google Scholar

    [18] Nelson DF, Lazay PD, Lax M. Brillouin scattering in anisotropic media: calcite. Phys Rev B 6, 3109–3120 (1972). doi: 10.1103/PhysRevB.6.3109

    CrossRef Google Scholar

    [19] Grimsditch MH, Ramdas AK. Brillouin scattering in diamond. Phys Rev B 11, 3139–3148 (1975). doi: 10.1103/PhysRevB.11.3139

    CrossRef Google Scholar

    [20] Crowhurst JC, Hearne GR, Comins JD, Every AG, Stoddart PR. Surface Brillouin scattering at high pressure: application to a thin supported gold film. Phys Rev B 60, R14990–R14993 (1999). doi: 10.1103/PhysRevB.60.R14990

    CrossRef Google Scholar

    [21] Comez L, Masciovecchio C, Monaco G, Fioretto D. Progress in liquid and glass physics by Brillouin scattering spectroscopy. Solid State Phys 63, 1–77 (2012). doi: 10.1016/B978-0-12-397028-2.00001-1

    CrossRef Google Scholar

    [22] Liu J, Shi MQ, Chen Z, Wang SM, Wang ZL et al. Quantum photonics based on metasurfaces. Opto-Electron Adv 4, 200092 (2021). doi: 10.29026/oea.2021.200092

    CrossRef Google Scholar

    [23] Mountain RD. Spectral distribution of scattered light in a simple fluid. Rev Mod Phys 38, 205–214 (1966). doi: 10.1103/RevModPhys.38.205

    CrossRef Google Scholar

    [24] Gong W, Dai R, Sun Z, Ren X, Shi J et al. Detecting submerged objects by Brillouin scattering. Appl Phys B 79, 635–639 (2004). doi: 10.1007/s00340-004-1590-7

    CrossRef Google Scholar

    [25] Schorstein K, Popescu A, Göbel M, Walther T. Remote water temperature measurements based on Brillouin scattering with a frequency doubled pulsed Yb: doped fiber amplifier. Sensors 8, 5820–5831 (2008). doi: 10.3390/s8095820

    CrossRef Google Scholar

    [26] Liang K, Ma Y, Yu Y, Huang J, Li H. Research on simultaneous measurement of ocean temperature and salinity using Brillouin shift and linewidth. Opt Eng 51, 066002 (2012). doi: 10.1117/1.OE.51.6.066002

    CrossRef Google Scholar

    [27] Rudolf A, Walther T. Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean. Opt Eng 53, 051407 (2014). doi: 10.1117/1.OE.53.5.051407

    CrossRef Google Scholar

    [28] Fry ES, Emery Y, Quan XH, Katz JW. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean. Appl Opt 36, 6887–6894 (1997). doi: 10.1364/AO.36.006887

    CrossRef Google Scholar

    [29] Liu DH, Xu JF, Li RS, Dai R, Gong WP. Measurements of sound speed in the water by Brillouin scattering using pulsed Nd: YAG laser. Opt Commun 203, 335–340 (2002). doi: 10.1016/S0030-4018(02)01181-1

    CrossRef Google Scholar

    [30] Xu JF, Ren XB, Gong WP, Dai R, Liu DH. Measurement of the bulk viscosity of liquid by Brillouin scattering. Appl Opt 42, 6704–6709 (2003). doi: 10.1364/AO.42.006704

    CrossRef Google Scholar

    [31] Ge Y, Shi JL, Zhu KX, He XD. Determination of bulk viscosity of liquid water via pulse duration measurements in stimulated Brillouin scattering. Chin Opt Lett 11, 112902 (2013). doi: 10.3788/COL201311.112902

    CrossRef Google Scholar

    [32] Liu J, Shi JL, He XD, Li SJ, Chen XG et al. Comparison of three technique of Brillouin lidar for remote sensing of the ocean. Opt Commun 352, 161–165 (2015). doi: 10.1016/j.optcom.2015.04.086

    CrossRef Google Scholar

    [33] Shi J, Ouyang M, Gong W, Li S, Liu D. A Brillouin lidar system using F–P etalon and ICCD for remote sensing of the ocean. Appl Phys B 90, 569–571 (2008). doi: 10.1007/s00340-007-2866-5

    CrossRef Google Scholar

    [34] Huang J, Ma Y, Zhou B, Li H, Yu Y et al. Processing method of spectral measurement using F-P etalon and ICCD. Opt Express 20, 18568–18578 (2012). doi: 10.1364/OE.20.018568

    CrossRef Google Scholar

    [35] Bl/achowicz T, Bukowski R, Kleszczewski Z. Fabry–Perot interferometer in Brillouin scattering experiments. Rev Sci Instrum 67, 4057–4060 (1996). doi: 10.1063/1.1147550

    CrossRef Google Scholar

    [36] Emery Y, Fry ES. Laboratory development of a LIDAR for measurement of sound velocity in the ocean using Brillouin scattering. Proc SPIE 2963, 210–215 (1997). doi: 10.1117/12.266444

    CrossRef Google Scholar

    [37] Rupp D, Zipf A, Kress M, Lux K, Walther T et al. A Brillouin lidar for remote sensing of the temperature profile in the ocean — towards a simultaneous measurement of temperature and salinity. In OCEANS 2017 - Anchorage 1–7 (IEEE, 2017); https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8232330.

    Google Scholar

    [38] Liang K, Zhang R, Sun Q, Xu Y, Wu H et al. Brillouin shift and linewidth measurement based on double-edge detection technology in seawater. Appl Phys B 126, 160 (2020). doi: 10.1007/s00340-020-07509-1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint