Citation: | Baeva M, Gets D, Polushkin A, Vorobyov A, Goltaev A et al. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection. Opto-Electron Adv 6, 220154 (2023). doi: 10.29026/oea.2023.220154 |
[1] | Era M, Morimoto S, Tsutsui T, Saito S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett 65, 676–678 (1994). doi: 10.1063/1.112265 |
[2] | Veldhuis SA, Boix PP, Yantara N, Li MJ, Sum TC et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater 28, 6804–6834 (2016). doi: 10.1002/adma.201600669 |
[3] | Shan QS, Song JZ, Zou YS, Li JH, Xu LM et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small 13, 1701770 (2017). doi: 10.1002/smll.201701770 |
[4] | Jia P, Lu M, Sun SQ, Gao YB, Wang R et al. Recent advances in flexible perovskite light-emitting diodes. Adv Mater Interfaces 8, 2100441 (2021). doi: 10.1002/admi.202100441 |
[5] | Liu XK, Xu WD, Bai S, Jin YZ, Wang JP et al. Metal halide perovskites for light-emitting diodes. Nat Mater 20, 10–21 (2021). doi: 10.1038/s41563-020-0784-7 |
[6] | Lu M, Zhang Y, Wang SX, Guo J, Yu WW et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv Funct Mater 29, 1902008 (2019). doi: 10.1002/adfm.201902008 |
[7] | Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv 4, 200019 (2021). doi: 10.29026/oea.2021.200019 |
[8] | Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006 |
[9] | Youssef K, Li Y, O’Keeffe S, Li L, Pei QB. Fundamentals of materials selection for light-emitting electrochemical cells. Adv Funct Mater 30, 1909102 (2020). doi: 10.1002/adfm.201909102 |
[10] | Gets D, Alahbakhshi M, Mishra A, Haroldson R, Papadimitratos A et al. Reconfigurable perovskite LEC: effects of ionic additives and dual function devices. Adv Opt Mater 9, 2001715 (2021). doi: 10.1002/adom.202001715 |
[11] | Ling YC, Tian Y, Wang X, Wang JC, Knox JM et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv Mater 28, 8983–8989 (2016). doi: 10.1002/adma.201602513 |
[12] | Chang S, Bai ZL, Zhong HZ. In situ fabricated perovskite nanocrystals: a revolution in optical materials. Adv Opt Mater 6, 1800380 (2018). doi: 10.1002/adom.201800380 |
[13] | Xu TF, Meng Y, Wang MS, Li MX, Ahmadi M et al. Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission. J Mater Chem C 7, 8287–8293 (2019). doi: 10.1039/C9TC01906E |
[14] | Cai WQ, Chen ZM, Li ZC, Yan L, Zhang DL et al. Polymer-assisted in situ growth of all-inorganic perovskite nanocrystal film for efficient and stable pure-red light-emitting devices. ACS Appl Mater Interfaces 10, 42564–42572 (2018). doi: 10.1021/acsami.8b13418 |
[15] | Sakthi Velu K, Anandha Raj J, Sathappan P, Suganya Bharathi B, Mohan Doss S et al. Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell. Mater Lett 240, 132–135 (2019). doi: 10.1016/j.matlet.2018.12.121 |
[16] | Kim DH, Kim YC, An HJ, Myoung JM. Enhanced brightness of red light-emitting diodes based on CsPbBrxI3-x-PEOXA composite films. J Alloys Compd 845, 156272 (2020). doi: 10.1016/j.jallcom.2020.156272 |
[17] | Bansode U, Rahman A, Ogale S. Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application. J Mater Chem C 7, 6986–6996 (2019). doi: 10.1039/C9TC01292C |
[18] | Wang KH, Wang L, Liu YY, Song YH, Yin YC et al. High quality CsPbI3-xBrx thin films enabled by synergetic regulation of fluorine polymers and amino acid molecules for efficient pure red light emitting diodes. Adv Opt Mater 9, 2001684 (2021). doi: 10.1002/adom.202001684 |
[19] | Ishteev A, Haroldson R, Gets D, Tsapenko A, Alahbakhshi M et al. Ambipolar perovskite light electrochemical cell for transparent display devices. arXiv: 1911.06875, 2019. https://doi.org/10.48550/arXiv.1911.06875 |
[20] | Miroshnichenko AS, Deriabin KV, Baeva M, Kochetkov FM, Neplokh V et al. Flexible perovskite CsPbBr3 light emitting devices integrated with GaP nanowire arrays in highly transparent and durable functionalized silicones. J Phys Chem Lett 12, 9672–9676 (2021). doi: 10.1021/acs.jpclett.1c02611 |
[21] | Alahbakhshi M, Mishra A, Haroldson R, Ishteev A, Moon J et al. Bright and efficient perovskite light emitting electrochemical cells leveraging ionic additives. arXiv: 1909.03318, 2019.https://doi.org/10.48550/arXiv.1909.03318 |
[22] | Alahbakhshi M, Papadimitratos A, Haroldson R, Mishra A, Ishteev A et al. Bright perovskite light-emitting electrochemical cell utilizing CNT sheets as a tunable charge injector. Proc SPIE 11473, 114731N (2020). doi: 10.48550/arXiv.2008.05518 |
[23] | Mishra A, Alahbakhshi M, Haroldson R, Gu Q, Zakhidov AA et al. Pure blue electroluminescence by differentiated ion motion in a single layer perovskite device. Adv Funct Mater 31, 2102006 (2021). doi: 10.1002/adfm.202102006 |
[24] | Mishra A, Alahbakhshi M, Haroldson R, Bastatas LD, Gu Q et al. Enhanced operational stability of perovskite light-emitting electrochemical cells leveraging ionic additives. Adv Opt Mater 8, 2000226 (2020). doi: 10.1002/adom.202000226 |
[25] | Tien CH, Yeh NP, Lee KL, Chen LC. Achieving matrix quantum dot light-emitting display based on all-inorganic CsPbBr3 perovskite nanocrystal composites. IEEE Access 9, 128919–128924 (2021). doi: 10.1109/ACCESS.2021.3112982 |
[26] | Teng PP, Reichert S, Xu WD, Yang SC, Fu F et al. Degradation and self-repairing in perovskite light-emitting diodes. Matter 4, 3710–3724 (2021). doi: 10.1016/j.matt.2021.09.007 |
[27] | Bowring AR, Bertoluzzi L, O’Regan BC, McGehee MD. Reverse bias behavior of halide perovskite solar cells. Adv Energy Mater 8, 1702365 (2018). doi: 10.1002/aenm.201702365 |
[28] | Lokanc M, Eggert R, Redlinger M. The availability of indium: the present, medium term, and long term. Golden: National Renewable Energy Laboratory, 2015. |
[29] | Xie JS, Hang PJ, Wang H, Zhao SH, Li G et al. Perovskite bifunctional device with improved electroluminescent and photovoltaic performance through interfacial energy-band engineering. Adv Mater 31, 1902543 (2019). doi: 10.1002/adma.201902543 |
[30] | Shan QS, Wei CT, Jiang Y, Song JZ, Zou YS et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci Appl 9, 163 (2020). doi: 10.1038/s41377-020-00402-8 |
[31] | Shin DH, Shin SH, Choi SH. Self-powered and flexible perovskite photodiode/solar cell bifunctional devices with MoS2 hole transport layer. Appl Surf Sci 514, 145880 (2020). doi: 10.1016/j.apsusc.2020.145880 |
[32] | Liu ZD, Duan CH, Liu F, Chan CCS, Zhu HP et al. Perovskite bifunctional diode with high photovoltaic and electroluminescent performance by holistic defect passivation. Small 18, 2105196 (2022). doi: 10.1002/smll.202105196 |
[33] | Yang SZ, Guo ZL, Gao LG, Yu FY, Zhang C et al. Bifunctional dye molecule in all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 10%. Sol RRL 3, 1900212 (2019). doi: 10.1002/solr.201900212 |
[34] | Li XL, Long KC, Zhang G, Zou WT, Jiang SQ et al. Lead-free perovskite-based bifunctional device for both photoelectric conversion and energy storage. ACS Appl Energy Mater 4, 7952–7958 (2021). doi: 10.1021/acsaem.1c01272 |
[35] | Marunchenko AA, Baranov MA, Ushakova EV, Ryabov DR, Pushkarev AP et al. Single-walled carbon nanotube thin film for flexible and highly responsive perovskite photodetector. Adv Funct Mater 32, 2109834 (2022). doi: 10.1002/adfm.202109834 |
[36] | Manousakis E. Optimizing the role of impact ionization in conventional insulators. Sci Rep 9, 20395 (2019). doi: 10.1038/s41598-019-56974-y |
[37] | Xu ZH, Yu YG, Niaz IA, Chen UM, Arya S et al. Discovery of ionic impact ionization (I3) in perovskites triggered by a single photon. arXiv: 1906.02475, 2019.https://doi.org/10.48550/arXiv.1906.02475 |
[38] | Xu H, Wang XC, Li Y, Cai L, Tan YS et al. Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display. J Phys Chem Lett 11, 3689–3698 (2020). doi: 10.1021/acs.jpclett.0c00792 |
[39] | Zhou NJ, Bekenstein Y, Eisler CN, Zhang DD, Schwartzberg AM et al. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci Adv 5, eaav8141 (2019). doi: 10.1126/sciadv.aav8141 |
[40] | Khabushev EM, Krasnikov DV, Zaremba OT, Tsapenko AP, Goldt AE et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J Phys Chem Lett 10, 6962–6966 (2019). doi: 10.1021/acs.jpclett.9b02777 |
[41] | Anoshkin IV, Nasibulin AG, Tian Y, Liu BL, Jiang H et al. Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method. Carbon 78, 130–136 (2014). doi: 10.1016/j.carbon.2014.06.057 |
[42] | Tsapenko AP, Goldt AE, Shulga E, Popov ZI, Maslakov KI et al. Highly conductive and transparent films of HAuCl4-doped single-walled carbon nanotubes for flexible applications. Carbon 130, 448–457 (2018). doi: 10.1016/j.carbon.2018.01.016 |
[43] | Kaskela A, Nasibulin AG, Timmermans MY, Aitchison B, Papadimitratos A et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett 10, 4349–4355 (2010). doi: 10.1021/nl101680s |
[44] | Tao SX, Schmidt I, Brocks G, Jiang JK, Tranca I et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat Commun 10, 2560 (2019). doi: 10.1038/s41467-019-10468-7 |
[45] | Saidaminov MI, Haque MA, Almutlaq J, Sarmah S, Miao XH et al. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv Opt Mater 5, 1600704 (2017). doi: 10.1002/adom.201600704 |
[46] | Yang Z, Surrente A, Galkowski K, Miyata A, Portugall O et al. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett 2, 1621–1627 (2017). doi: 10.1021/acsenergylett.7b00416 |
[47] | Akkerman QA, Motti SG, Srimath Kandada AR, Mosconi E, D’innocenzo V et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J Am Chem Soc 138, 1010–1016 (2016). doi: 10.1021/jacs.5b12124 |
[48] | Varshni YP. Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (I). Phys Status Solidi (B) 19, 459–514 (1967). doi: 10.1002/pssb.19670190202 |
[49] | Adachi S. Properties of Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons, Ltd. , Hoboken, 2005). |
[50] | Jacoboni C, Canali C, Ottaviani G, Quaranta AA. A review of some charge transport properties of silicon. Solid State Electron 20, 77–89 (1977). doi: 10.1016/0038-1101(77)90054-5 |
[51] | del Alamo JA, Swanson RM. Modelling of minority-carrier transport in heavily doped silicon emitters. Solid State Electron 30, 1127–1136 (1987). doi: 10.1016/0038-1101(87)90077-3 |
[52] | Tyagi MS, Van Overstraeten R. Minority carrier recombination in heavily-doped silicon. Solid State Electron 26, 577–597 (1983). doi: 10.1016/0038-1101(83)90174-0 |
[53] | Piprek J. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Academic Press, San Diego, 2003). |
[54] | Sze SM, Li YM, Ng KK. Physics of Semiconductor Devices (John Wiley & Sons, Ltd. , New York, 2021). |
[55] | Atourki L, Vega E, Mollar M, Marí B, Kirou H et al. Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3-xIx (0 ≤ x ≤ 1). J Alloys Compd 702, 404–409 (2017). doi: 10.1016/j.jallcom.2017.01.205 |
[56] | Mikhailova A, Rogachev MP. Impact ionization and Auger recombination in InAs. Sov Phys Semicond 10, 866–871 (1976). |
Supplementary information ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection |
Schematic diagrams of (a) the typical PeLED device structure, where CTL - charge transfer layer, QD - quantum dots and (b) our PeLEC device structure, where SWCNT - single-walled carbon nanotubes.
(a) Dual-function device processing scheme. (b) Device cross-section 3D illustration and SEM images, scale bars - 200 nm. (c) Final device photos: left panel- without applied bias, right panel- with applied positive bias to one of the pixels, scale bars - 5 mm.
Composite perovskite PeLEC key figures-of-merit. (a) The device EL spectra on applied bias offset relative to each other, inset – CIE 1931 RGB color space with triangular NTSC color-gamut standard, “star” marker - the device’s color coordinates. (b) Measured device’s J-V curve plot in one axis with L-V curve. (c, d) The device’s band diagram at 0 V bias (left panel) and 4 V bias (right panel), where Ec and Ev are the perovskite material conduction band bottom and valence band top, respectively, EFn and EFp – quasi-Fermi levels for electrons and holes, respectively. (e) The device’s EL efficiency curve and PeLEC EQE characteristic on applied voltage. (f) The device’s power efficiency curve.
(a) The PeLEC J-V curves at positive applied bias for charge carrier lifetimes: τ = 10 ns (left panel) and τ = 120 ns (right panel). (b) The PeLECs IQE at different charge carriers’ lifetimes versus applied bias. (c) Combined IQE curve versus charge carrier lifetime at 4 V.
(a) Left panel – PeLECs J and L tracking over 8 minutes at 3.7 V, right panel – zoomed in maximum current density point in the J curve. (b) Comparison of the J-V curves before and after soaking. (c) Schematic simplified PeLEC’ energy level diagram combined with underlying ionic movement scenario.
The dual-function PeLEC devices indicator display images. (a) The entire indicator displays frame PCB and addressing pixels PCB (left panel) with zoomed-in image of the mounted onto the indicator display frame devices (right panel). (b) Day-light indicator display image. (c) Low ambient light all-pixels-in-operation indicator display image. (d-m) Numbers from 0 to 9 images displayed with our indicator display. Scale bars in all images – 1 cm.
Optical images of our n++-Si(100)/CsPbBr3:PEO:LiTFSI/SWCNT mat devices in shape of. (a) Alferov University (Saint-Petersburg, Russia) emblem. (b) ITMO University (Saint-Petersburg, Russia) emblem. (c) Inverted composite perovskite cat. Scale bars in all images are 500 μm.
Composite perovskite photodiode key figures-of-merit. (a) J-V curves at different laser incident radiant power densities, insert – Uch values on incident radiant power density. (b) Photodetector EQE on the electrical bias, insert – the device’s EQE at U = 0 V in linear axis. (c) Schematic simplified PeLEC’ energy level diagram in light-detecting operation regime. (d) The device’s responsivity for different laser incident radiant power densities, insert – zoomed-in section of the graph from U = 0 V to Uch . (e) The device’s LDR curves for three different biases, insert – LDR region for three biases in linear axis. (f) The device’s specific detectivity curves for different laser incident radiant power densities, insert – zoomed-in section of the graph for maximal D* in linear axis.