Baeva M, Gets D, Polushkin A, Vorobyov A, Goltaev A et al. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection. Opto-Electron Adv 6, 220154 (2023). doi: 10.29026/oea.2023.220154
Citation: Baeva M, Gets D, Polushkin A, Vorobyov A, Goltaev A et al. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection. Opto-Electron Adv 6, 220154 (2023). doi: 10.29026/oea.2023.220154

Article Open Access

ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection

More Information
  • Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture. Here, we develop a perovskite electrochemical cell both for light emission and detection, where the active layer consists of a composite material made of halide perovskite microcrystals, polymer support matrix, and added mobile ions. The perovskite electrochemical cell of CsPbBr3:PEO:LiTFSI composition, emitting light at the wavelength of 523 nm, yields the luminance more than 7000 cd/m2 and electroluminescence efficiency of 4.3 lm/W. The device fabricated on a silicon substrate with transparent single-walled carbon nanotube film as a top contact exhibits 40% lower Joule heating compared to the perovskite optoelectronic devices fabricated on conventional ITO/glass substrates. Moreover, the device operates as a photodetector with a sensitivity up to 0.75 A/W, specific detectivity of 8.56×1011 Jones, and linear dynamic range of 48 dB. The technological potential of such a device is proven by demonstration of 24-pixel indicator display as well as by successful device miniaturization by creation of electroluminescent images with the smallest features less than 50 μm.
  • 加载中
  • [1] Era M, Morimoto S, Tsutsui T, Saito S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett 65, 676–678 (1994). doi: 10.1063/1.112265

    CrossRef Google Scholar

    [2] Veldhuis SA, Boix PP, Yantara N, Li MJ, Sum TC et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater 28, 6804–6834 (2016). doi: 10.1002/adma.201600669

    CrossRef Google Scholar

    [3] Shan QS, Song JZ, Zou YS, Li JH, Xu LM et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small 13, 1701770 (2017). doi: 10.1002/smll.201701770

    CrossRef Google Scholar

    [4] Jia P, Lu M, Sun SQ, Gao YB, Wang R et al. Recent advances in flexible perovskite light-emitting diodes. Adv Mater Interfaces 8, 2100441 (2021). doi: 10.1002/admi.202100441

    CrossRef Google Scholar

    [5] Liu XK, Xu WD, Bai S, Jin YZ, Wang JP et al. Metal halide perovskites for light-emitting diodes. Nat Mater 20, 10–21 (2021). doi: 10.1038/s41563-020-0784-7

    CrossRef Google Scholar

    [6] Lu M, Zhang Y, Wang SX, Guo J, Yu WW et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv Funct Mater 29, 1902008 (2019). doi: 10.1002/adfm.201902008

    CrossRef Google Scholar

    [7] Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv 4, 200019 (2021). doi: 10.29026/oea.2021.200019

    CrossRef Google Scholar

    [8] Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006

    CrossRef Google Scholar

    [9] Youssef K, Li Y, O’Keeffe S, Li L, Pei QB. Fundamentals of materials selection for light-emitting electrochemical cells. Adv Funct Mater 30, 1909102 (2020). doi: 10.1002/adfm.201909102

    CrossRef Google Scholar

    [10] Gets D, Alahbakhshi M, Mishra A, Haroldson R, Papadimitratos A et al. Reconfigurable perovskite LEC: effects of ionic additives and dual function devices. Adv Opt Mater 9, 2001715 (2021). doi: 10.1002/adom.202001715

    CrossRef Google Scholar

    [11] Ling YC, Tian Y, Wang X, Wang JC, Knox JM et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv Mater 28, 8983–8989 (2016). doi: 10.1002/adma.201602513

    CrossRef Google Scholar

    [12] Chang S, Bai ZL, Zhong HZ. In situ fabricated perovskite nanocrystals: a revolution in optical materials. Adv Opt Mater 6, 1800380 (2018). doi: 10.1002/adom.201800380

    CrossRef Google Scholar

    [13] Xu TF, Meng Y, Wang MS, Li MX, Ahmadi M et al. Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission. J Mater Chem C 7, 8287–8293 (2019). doi: 10.1039/C9TC01906E

    CrossRef Google Scholar

    [14] Cai WQ, Chen ZM, Li ZC, Yan L, Zhang DL et al. Polymer-assisted in situ growth of all-inorganic perovskite nanocrystal film for efficient and stable pure-red light-emitting devices. ACS Appl Mater Interfaces 10, 42564–42572 (2018). doi: 10.1021/acsami.8b13418

    CrossRef Google Scholar

    [15] Sakthi Velu K, Anandha Raj J, Sathappan P, Suganya Bharathi B, Mohan Doss S et al. Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell. Mater Lett 240, 132–135 (2019). doi: 10.1016/j.matlet.2018.12.121

    CrossRef Google Scholar

    [16] Kim DH, Kim YC, An HJ, Myoung JM. Enhanced brightness of red light-emitting diodes based on CsPbBrxI3-x-PEOXA composite films. J Alloys Compd 845, 156272 (2020). doi: 10.1016/j.jallcom.2020.156272

    CrossRef Google Scholar

    [17] Bansode U, Rahman A, Ogale S. Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application. J Mater Chem C 7, 6986–6996 (2019). doi: 10.1039/C9TC01292C

    CrossRef Google Scholar

    [18] Wang KH, Wang L, Liu YY, Song YH, Yin YC et al. High quality CsPbI3-xBrx thin films enabled by synergetic regulation of fluorine polymers and amino acid molecules for efficient pure red light emitting diodes. Adv Opt Mater 9, 2001684 (2021). doi: 10.1002/adom.202001684

    CrossRef Google Scholar

    [19] Ishteev A, Haroldson R, Gets D, Tsapenko A, Alahbakhshi M et al. Ambipolar perovskite light electrochemical cell for transparent display devices. arXiv: 1911.06875, 2019. https://doi.org/10.48550/arXiv.1911.06875

    Google Scholar

    [20] Miroshnichenko AS, Deriabin KV, Baeva M, Kochetkov FM, Neplokh V et al. Flexible perovskite CsPbBr3 light emitting devices integrated with GaP nanowire arrays in highly transparent and durable functionalized silicones. J Phys Chem Lett 12, 9672–9676 (2021). doi: 10.1021/acs.jpclett.1c02611

    CrossRef Google Scholar

    [21] Alahbakhshi M, Mishra A, Haroldson R, Ishteev A, Moon J et al. Bright and efficient perovskite light emitting electrochemical cells leveraging ionic additives. arXiv: 1909.03318, 2019.https://doi.org/10.48550/arXiv.1909.03318

    Google Scholar

    [22] Alahbakhshi M, Papadimitratos A, Haroldson R, Mishra A, Ishteev A et al. Bright perovskite light-emitting electrochemical cell utilizing CNT sheets as a tunable charge injector. Proc SPIE 11473, 114731N (2020). doi: 10.48550/arXiv.2008.05518

    CrossRef Google Scholar

    [23] Mishra A, Alahbakhshi M, Haroldson R, Gu Q, Zakhidov AA et al. Pure blue electroluminescence by differentiated ion motion in a single layer perovskite device. Adv Funct Mater 31, 2102006 (2021). doi: 10.1002/adfm.202102006

    CrossRef Google Scholar

    [24] Mishra A, Alahbakhshi M, Haroldson R, Bastatas LD, Gu Q et al. Enhanced operational stability of perovskite light-emitting electrochemical cells leveraging ionic additives. Adv Opt Mater 8, 2000226 (2020). doi: 10.1002/adom.202000226

    CrossRef Google Scholar

    [25] Tien CH, Yeh NP, Lee KL, Chen LC. Achieving matrix quantum dot light-emitting display based on all-inorganic CsPbBr3 perovskite nanocrystal composites. IEEE Access 9, 128919–128924 (2021). doi: 10.1109/ACCESS.2021.3112982

    CrossRef Google Scholar

    [26] Teng PP, Reichert S, Xu WD, Yang SC, Fu F et al. Degradation and self-repairing in perovskite light-emitting diodes. Matter 4, 3710–3724 (2021). doi: 10.1016/j.matt.2021.09.007

    CrossRef Google Scholar

    [27] Bowring AR, Bertoluzzi L, O’Regan BC, McGehee MD. Reverse bias behavior of halide perovskite solar cells. Adv Energy Mater 8, 1702365 (2018). doi: 10.1002/aenm.201702365

    CrossRef Google Scholar

    [28] Lokanc M, Eggert R, Redlinger M. The availability of indium: the present, medium term, and long term. Golden: National Renewable Energy Laboratory, 2015.

    Google Scholar

    [29] Xie JS, Hang PJ, Wang H, Zhao SH, Li G et al. Perovskite bifunctional device with improved electroluminescent and photovoltaic performance through interfacial energy-band engineering. Adv Mater 31, 1902543 (2019). doi: 10.1002/adma.201902543

    CrossRef Google Scholar

    [30] Shan QS, Wei CT, Jiang Y, Song JZ, Zou YS et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci Appl 9, 163 (2020). doi: 10.1038/s41377-020-00402-8

    CrossRef Google Scholar

    [31] Shin DH, Shin SH, Choi SH. Self-powered and flexible perovskite photodiode/solar cell bifunctional devices with MoS2 hole transport layer. Appl Surf Sci 514, 145880 (2020). doi: 10.1016/j.apsusc.2020.145880

    CrossRef Google Scholar

    [32] Liu ZD, Duan CH, Liu F, Chan CCS, Zhu HP et al. Perovskite bifunctional diode with high photovoltaic and electroluminescent performance by holistic defect passivation. Small 18, 2105196 (2022). doi: 10.1002/smll.202105196

    CrossRef Google Scholar

    [33] Yang SZ, Guo ZL, Gao LG, Yu FY, Zhang C et al. Bifunctional dye molecule in all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 10%. Sol RRL 3, 1900212 (2019). doi: 10.1002/solr.201900212

    CrossRef Google Scholar

    [34] Li XL, Long KC, Zhang G, Zou WT, Jiang SQ et al. Lead-free perovskite-based bifunctional device for both photoelectric conversion and energy storage. ACS Appl Energy Mater 4, 7952–7958 (2021). doi: 10.1021/acsaem.1c01272

    CrossRef Google Scholar

    [35] Marunchenko AA, Baranov MA, Ushakova EV, Ryabov DR, Pushkarev AP et al. Single-walled carbon nanotube thin film for flexible and highly responsive perovskite photodetector. Adv Funct Mater 32, 2109834 (2022). doi: 10.1002/adfm.202109834

    CrossRef Google Scholar

    [36] Manousakis E. Optimizing the role of impact ionization in conventional insulators. Sci Rep 9, 20395 (2019). doi: 10.1038/s41598-019-56974-y

    CrossRef Google Scholar

    [37] Xu ZH, Yu YG, Niaz IA, Chen UM, Arya S et al. Discovery of ionic impact ionization (I3) in perovskites triggered by a single photon. arXiv: 1906.02475, 2019.https://doi.org/10.48550/arXiv.1906.02475

    Google Scholar

    [38] Xu H, Wang XC, Li Y, Cai L, Tan YS et al. Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display. J Phys Chem Lett 11, 3689–3698 (2020). doi: 10.1021/acs.jpclett.0c00792

    CrossRef Google Scholar

    [39] Zhou NJ, Bekenstein Y, Eisler CN, Zhang DD, Schwartzberg AM et al. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci Adv 5, eaav8141 (2019). doi: 10.1126/sciadv.aav8141

    CrossRef Google Scholar

    [40] Khabushev EM, Krasnikov DV, Zaremba OT, Tsapenko AP, Goldt AE et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J Phys Chem Lett 10, 6962–6966 (2019). doi: 10.1021/acs.jpclett.9b02777

    CrossRef Google Scholar

    [41] Anoshkin IV, Nasibulin AG, Tian Y, Liu BL, Jiang H et al. Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method. Carbon 78, 130–136 (2014). doi: 10.1016/j.carbon.2014.06.057

    CrossRef Google Scholar

    [42] Tsapenko AP, Goldt AE, Shulga E, Popov ZI, Maslakov KI et al. Highly conductive and transparent films of HAuCl4-doped single-walled carbon nanotubes for flexible applications. Carbon 130, 448–457 (2018). doi: 10.1016/j.carbon.2018.01.016

    CrossRef Google Scholar

    [43] Kaskela A, Nasibulin AG, Timmermans MY, Aitchison B, Papadimitratos A et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett 10, 4349–4355 (2010). doi: 10.1021/nl101680s

    CrossRef Google Scholar

    [44] Tao SX, Schmidt I, Brocks G, Jiang JK, Tranca I et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat Commun 10, 2560 (2019). doi: 10.1038/s41467-019-10468-7

    CrossRef Google Scholar

    [45] Saidaminov MI, Haque MA, Almutlaq J, Sarmah S, Miao XH et al. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv Opt Mater 5, 1600704 (2017). doi: 10.1002/adom.201600704

    CrossRef Google Scholar

    [46] Yang Z, Surrente A, Galkowski K, Miyata A, Portugall O et al. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett 2, 1621–1627 (2017). doi: 10.1021/acsenergylett.7b00416

    CrossRef Google Scholar

    [47] Akkerman QA, Motti SG, Srimath Kandada AR, Mosconi E, D’innocenzo V et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J Am Chem Soc 138, 1010–1016 (2016). doi: 10.1021/jacs.5b12124

    CrossRef Google Scholar

    [48] Varshni YP. Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (I). Phys Status Solidi (B) 19, 459–514 (1967). doi: 10.1002/pssb.19670190202

    CrossRef Google Scholar

    [49] Adachi S. Properties of Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons, Ltd. , Hoboken, 2005).

    Google Scholar

    [50] Jacoboni C, Canali C, Ottaviani G, Quaranta AA. A review of some charge transport properties of silicon. Solid State Electron 20, 77–89 (1977). doi: 10.1016/0038-1101(77)90054-5

    CrossRef Google Scholar

    [51] del Alamo JA, Swanson RM. Modelling of minority-carrier transport in heavily doped silicon emitters. Solid State Electron 30, 1127–1136 (1987). doi: 10.1016/0038-1101(87)90077-3

    CrossRef Google Scholar

    [52] Tyagi MS, Van Overstraeten R. Minority carrier recombination in heavily-doped silicon. Solid State Electron 26, 577–597 (1983). doi: 10.1016/0038-1101(83)90174-0

    CrossRef Google Scholar

    [53] Piprek J. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Academic Press, San Diego, 2003).

    Google Scholar

    [54] Sze SM, Li YM, Ng KK. Physics of Semiconductor Devices (John Wiley & Sons, Ltd. , New York, 2021).

    Google Scholar

    [55] Atourki L, Vega E, Mollar M, Marí B, Kirou H et al. Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3-xIx (0 ≤ x ≤ 1). J Alloys Compd 702, 404–409 (2017). doi: 10.1016/j.jallcom.2017.01.205

    CrossRef Google Scholar

    [56] Mikhailova A, Rogachev MP. Impact ionization and Auger recombination in InAs. Sov Phys Semicond 10, 866–871 (1976).

    Google Scholar

  • Supplementary information ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint