Citation: | Wang YD, Wang YW, Dong YL, Zhou L, Kang JL et al. 2D Nb2CTx MXene/MoS2 heterostructure construction for nonlinear optical absorption modulation. Opto-Electron Adv 6, 220162 (2023). doi: 10.29026/oea.2023.220162 |
[1] | Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). doi: 10.1126/science.1102896 |
[2] | Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098 |
[3] | Sun ZP, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat Photonics 10, 227–238 (2016). doi: 10.1038/nphoton.2016.15 |
[4] | Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat Photonics 4, 611–622 (2010). doi: 10.1038/nphoton.2010.186 |
[5] | Chernikov A, Berkelbach TC, Hill HM, Rigosi A, Li YL et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys Rev Lett 113, 076802 (2014). doi: 10.1103/PhysRevLett.113.076802 |
[6] | Wang YW, Deng ZL, Hu DJ, Yuan J, Ou QD et al. Atomically thin noble metal dichalcogenides for phase-regulated meta-optics. Nano Lett 20, 7811–7818 (2020). doi: 10.1021/acs.nanolett.0c01805 |
[7] | Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006 |
[8] | Zhang GW, Huang SY, Wang FJ, Xing QX, Song CY et al. The optical conductivity of few-layer black phosphorus by infrared spectroscopy. Nat Commun 11, 1847 (2020). doi: 10.1038/s41467-020-15699-7 |
[9] | Wang ZT, Xu YH, Dhanabalan SC, Sophia J, Zhao CJ et al. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photonics J 8, 1503310 (2016). |
[10] | Wu LM, Huang WC, Wang YZ, Zhao JL, Ma DT et al. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv Funct Mater 29, 1806346 (2019). doi: 10.1002/adfm.201806346 |
[11] | Wu LM, Dong YZ, Zhao JL, Ma DT, Huang WC et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv Mater 31, 1807981 (2019). doi: 10.1002/adma.201807981 |
[12] | Xie ZJ, Zhang F, Liang ZM, Fan TJ, Li ZJ et al. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photonics Res 7, 494–502 (2019). doi: 10.1364/PRJ.7.000494 |
[13] | Ren J, Lin H, Zheng XR, Lei WW, Liu D et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film. Opto-Electron Sci 1, 210013 (2022). doi: 10.29026/oes.2022.210013 |
[14] | Wang YW, Zhou L, Zhong MZ, Liu YP, Xiao S et al. Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Res 15, 3675–3694 (2022). doi: 10.1007/s12274-021-3979-6 |
[15] | Wang YW, Liu S, Zeng BW, Huang H, Xiao J et al. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots. Nanoscale 9, 4683–4690 (2017). doi: 10.1039/C6NR09235G |
[16] | Wei H, Wang YD, Wang YW, Fan WX, Zhou L et al. Giant two-photon absorption in MXene quantum dots. Opt Express 30, 8482–8493 (2022). doi: 10.1364/OE.450617 |
[17] | Wu LM, Fan TJ, Wei SR, Xu YJ, Zhang Y et al. All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability. Opto-Electron Adv 5, 200046 (2022). doi: 10.29026/oea.2022.200046 |
[18] | Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23, 4248–4253 (2011). doi: 10.1002/adma.201102306 |
[19] | Frey NC, Wang J, Bellido GIV, Anasori B, Gogotsi Y et al. Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano 13, 3031–3041 (2019). doi: 10.1021/acsnano.8b08014 |
[20] | VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). doi: 10.1126/science.abf1581 |
[21] | Maleski K, Shuck CE, Fafarman AT, Gogotsi Y. The broad chromatic range of two-dimensional transition metal carbides. Adv Opt Mater 9, 2001563 (2021). doi: 10.1002/adom.202001563 |
[22] | Han MK, Maleski K, Shuck CE, Yang YZ, Glazar JT et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J Am Chem Soc 142, 19110–19118 (2020). doi: 10.1021/jacs.0c07395 |
[23] | Sharbirin AS, Akhtar S, Kim J. Light-emitting MXene quantum dots. Opto-Electron Adv 4, 200077 (2021). doi: 10.29026/oea.2021.200077 |
[24] | Lin H, Wang YW, Gao SS, Chen Y, Shi JL. Theranostic 2D tantalum carbide (MXene). Adv Mater 30, 1703284 (2018). doi: 10.1002/adma.201703284 |
[25] | Agresti A, Pazniak A, Pescetelli S, Di Vito A, Rossi D et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat Mater 18, 1228–1234 (2019). doi: 10.1038/s41563-019-0478-1 |
[26] | Dong YC, Chertopalov S, Maleski K, Anasori B, Hu LY et al. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv Mater 30, 1705714 (2018). doi: 10.1002/adma.201705714 |
[27] | Wang YD, Wang YW, Chen KQ, Qi K, Xue TY et al. Niobium carbide MXenes with broad-band nonlinear optical response and ultrafast carrier dynamics. ACS Nano 14, 10492–10502 (2020). doi: 10.1021/acsnano.0c04390 |
[28] | Li H, Chen SY, Boukhvalov DW, Yu ZY, Humphrey MG et al. Switching the nonlinear optical absorption of titanium carbide MXene by modulation of the surface terminations. ACS Nano 16, 394–404 (2022). doi: 10.1021/acsnano.1c07060 |
[29] | Wang Y, Wang Y, He J. 2D Transition Metal Carbides (MXenes) for Third Order Nonlinear Optics: Status and Prospects. Laser Photonics Rev 2023, 2200733. https://doi.org/10.1002/lpor.202200733 |
[30] | Liu Y, Weiss NO, Duan XD, Cheng HC, Huang Y et al. Van der Waals heterostructures and devices. Nat Rev Mater 1, 16042 (2016). doi: 10.1038/natrevmats.2016.42 |
[31] | Li ZW, Yang W, Huang M, Yang X, Zhu CG et al. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. Opto-Electron Adv 4, 210017 (2021). doi: 10.29026/oea.2021.210017 |
[32] | Chen JY, Eul T, Lyu L, Li YL, Hu XY et al. Tracing the formation of oxygen vacancies at the conductive LaAlO3/SrTiO3 interface via photoemission. Opto-Electron Sci 1, 210011 (2022). doi: 10.29026/oes.2022.210011 |
[33] | Tagliabue G, DuChene JS, Abdellah M, Habib A, Gosztola DJ et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat Mater 19, 1312–1318 (2020). doi: 10.1038/s41563-020-0737-1 |
[34] | Conley HJ, Wang B, Ziegler JI, Haglund RF Jr, Pantelides ST et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13, 3626–3630 (2013). doi: 10.1021/nl4014748 |
[35] | Ma K, Jiang H, Hu Y, Li C. 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and Stable Li/Na-ion batteries. Adv Funct Mater 28, 1804306 (2018). doi: 10.1002/adfm.201804306 |
[36] | Yuan ZY, Wang LL, Li DD, Cao JM, Han W. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries. ACS Nano 15, 7439–7450 (2021). doi: 10.1021/acsnano.1c00849 |
[37] | Wang X, Li H, Li H, Lin S, Ding W et al. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv Funct Mater 30, 0190302 (2020). doi: 10.1002/adfm.201910302 |
[38] | Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 140, A1133–A1138 (1965). doi: 10.1103/PhysRev.140.A1133 |
[39] | Wang V, Xu N, Liu JC, Tang G, Geng WT. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 267, 108033 (2021). doi: 10.1016/j.cpc.2021.108033 |
[40] | Wang YD, Wang YW, Dong YL, Zhou L, Wei H et al. The nonlinear optical transition bleaching in tellurene. Nanoscale 13, 15882–15890 (2021). doi: 10.1039/D1NR03639D |
[41] | Luo Y, Cheng C, Chen HJ, Liu K, Zhou XL. Systematic investigations of the electron, phonon and elastic properties of monolayer M2C (M = V, Nb, Ta) by first-principles calculations. J Phys Condens Matter 31, 405703 (2019). doi: 10.1088/1361-648X/ab2847 |
[42] | Lin H, Gao SS, Dai C, Chen Y, Shi JL. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc 139, 16235–16247 (2017). doi: 10.1021/jacs.7b07818 |
[43] | Geng XM, Zhang YL, Han Y, Li JX, Yang L et al. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett 17, 1825–1832 (2017). doi: 10.1021/acs.nanolett.6b05134 |
[44] | Shen CJ, Wang LB, Zhou AG, Wang B, Wang XL et al. Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nanomaterials 8, 80 (2018). doi: 10.3390/nano8020080 |
[45] | Schultz T, Frey NC, Hantanasirisakul K, Park S, May SJ et al. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem Mater 31, 6590–6597 (2019). doi: 10.1021/acs.chemmater.9b00414 |
[46] | Zong H, Hu L, Gong SJ, Yu K, Zhu ZQ. Flower-petal-like Nb2C MXene combined with MoS2 as bifunctional catalysts towards enhanced lithium-sulfur batteries and hydrogen evolution. Electrochim Acta 404, 139781 (2022). doi: 10.1016/j.electacta.2021.139781 |
[47] | Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci 362, 406–417 (2016). doi: 10.1016/j.apsusc.2015.11.089 |
[48] | Darlinski A, Halbritter J. Angle-resolved XPS studies of oxides at NbN, NbC, and Nb surfaces. Surf Interface Anal 10, 223–237 (1987). doi: 10.1002/sia.740100502 |
[49] | Sarma DD, Rao CNR. XPES studies of oxides of second- and third-row transition metals including rare earths. J Electron Spectrosc Relat Phenom 20, 25–45 (1980). doi: 10.1016/0368-2048(80)85003-1 |
[50] | Woo HC, Nam IS, Lee JS, Chung JS, Lee KH et al. Room-temperature oxidation of K2CO3MoS2 catalysts and its effects on alcohol synthesis from CO and H2. J Catal 138, 525–535 (1992). doi: 10.1016/0021-9517(92)90304-Z |
[51] | El-Demellawi JK, Lopatin S, Yin J, Mohammed OF, Alshareef HN. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano 12, 8485–8493 (2018). doi: 10.1021/acsnano.8b04029 |
[52] | Helander MG, Greiner MT, Wang ZB, Lu ZH. Pitfalls in measuring work function using photoelectron spectroscopy. Appl Surf Sci 256, 2602–2605 (2010). doi: 10.1016/j.apsusc.2009.11.002 |
[53] | Helander MG, Greiner MT, Wang ZB, Tang WM, Lu ZH. Work function of fluorine doped tin oxide. J Vac Sci Technol A 29, 011019 (2011). |
[54] | Kahn A. Fermi level, work function and vacuum level. Mater Horiz 3, 7–10 (2016). doi: 10.1039/C5MH00160A |
[55] | Liu YY, Xiao H, Goddard III WA. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J Am Chem Soc 138, 15853–15856 (2016). doi: 10.1021/jacs.6b10834 |
[56] | Wang KP, Wang J, Fan JT, Lotya M, O’Neill A et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7, 9260–9267 (2013). doi: 10.1021/nn403886t |
[57] | Jiang XT, Liu SX, Liang WY, Luo SJ, He ZL et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon Rev 12, 1700229 (2018). doi: 10.1002/lpor.201700229 |
[58] | Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19, 3077–3083 (2009). doi: 10.1002/adfm.200901007 |
[59] | Breusing M, Kuehn S, Winzer T, Malić E, Milde F et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys Rev B 83, 153410 (2011). doi: 10.1103/PhysRevB.83.153410 |
Supplementary information for 2D Nb2CTx MXene/MoS2 heterostructure construction for nonlinear optical absorption modulation |
Characterization of the Nb2C/MoS2 heterostructure. (a) Schematic illustration of the in situ synthesis of the Nb2C/MoS2. (b) Transmission electron microscope (TEM) image of Nb2C/MoS2. (c) Elemental mapping images of Nb2C/MoS2, upper left plane: Nb (yellow), upper right plane: Mo (cyan), left lower plane: S (blue), and right lower plane Merge. (d) High-resolution transmission electron microscopy (HRTEM) of Nb2C/MoS2. (e) Selected area electron diffraction (SAED) pattern of Nb2C/MoS2. (f) Raman spectra of Nb2C/MoS2. (g) XRD pattern of Nb2C/MoS2, Nb2C, and Nb2AlC.
XPS spectra of the Nb2C/MoS2 and Nb2C: (a) C 1s, (b) Nb 3d, (c) O 1s, (d) S 2p, (e) F 1s, and (f) valence band.
The calculated work functions of (a) Nb2CF2/MoS2, (b) Nb2CO2/MoS2, (c) Nb2C(OH)2/MoS2. The charge-transfer and band alinement diagram of (d) Nb2CO2/MoS2 and (e) Nb2C(OH)2/MoS2.
(a) UV-vis spectrum of Nb2C solution with different concentrations. Inset: absorbance as a function of concentration. (b) DFT calculated absorption spectrum of Nb2C with different terminations. (c) UV-vis spectrum of Nb2C/MoS2 solution. (d) DFT calculated absorption spectrum of Nb2C/MoS2 with different terminations.
OA Z-scan results of Nb2C/MoS2 and Nb2C with an excitation wavelength of (a) 1300 nm and (b) 1550 nm. The corresponding nonlinear transmittance curves under excitation optical intensity are shown in (c) and (d). (e) Histogram of Is and αNL. (f) Schematic diagram of the transfer process of photogenerated carriers and enhanced nonlinear absorption process in Nb2C/MoS2.