Wang YD, Wang YW, Dong YL, Zhou L, Kang JL et al. 2D Nb2CTx MXene/MoS2 heterostructure construction for nonlinear optical absorption modulation. Opto-Electron Adv 6, 220162 (2023). doi: 10.29026/oea.2023.220162
Citation: Wang YD, Wang YW, Dong YL, Zhou L, Kang JL et al. 2D Nb2CTx MXene/MoS2 heterostructure construction for nonlinear optical absorption modulation. Opto-Electron Adv 6, 220162 (2023). doi: 10.29026/oea.2023.220162

Article Open Access

2D Nb2CTx MXene/MoS2 heterostructure construction for nonlinear optical absorption modulation

More Information
  • Two-dimensional (2D) nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin, compact, and integrated optoelectronics devices and photonic elements. 2D carbides and nitrides of transition metals (MXenes) are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics. However, the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient. To address this issue, we rationally designed andin situsynthesized a 2D Nb2C/MoS2 heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance. Excellent agreement between experimental and theoretical results demonstrated that the Nb2C/MoS2 inherited the preponderance of Nb2C and MoS2 in absorption at different wavelengths, resulting in the broadband enhanced optical absorption characteristics. In addition to linear optical modulation, we also achieved stronger near infrared nonlinear optical modulation, with a nonlinear absorption coefficient of Nb2C/MoS2 being more than two times that of the pristine Nb2C. These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy (XPS) experiment and first-principal theory calculation. The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.
  • 加载中
  • [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). doi: 10.1126/science.1102896

    CrossRef Google Scholar

    [2] Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098

    CrossRef Google Scholar

    [3] Sun ZP, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat Photonics 10, 227–238 (2016). doi: 10.1038/nphoton.2016.15

    CrossRef Google Scholar

    [4] Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat Photonics 4, 611–622 (2010). doi: 10.1038/nphoton.2010.186

    CrossRef Google Scholar

    [5] Chernikov A, Berkelbach TC, Hill HM, Rigosi A, Li YL et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys Rev Lett 113, 076802 (2014). doi: 10.1103/PhysRevLett.113.076802

    CrossRef Google Scholar

    [6] Wang YW, Deng ZL, Hu DJ, Yuan J, Ou QD et al. Atomically thin noble metal dichalcogenides for phase-regulated meta-optics. Nano Lett 20, 7811–7818 (2020). doi: 10.1021/acs.nanolett.0c01805

    CrossRef Google Scholar

    [7] Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006

    CrossRef Google Scholar

    [8] Zhang GW, Huang SY, Wang FJ, Xing QX, Song CY et al. The optical conductivity of few-layer black phosphorus by infrared spectroscopy. Nat Commun 11, 1847 (2020). doi: 10.1038/s41467-020-15699-7

    CrossRef Google Scholar

    [9] Wang ZT, Xu YH, Dhanabalan SC, Sophia J, Zhao CJ et al. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photonics J 8, 1503310 (2016).

    Google Scholar

    [10] Wu LM, Huang WC, Wang YZ, Zhao JL, Ma DT et al. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv Funct Mater 29, 1806346 (2019). doi: 10.1002/adfm.201806346

    CrossRef Google Scholar

    [11] Wu LM, Dong YZ, Zhao JL, Ma DT, Huang WC et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv Mater 31, 1807981 (2019). doi: 10.1002/adma.201807981

    CrossRef Google Scholar

    [12] Xie ZJ, Zhang F, Liang ZM, Fan TJ, Li ZJ et al. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photonics Res 7, 494–502 (2019). doi: 10.1364/PRJ.7.000494

    CrossRef Google Scholar

    [13] Ren J, Lin H, Zheng XR, Lei WW, Liu D et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film. Opto-Electron Sci 1, 210013 (2022). doi: 10.29026/oes.2022.210013

    CrossRef Google Scholar

    [14] Wang YW, Zhou L, Zhong MZ, Liu YP, Xiao S et al. Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Res 15, 3675–3694 (2022). doi: 10.1007/s12274-021-3979-6

    CrossRef Google Scholar

    [15] Wang YW, Liu S, Zeng BW, Huang H, Xiao J et al. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots. Nanoscale 9, 4683–4690 (2017). doi: 10.1039/C6NR09235G

    CrossRef Google Scholar

    [16] Wei H, Wang YD, Wang YW, Fan WX, Zhou L et al. Giant two-photon absorption in MXene quantum dots. Opt Express 30, 8482–8493 (2022). doi: 10.1364/OE.450617

    CrossRef Google Scholar

    [17] Wu LM, Fan TJ, Wei SR, Xu YJ, Zhang Y et al. All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability. Opto-Electron Adv 5, 200046 (2022). doi: 10.29026/oea.2022.200046

    CrossRef Google Scholar

    [18] Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23, 4248–4253 (2011). doi: 10.1002/adma.201102306

    CrossRef Google Scholar

    [19] Frey NC, Wang J, Bellido GIV, Anasori B, Gogotsi Y et al. Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano 13, 3031–3041 (2019). doi: 10.1021/acsnano.8b08014

    CrossRef Google Scholar

    [20] VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). doi: 10.1126/science.abf1581

    CrossRef Google Scholar

    [21] Maleski K, Shuck CE, Fafarman AT, Gogotsi Y. The broad chromatic range of two-dimensional transition metal carbides. Adv Opt Mater 9, 2001563 (2021). doi: 10.1002/adom.202001563

    CrossRef Google Scholar

    [22] Han MK, Maleski K, Shuck CE, Yang YZ, Glazar JT et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J Am Chem Soc 142, 19110–19118 (2020). doi: 10.1021/jacs.0c07395

    CrossRef Google Scholar

    [23] Sharbirin AS, Akhtar S, Kim J. Light-emitting MXene quantum dots. Opto-Electron Adv 4, 200077 (2021). doi: 10.29026/oea.2021.200077

    CrossRef Google Scholar

    [24] Lin H, Wang YW, Gao SS, Chen Y, Shi JL. Theranostic 2D tantalum carbide (MXene). Adv Mater 30, 1703284 (2018). doi: 10.1002/adma.201703284

    CrossRef Google Scholar

    [25] Agresti A, Pazniak A, Pescetelli S, Di Vito A, Rossi D et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat Mater 18, 1228–1234 (2019). doi: 10.1038/s41563-019-0478-1

    CrossRef Google Scholar

    [26] Dong YC, Chertopalov S, Maleski K, Anasori B, Hu LY et al. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv Mater 30, 1705714 (2018). doi: 10.1002/adma.201705714

    CrossRef Google Scholar

    [27] Wang YD, Wang YW, Chen KQ, Qi K, Xue TY et al. Niobium carbide MXenes with broad-band nonlinear optical response and ultrafast carrier dynamics. ACS Nano 14, 10492–10502 (2020). doi: 10.1021/acsnano.0c04390

    CrossRef Google Scholar

    [28] Li H, Chen SY, Boukhvalov DW, Yu ZY, Humphrey MG et al. Switching the nonlinear optical absorption of titanium carbide MXene by modulation of the surface terminations. ACS Nano 16, 394–404 (2022). doi: 10.1021/acsnano.1c07060

    CrossRef Google Scholar

    [29] Wang Y, Wang Y, He J. 2D Transition Metal Carbides (MXenes) for Third Order Nonlinear Optics: Status and Prospects. Laser Photonics Rev 2023, 2200733. https://doi.org/10.1002/lpor.202200733

    Google Scholar

    [30] Liu Y, Weiss NO, Duan XD, Cheng HC, Huang Y et al. Van der Waals heterostructures and devices. Nat Rev Mater 1, 16042 (2016). doi: 10.1038/natrevmats.2016.42

    CrossRef Google Scholar

    [31] Li ZW, Yang W, Huang M, Yang X, Zhu CG et al. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. Opto-Electron Adv 4, 210017 (2021). doi: 10.29026/oea.2021.210017

    CrossRef Google Scholar

    [32] Chen JY, Eul T, Lyu L, Li YL, Hu XY et al. Tracing the formation of oxygen vacancies at the conductive LaAlO3/SrTiO3 interface via photoemission. Opto-Electron Sci 1, 210011 (2022). doi: 10.29026/oes.2022.210011

    CrossRef Google Scholar

    [33] Tagliabue G, DuChene JS, Abdellah M, Habib A, Gosztola DJ et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat Mater 19, 1312–1318 (2020). doi: 10.1038/s41563-020-0737-1

    CrossRef Google Scholar

    [34] Conley HJ, Wang B, Ziegler JI, Haglund RF Jr, Pantelides ST et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13, 3626–3630 (2013). doi: 10.1021/nl4014748

    CrossRef Google Scholar

    [35] Ma K, Jiang H, Hu Y, Li C. 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and Stable Li/Na-ion batteries. Adv Funct Mater 28, 1804306 (2018). doi: 10.1002/adfm.201804306

    CrossRef Google Scholar

    [36] Yuan ZY, Wang LL, Li DD, Cao JM, Han W. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries. ACS Nano 15, 7439–7450 (2021). doi: 10.1021/acsnano.1c00849

    CrossRef Google Scholar

    [37] Wang X, Li H, Li H, Lin S, Ding W et al. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv Funct Mater 30, 0190302 (2020). doi: 10.1002/adfm.201910302

    CrossRef Google Scholar

    [38] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 140, A1133–A1138 (1965). doi: 10.1103/PhysRev.140.A1133

    CrossRef Google Scholar

    [39] Wang V, Xu N, Liu JC, Tang G, Geng WT. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 267, 108033 (2021). doi: 10.1016/j.cpc.2021.108033

    CrossRef Google Scholar

    [40] Wang YD, Wang YW, Dong YL, Zhou L, Wei H et al. The nonlinear optical transition bleaching in tellurene. Nanoscale 13, 15882–15890 (2021). doi: 10.1039/D1NR03639D

    CrossRef Google Scholar

    [41] Luo Y, Cheng C, Chen HJ, Liu K, Zhou XL. Systematic investigations of the electron, phonon and elastic properties of monolayer M2C (M = V, Nb, Ta) by first-principles calculations. J Phys Condens Matter 31, 405703 (2019). doi: 10.1088/1361-648X/ab2847

    CrossRef Google Scholar

    [42] Lin H, Gao SS, Dai C, Chen Y, Shi JL. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc 139, 16235–16247 (2017). doi: 10.1021/jacs.7b07818

    CrossRef Google Scholar

    [43] Geng XM, Zhang YL, Han Y, Li JX, Yang L et al. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett 17, 1825–1832 (2017). doi: 10.1021/acs.nanolett.6b05134

    CrossRef Google Scholar

    [44] Shen CJ, Wang LB, Zhou AG, Wang B, Wang XL et al. Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nanomaterials 8, 80 (2018). doi: 10.3390/nano8020080

    CrossRef Google Scholar

    [45] Schultz T, Frey NC, Hantanasirisakul K, Park S, May SJ et al. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem Mater 31, 6590–6597 (2019). doi: 10.1021/acs.chemmater.9b00414

    CrossRef Google Scholar

    [46] Zong H, Hu L, Gong SJ, Yu K, Zhu ZQ. Flower-petal-like Nb2C MXene combined with MoS2 as bifunctional catalysts towards enhanced lithium-sulfur batteries and hydrogen evolution. Electrochim Acta 404, 139781 (2022). doi: 10.1016/j.electacta.2021.139781

    CrossRef Google Scholar

    [47] Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci 362, 406–417 (2016). doi: 10.1016/j.apsusc.2015.11.089

    CrossRef Google Scholar

    [48] Darlinski A, Halbritter J. Angle-resolved XPS studies of oxides at NbN, NbC, and Nb surfaces. Surf Interface Anal 10, 223–237 (1987). doi: 10.1002/sia.740100502

    CrossRef Google Scholar

    [49] Sarma DD, Rao CNR. XPES studies of oxides of second- and third-row transition metals including rare earths. J Electron Spectrosc Relat Phenom 20, 25–45 (1980). doi: 10.1016/0368-2048(80)85003-1

    CrossRef Google Scholar

    [50] Woo HC, Nam IS, Lee JS, Chung JS, Lee KH et al. Room-temperature oxidation of K2CO3MoS2 catalysts and its effects on alcohol synthesis from CO and H2. J Catal 138, 525–535 (1992). doi: 10.1016/0021-9517(92)90304-Z

    CrossRef Google Scholar

    [51] El-Demellawi JK, Lopatin S, Yin J, Mohammed OF, Alshareef HN. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano 12, 8485–8493 (2018). doi: 10.1021/acsnano.8b04029

    CrossRef Google Scholar

    [52] Helander MG, Greiner MT, Wang ZB, Lu ZH. Pitfalls in measuring work function using photoelectron spectroscopy. Appl Surf Sci 256, 2602–2605 (2010). doi: 10.1016/j.apsusc.2009.11.002

    CrossRef Google Scholar

    [53] Helander MG, Greiner MT, Wang ZB, Tang WM, Lu ZH. Work function of fluorine doped tin oxide. J Vac Sci Technol A 29, 011019 (2011).

    Google Scholar

    [54] Kahn A. Fermi level, work function and vacuum level. Mater Horiz 3, 7–10 (2016). doi: 10.1039/C5MH00160A

    CrossRef Google Scholar

    [55] Liu YY, Xiao H, Goddard III WA. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J Am Chem Soc 138, 15853–15856 (2016). doi: 10.1021/jacs.6b10834

    CrossRef Google Scholar

    [56] Wang KP, Wang J, Fan JT, Lotya M, O’Neill A et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7, 9260–9267 (2013). doi: 10.1021/nn403886t

    CrossRef Google Scholar

    [57] Jiang XT, Liu SX, Liang WY, Luo SJ, He ZL et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon Rev 12, 1700229 (2018). doi: 10.1002/lpor.201700229

    CrossRef Google Scholar

    [58] Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19, 3077–3083 (2009). doi: 10.1002/adfm.200901007

    CrossRef Google Scholar

    [59] Breusing M, Kuehn S, Winzer T, Malić E, Milde F et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys Rev B 83, 153410 (2011). doi: 10.1103/PhysRevB.83.153410

    CrossRef Google Scholar

  • Supplementary information for 2D Nb2CTx MXene/MoS2 heterostructure construction for nonlinear optical absorption modulation
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint