Jiang K, Liang SM, Sun XJ, Ben JW, Qu L et al. Rapid inactivation of human respiratory RNA viruses by deep ultraviolet irradiation from light-emitting diodes on a high-temperature-annealed AlN/Sapphire template. Opto-Electron Adv 6, 230004 (2023). doi: 10.29026/oea.2023.230004
Citation: Jiang K, Liang SM, Sun XJ, Ben JW, Qu L et al. Rapid inactivation of human respiratory RNA viruses by deep ultraviolet irradiation from light-emitting diodes on a high-temperature-annealed AlN/Sapphire template. Opto-Electron Adv 6, 230004 (2023). doi: 10.29026/oea.2023.230004

Article Open Access

Rapid inactivation of human respiratory RNA viruses by deep ultraviolet irradiation from light-emitting diodes on a high-temperature-annealed AlN/Sapphire template

More Information
  • Efficient and eco-friendly disinfection of air-borne human respiratory RNA viruses is pursued in both public environment and portable usage. The AlGaN-based deep ultraviolet (DUV) light-emission diode (LED) has high practical potentials because of its advantages of variable wavelength, rapid sterilization, environmental protection, and miniaturization. Therefore, whether the emission wavelength has effects on the disinfection as well as whether the device is feasible to sterilize various respiratory RNA viruses under portable conditions is crucial. Here, we fabricate AlGaN-based DUV LEDs with different wavelength on high-temperature-annealed (HTA) AlN/Sapphire templates and investigate the inactivation effects for several respiratory RNA viruses. The AlN/AlGaN superlattices are employed between the template and upper n-AlGaN to release the strong compressive stress (SCS), improving the crystal quality and interface roughness. DUV LEDs with the wavelength of 256, 265, and 278 nm, corresponding to the light output power of 6.8, 9.6, and 12.5 mW, are realized, among which the 256 nm-LED shows the most potent inactivation effect in human respiratory RNA viruses, including SARS-CoV-2, influenza A virus (IAV), and human parainfluenza virus (HPIV), at a similar light power density (LPD) of ~0.8 mW/cm2 for 10 s. These results will contribute to the advanced DUV LED application of disinfecting viruses with high potency and broad spectrum in a portable and eco-friendly use.
  • 加载中
  • [1] Calderaro A, De Conto F, Buttrini M, Piccolo G, Montecchini S et al. Human respiratory viruses, including SARS-CoV-2, circulating in the winter season 2019–2020 in Parma, Northern Italy. Int J Infect Dis 102, 79–84 (2021). doi: 10.1016/j.ijid.2020.09.1473

    CrossRef Google Scholar

    [2] https://covid19.who.int.

    Google Scholar

    [3] https://www.who.int/publications/i/item/who-wer-9625-241-264.

    Google Scholar

    [4] Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M. Transmission of influenza A in human beings. Lancet Infect Dis 7, 257–265 (2007). doi: 10.1016/S1473-3099(07)70029-4

    CrossRef Google Scholar

    [5] Duguid JP. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. Epidemiol Infect 44, 471–479 (1946). doi: 10.1017/S0022172400019288

    CrossRef Google Scholar

    [6] Liu Y, Ning Z, Chen Y, Guo M, Liu YL et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582, 557–560 (2020). doi: 10.1038/s41586-020-2271-3

    CrossRef Google Scholar

    [7] Cowling BJ, Ip DKM, Fang VJ, Suntarattiwong P, Olsen SJ et al. Aerosol transmission is an important mode of influenza A virus spread. Nat Commun 4, 1935 (2013). doi: 10.1038/ncomms2922

    CrossRef Google Scholar

    [8] Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol 19, 528–545 (2021). doi: 10.1038/s41579-021-00535-6

    CrossRef Google Scholar

    [9] Chin AWH, Lai AM Y, Peiris M, Poon LLM. SARS-CoV-2 Omicron variant is more stable than the ancestral strain on various surfaces. bioRxiv (2022).https://doi.org/10.1101/2022.03.09.483703

    Google Scholar

    [10] Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382, 1564–1567 (2020). doi: 10.1056/NEJMc2004973

    CrossRef Google Scholar

    [11] Bean B, Moore BM, Sterner B, Peterson LR, Gerding ND et al. Survival of influenza viruses on environmental surfaces. J Infect Dis 146, 47–51 (1982). doi: 10.1093/infdis/146.1.47

    CrossRef Google Scholar

    [12] Zhou P, Yang XL, Wang XG, Hu B, Zhang L et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). doi: 10.1038/s41586-020-2012-7

    CrossRef Google Scholar

    [13] Wise HM, Foeglein A, Sun JC, Dalton RM, Patel S et al. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 83, 8021–8031 (2009). doi: 10.1128/JVI.00826-09

    CrossRef Google Scholar

    [14] Eisfeld AJ, Neumann G, Kawaoka Y. At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol 13, 28–41 (2015). doi: 10.1038/nrmicro3367

    CrossRef Google Scholar

    [15] Guerrero- Beltr·n JA, Barbosa- C·novas GV. Advantages and limitations on processing foods by UV light. Food Sci Technol Int 10, 137–147 (2004). doi: 10.1177/1082013204044359

    CrossRef Google Scholar

    [16] Nishisaka-Nonaka R, Mawatari K, Yamamoto T, Kojima M, Shimohata T et al. Irradiation by ultraviolet light-emitting diodes inactivates influenza a viruses by inhibiting replication and transcription of viral RNA in host cells. J Photochem Photobiol B 189, 193–200 (2018). doi: 10.1016/j.jphotobiol.2018.10.017

    CrossRef Google Scholar

    [17] Lo CW, Matsuura R, Iimura K, Wada S, Shinjo A et al. UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins. Sci Rep 11, 13804 (2021). doi: 10.1038/s41598-021-93231-7

    CrossRef Google Scholar

    [18] Bosshard F, Armand F, Hamelin R, Kohn T. Mechanisms of human adenovirus inactivation by sunlight and UVC light as examined by quantitative PCR and quantitative proteomics. Appl Environ Microbiol 79, 1325–1332 (2013). doi: 10.1128/AEM.03457-12

    CrossRef Google Scholar

    [19] Sarigiannis DA, Karakitsios SP, Antonakopoulou MP, Gotti A. Exposure analysis of accidental release of mercury from compact fluorescent lamps (CFLs). Sci Total Environ 435-436, 306–315 (2012). doi: 10.1016/j.scitotenv.2012.07.026

    CrossRef Google Scholar

    [20] Nunayon SS, Zhang HH, Lai ACK. Comparison of disinfection performance of UVC-LED and conventional upper-room UVGI systems. Indoor Air 30, 180–191 (2020). doi: 10.1111/ina.12619

    CrossRef Google Scholar

    [21] Morrison G, Shaughnessy R, Shu S. Setting maximum emission rates from ozone emitting consumer appliances in the United States and Canada. Atmos Environ 45, 2009–2016 (2011). doi: 10.1016/j.atmosenv.2010.11.058

    CrossRef Google Scholar

    [22] Schalk S, Adam V, Arnold E, Brieden K, Voronov A et al. UV-lamps for disinfection and advanced oxidation-lamp types, technologies and applications. IUVA News 8, 32–37 (2006).

    Google Scholar

    [23] >Li DB, Jiang K, Sun XJ, Guo CL. AlGaN photonics: recent advances in materials, and ultraviolet devices. Adv Opt Photonics 10, 43–110 (2018). doi: 10.1364/AOP.10.000043

    CrossRef Google Scholar

    [24] Shatalov M, Sun WH, Lunev A, Hu XH, Dobrinsky A et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express 5, 082101 (2012). doi: 10.1143/APEX.5.082101

    CrossRef Google Scholar

    [25] Takano T, Mino T, Sakai J, Noguchi N, Tsubaki K et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express 10, 031002 (2017). doi: 10.7567/APEX.10.031002

    CrossRef Google Scholar

    [26] Khan MA, Maeda N, Yun J, Jo M, Yamada Y et al. Achieving 9.6% efficiency in 304 nm p-AlGaN UVB LED via increasing the holes injection and light reflectance. Sci Rep 12, 2591 (2022). doi: 10.1038/s41598-022-04876-x

    CrossRef Google Scholar

    [27] Luo W, Li T, Li YD, Wang HJ, Yuan Y et al. Watts-level ultraviolet-C LED integrated light sources for efficient surface and air sterilization. J Semicond 43, 072301 (2022). doi: 10.1088/1674-4926/43/7/072301

    CrossRef Google Scholar

    [28] Suzuki A, Emoto A, Shirai A, Nagamatsu K. Ultraviolet light-emitting diode (UV-LED) sterilization of citrus bacterial canker disease targeted for effective decontamination of citrus sudachi fruit. Biocontrol Sci 27, 1–7 (2022). doi: 10.4265/bio.27.1

    CrossRef Google Scholar

    [29] Lee YW, Yoon HD, Park JH, Ryu UC. Application of 265-nm UVC LED lighting to sterilization of typical gram negative and positive bacteria. J Korean Phys Soc 72, 1174–1178 (2018). doi: 10.3938/jkps.72.1174

    CrossRef Google Scholar

    [30] Kim BS, Youm S, Kim YK. Sterilization of harmful microorganisms in hydroponic cultivation using an ultraviolet LED light source. Sensor Mater 32, 3773–3785 (2020). doi: 10.18494/SAM.2020.2979

    CrossRef Google Scholar

    [31] Huang SY, Lin JC, Huang XQ, Wang WK. Large-area 280 nm LED flexible sterilization light source with improved thermal performance. Optik 248, 168109 (2021). doi: 10.1016/j.ijleo.2021.168109

    CrossRef Google Scholar

    [32] Oguma K, Rattanakul S, Masaike M. Inactivation of health-related microorganisms in water using UV light-emitting diodes. Water Supply 19, 1507–1514 (2019). doi: 10.2166/ws.2019.022

    CrossRef Google Scholar

    [33] Liu SF, Luo W, Li D, Yuan Y, Tong W et al. Sec-eliminating the SARS-CoV-2 by AlGaN based high power deep ultraviolet light source. Adv Funct Mater 31, 2008452 (2021). doi: 10.1002/adfm.202008452

    CrossRef Google Scholar

    [34] Bormann M, Alt M, Schipper L, de Sand L, Otte M et al. Disinfection of SARS-CoV-2 contaminated surfaces of personal items with UVC-LED disinfection boxes. Viruses 13, 598 (2021). doi: 10.3390/v13040598

    CrossRef Google Scholar

    [35] Shimoda H, Matsuda J, Iwasaki T, Hayasaka D. Efficacy of 265-nm ultraviolet light in inactivating infectious SARS-CoV-2. J Photochem Photobiol 7, 100050 (2021). doi: 10.1016/j.jpap.2021.100050

    CrossRef Google Scholar

    [36] Gerchman Y, Mamane H, Friedman N, Mandelboim M. UV-LED disinfection of Coronavirus: Wavelength effect. J Photochem Photobiol B 212, 112044 (2020). doi: 10.1016/j.jphotobiol.2020.112044

    CrossRef Google Scholar

    [37] Inagaki H, Saito A, Sugiyama H, Okabayashi T, Fujimoto S. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. Emerg Microbes Infect 9, 1744–1747 (2020). doi: 10.1080/22221751.2020.1796529

    CrossRef Google Scholar

    [38] Kojima M, Mawatari K, Emoto T, Nishisaka-Nonaka R, Bui TKN et al. Irradiation by a combination of different peak-wavelength ultraviolet-light emitting diodes enhances the inactivation of influenza A viruses. Microorganisms 8, 1014 (2020). doi: 10.3390/microorganisms8071014

    CrossRef Google Scholar

    [39] Sun XJ, Li DB, Chen YR, Song H, Jiang H et al. In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition. CrystEngComm 15, 6066–6073 (2013). doi: 10.1039/c3ce40755a

    CrossRef Google Scholar

    [40] Jiang K, Sun XJ, Ben JW, Jia YP, Liu HN et al. The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. CrystEngComm 20, 2720–2728 (2018). doi: 10.1039/C8CE00287H

    CrossRef Google Scholar

    [41] Zhang LS, Xu FJ, Wang JM, He CG, Guo WW et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci Rep 6, 35934 (2016). doi: 10.1038/srep35934

    CrossRef Google Scholar

    [42] Banal RG, Funato M, Kawakami Y. Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl Phys Lett 92, 241905 (2008). doi: 10.1063/1.2937445

    CrossRef Google Scholar

    [43] Ben JW, Xun XJ, Jia YP, Jiang K, Shi ZM et al. Defect evolution in AlN templates on PVD-AlN/sapphire substrates by thermal annealing. CrystEngComm 20, 4623–4629 (2018). doi: 10.1039/C8CE00770E

    CrossRef Google Scholar

    [44] Susilo N, Hagedorn S, Jaeger D, Miyake H, Zeimer U et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl Phys Lett 112, 041110 (2018). doi: 10.1063/1.5010265

    CrossRef Google Scholar

    [45] Uesugi K, Kuboya S, Shojiki K, Xiao SY, Nakamura T et al. 263 nm wavelength UV-C LED on face-to-face annealed sputter-deposited AlN with low screw- and mixed-type dislocation densities. Appl Phys Express 15, 055501 (2022). doi: 10.35848/1882-0786/ac66c2

    CrossRef Google Scholar

    [46] Miyake H, Lin CH, Tokoro K, Hiramatsu K. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J Cryst Growth 456, 155–159 (2016). doi: 10.1016/j.jcrysgro.2016.08.028

    CrossRef Google Scholar

    [47] Xiao SY, Suzuki R, Miyake H, Harada S, Ujihara T. Improvement mechanism of sputtered AlN films by high-temperature annealing. J Cryst Growth 502, 41–44 (2018). doi: 10.1016/j.jcrysgro.2018.09.002

    CrossRef Google Scholar

    [48] Himwas C, Songmuang R, Dang LS, Bleuse J, Rapenne L et al. Thermal stability of the deep ultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots. Appl Phys Lett 101, 241914 (2012). doi: 10.1063/1.4770075

    CrossRef Google Scholar

    [49] Himwas C, den Hertog M, Bellet-Amalric E, Songmuang R, Donatini F et al. Enhanced room-temperature mid-ultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots. J Appl Phys 116, 023502 (2014). doi: 10.1063/1.4887140

    CrossRef Google Scholar

    [50] Liu SF, Yuan Y, Huang LJ, Zhang J, Wang T et al. Drive high power UVC-LED wafer into low-cost 4-inch era: effect of strain modulation. Adv Funct Mater 32, 2112111 (2022). doi: 10.1002/adfm.202112111

    CrossRef Google Scholar

    [51] Jiang K, Sun XJ, Shi ZM, Zang H, Ben JW et al. Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides. Light Sci Appl 10, 69 (2021). doi: 10.1038/s41377-021-00503-y

    CrossRef Google Scholar

    [52] Han QL, Chang C, Li L, Klenk C, Cheng JK et al. Sumoylation of influenza A virus nucleoprotein is essential for intracellular trafficking and virus growth. J Virol 88, 9379–9390 (2014). doi: 10.1128/JVI.00509-14

    CrossRef Google Scholar

    [53] Xiong HL, Wu YT, Cao JL, Yang R, Liu YX et al. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg Microbes Infect 9, 2105–2113 (2020). doi: 10.1080/22221751.2020.1815589

    CrossRef Google Scholar

    [54] Wen W, Chen C, Tang JK, Wang CY, Zhou MY et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: a meta-analysis. Ann Med 54, 516–523 (2022). doi: 10.1080/07853890.2022.2034936

    CrossRef Google Scholar

    [55] Matrosovich M, Matrosovich T, Garten W, Klenk HD. New low-viscosity overlay medium for viral plaque assays. Virol J 3, 63 (2006). doi: 10.1186/1743-422X-3-63

    CrossRef Google Scholar

    [56] Zamora JLR, Ortega V, Johnston GP, Li J, André NM et al. Third helical domain of the Nipah virus fusion glycoprotein modulates both early and late steps in the membrane fusion cascade. J Virol 94, e00644–20 (2020). doi: 10.1128/jvi.00644-20

    CrossRef Google Scholar

    [57] Heying B, Tarsa EJ, Elsass CR, Fini P, DenBaars SP et al. Dislocation mediated surface morphology of GaN. J Appl Phys 85, 6470–6476 (1999). doi: 10.1063/1.370150

    CrossRef Google Scholar

    [58] Peng LY, Zhao DG, Liang F, Wang WJ, Liu ZS et al. Influences of gallium and nitrogen partial pressure on step-bunching and step-meandering morphology of InGaN quantum barrier layer. Mater Today Commun 29, 102923 (2021). doi: 10.1016/j.mtcomm.2021.102923

    CrossRef Google Scholar

    [59] Hamachi T, Tohei T, Hayashi Y, Imanishi M, Usami S et al. Propagation of threading dislocations and effects of Burgers vectors in HVPE-grown GaN bulk crystals on Na-flux-grown GaN substrates. J Appl Phys 129, 225701 (2021). doi: 10.1063/5.0053766

    CrossRef Google Scholar

    [60] Dong P, Yan JC, Zhang Y, Wang JX, Zeng JP et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth 395, 9–13 (2014). doi: 10.1016/j.jcrysgro.2014.02.039

    CrossRef Google Scholar

    [61] He CG, Zhao W, Wu HL, Zhang S, Zhang K et al. High-quality AlN film grown on sputtered AlN/sapphire via growth-mode modification. Cryst Growth Des 18, 6816–6823 (2018). doi: 10.1021/acs.cgd.8b01045

    CrossRef Google Scholar

    [62] Liu B, Zhang R, Zheng JG, Ji XL, Fu DY et al. Composition pulling effect and strain relief mechanism in AlGaN/AlN distributed Bragg reflectors. Appl Phys Lett 98, 261916 (2011). doi: 10.1063/1.3605681

    CrossRef Google Scholar

    [63] Jiang K, Sun XJ, Ben JW, Shi ZM, Jia YP et al. Suppressing the compositional non-uniformity of AlGaN grown on a HVPE-AlN template with large macro-steps. CrystEngComm 21, 4864–4873 (2019). doi: 10.1039/C9CE00608G

    CrossRef Google Scholar

    [64] LaBarre DD, Lowy RJ. Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays. J Virol Methods 96, 107–126 (2001). doi: 10.1016/S0166-0934(01)00316-0

    CrossRef Google Scholar

    [65] Hirose R, Itoh Y, Ikegaya H, Miyazaki H, Watanabe N et al. Differences in environmental stability among SARS-CoV-2 variants of concern: both omicron BA. 1 and BA. 2 have higher stability. Clin Microbiol Infect 28, 1486–1491 (2022). doi: 10.1016/j.cmi.2022.05.020

    CrossRef Google Scholar

  • Supplementary information for Rapid inactivation of human respiratory RNA viruses by deep ultraviolet irradiation from light-emitting diodes on a high-temperature-annealed AlN/Sapphire template
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(4933) PDF downloads(792) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint