Guo YM, Chen KL, Zhou JH, Li ZD, Han WY et al. High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope. Opto-Electron Adv 6, 230039 (2023). doi: 10.29026/oea.2023.230039
Citation: Guo YM, Chen KL, Zhou JH, Li ZD, Han WY et al. High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope. Opto-Electron Adv 6, 230039 (2023). doi: 10.29026/oea.2023.230039

Article Open Access

High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope

More Information
  • Integrating deformable mirrors within the optical train of an adaptive telescope was one of the major innovations in astronomical observation technology, distinguished by its high optical throughput, reduced optical surfaces, and the incorporation of the deformable mirror. Typically, voice-coil actuators are used, which require additional position sensors, internal control electronics, and cooling systems, leading to a very complex structure. Piezoelectric deformable secondary mirror technologies were proposed to overcome these problems. Recently, a high-order piezoelectric deformable secondary mirror has been developed and installed on the 1.8-m telescope at Lijiang Observatory in China to make it an adaptive telescope. The system consists of a 241-actuator piezoelectric deformable secondary mirror, a 192-sub-aperture Shack-Hartmann wavefront sensor, and a multi-core-based real-time controller. The actuator spacing of the PDSM measures 19.3 mm, equivalent to approximately 12.6 cm when mapped onto the primary mirror, significantly less than the voice-coil-based adaptive telescopes such as LBT, Magellan and VLT. As a result, stellar images with Strehl ratios above 0.49 in the R band have been obtained. To our knowledge, these are the highest R band images captured by an adaptive telescope with deformable secondary mirrors. Here, we report the system description and on-sky performance of this adaptive telescope.
  • 加载中
  • [1] Rao CH, Gu NT, Rao XJ, Li C, Zhang LQ et al. First light of the 1.8-m solar telescope–CLST. Sci China Phys Mech Astron 63, 109631 (2020). doi: 10.1007/s11433-019-1557-3

    CrossRef Google Scholar

    [2] Jiang WH. Overview of adaptive optics development. Opto-Electron Eng 45, 170489 (2018).

    Google Scholar

    [3] Rao CH, Zhu L, Zhang LQ, Rao XJ, Bao H et al. Development of solar adaptive optics. Opto-Electron Eng 45, 170733 (2018).

    Google Scholar

    [4] Rao CH, Zhu L, Rao XJ, Zhang LQ, Bao H et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1m new vacuum solar telescope at Fuxian solar observatory. Astrophys J 833, 210 (2016). doi: 10.3847/1538-4357/833/2/210

    CrossRef Google Scholar

    [5] Wang JY, Guo YM, Kong L, Zhang LQ, Gu NT et al. Automatic disturbance identification for linear quadratic Gaussian control in adaptive optics. Mon Not R Astron Soc 496, 5126–5138 (2020). doi: 10.1093/mnras/staa1698

    CrossRef Google Scholar

    [6] Kim D, Choi H, Brendel T, Quach H, Esparza M et al. Advances in optical engineering for future telescopes. Opto-Electron Adv 4, 210040 (2021). doi: 10.29026/oea.2021.210040

    CrossRef Google Scholar

    [7] Guo YM, Zhong LB, Min L, Wang JY, Wu Y et al. Adaptive optics based on machine learning: a review. Opto-Electron Adv 5, 200082 (2022). doi: 10.29026/oea.2022.200082

    CrossRef Google Scholar

    [8] Beckers JM. Adaptive optics for astronomy: principles, performance, and applications. Annu Rev Astron Astrophys 31, 13–62 (1993). doi: 10.1146/annurev.aa.31.090193.000305

    CrossRef Google Scholar

    [9] Wildi FP, Brusa G, Lloyd-Hart M, Close LM, Riccardi A. First light of the 6.5-m MMT adaptive optics system. Proc SPIE 5169, 17–25 (2003). doi: 10.1117/12.507687

    CrossRef Google Scholar

    [10] Esposito S, Riccardi A, Pinna E, Puglisi A, Quirós-Pacheco F et al. Large binocular telescope adaptive optics system: new achievements and perspectives in adaptive optics. Proc SPIE 8149, 814902 (2011). doi: 10.1117/12.898641

    CrossRef Google Scholar

    [11] Morzinski KM, Close LM, Males JR, Kopon D, Hinz PM et al. MagAO: Status and on-sky performance of the Magellan adaptive optics system. Proc SPIE 9148, 914804 (2014).

    Google Scholar

    [12] Briguglio R, Quirós-Pacheco F, Males JR, Xompero M, Riccardi A et al. Optical calibration and performance of the adaptive secondary mirror at the Magellan telescope. Sci Rep 8, 10835 (2018). doi: 10.1038/s41598-018-29171-6

    CrossRef Google Scholar

    [13] Briguglio R, Xompero M, Riccardi A, Andrighettoni M, Pescoller D et al. Optical calibration and test of the VLT Deformable Secondary Mirror. In Proceedings of the Third AO4ELT Conference (2013);https://doi.org/10.12839/AO4ELT3.13507.

    Google Scholar

    [14] Guo YM, Zhang A, Fan XL, Rao CH, Wei L et al. First on-sky demonstration of the piezoelectric adaptive secondary mirror. Opt Lett 41, 5712–5715 (2016). doi: 10.1364/OL.41.005712

    CrossRef Google Scholar

    [15] Guo YM, Zhang A, Fan XL, Rao CH, Wei L et al. First light of the deformable secondary mirror-based adaptive optics system on 1.8m telescope. Proc SPIE 9909, 99091D (2016).

    Google Scholar

    [16] Kuiper S, Jonker WA, Maniscalco MP, Priem H, Coolen C et al. Adaptive secondary mirror development for the UH-88 telescope. In 6th International Conference on Adaptive Optics for Extremely Large Telescopes, (2019).

    Google Scholar

    [17] Hippler S. Adaptive optics for extremely large telescopes. J Astron Instrum 8, 1950001 (2019). doi: 10.1142/S2251171719500016

    CrossRef Google Scholar

    [18] Pedichini F, Stangalini M, Ambrosino F, Puglisi A, Pinna E et al. High contrast imaging in the visible: first experimental results at the Large Binocular Telescope. Astron J 154, 74 (2017). doi: 10.3847/1538-3881/aa7ff3

    CrossRef Google Scholar

    [19] Close LM, Males JR, Morzinski K, Kopon D, Follette K et al. Diffraction-limited visible light images of orion trapezium cluster with the magellan adaptive secondary adaptive optics system (MagAO). Astrophys J 774, 94 (2013). doi: 10.1088/0004-637X/774/2/94

    CrossRef Google Scholar

    [20] Guo YM, Wu Y, Li Y, Rao XJ, Rao CH. Deep phase retrieval for astronomical Shack–Hartmann wavefront sensors. Mon Not R Astron Soc 510, 4347–4354 (2022). doi: 10.1093/mnras/stab3690

    CrossRef Google Scholar

    [21] Kasper M, Fedrigo E, Looze DP, Bonnet H, Ivanescu L et al. Fast calibration of high-order adaptive optics systems. J Opt Soc Am A 21, 1004–1008 (2004). doi: 10.1364/JOSAA.21.001004

    CrossRef Google Scholar

    [22] Noll RJ. Zernike polynomials and atmospheric turbulence. J Opt Soc Am A 66, 207–211 (1976). doi: 10.1364/JOSA.66.000207

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(4)

Article Metrics

Article views(8158) PDF downloads(747) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint