Chen SR, Ha YL, Zhang F et al. Towards the performance limit of catenary meta-optics via field-driven optimization. Opto-Electron Adv 7, 230145 (2024). doi: 10.29026/oea.2024.230145
Citation: Chen SR, Ha YL, Zhang F et al. Towards the performance limit of catenary meta-optics via field-driven optimization. Opto-Electron Adv 7, 230145 (2024). doi: 10.29026/oea.2024.230145

Article Open Access

Towards the performance limit of catenary meta-optics via field-driven optimization

More Information
  • These authors contributed equally to this work

  • Corresponding authors: MB Pu, E-mail: pmb@ioe.ac.cn;  XG Luo, E-mail: lxg@ioe.ac.cn
  • Catenary optics enables metasurfaces with higher efficiency and wider bandwidth, and is highly anticipated in the imaging system, super-resolution lithography, and broadband absorbers. However, the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits. Here, perfect control of both local geometric and propagation phases is realized through field-driven optimization, in which the field distribution is calculated under real boundary conditions. Different from other optimization methods requiring a mass of iterations, the proposed design method requires less than ten iterations to get the efficiency close to the optimal value. Based on the library of shape-optimized catenary structures, centimeter-scale devices can be designed in ten seconds, with the performance improved by ~15%. Furthermore, this method has the ability to extend catenary-like continuous structures to arbitrary polarization, including both linear and elliptical polarizations, which is difficult to achieve with traditional design methods. It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.
  • 加载中
  • [1] Xie X, Pu MB, Jin JJ, Xu MF, Guo YH et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [2] Wang YX, Yuan YY, Liu Y, Ding XM, Ratni B et al. Extreme diffraction management in phase-corrected gradient metasurface by fourier harmonic component engineering. Laser Photonics Rev 17, 2300152 (2023). doi: 10.1002/lpor.202300152

    CrossRef Google Scholar

    [3] Liu MZ, Zhu WQ, Huo PC, Feng L, Song MW et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci Appl 10, 107 (2021). doi: 10.1038/s41377-021-00552-3

    CrossRef Google Scholar

    [4] Wang EW, Yu SJ, Phan T, Dhuey S, Fan JA. Arbitrary achromatic polarization control with reconfigurable metasurface systems. Laser Photonics Rev 17, 2200926 (2023). doi: 10.1002/lpor.202200926

    CrossRef Google Scholar

    [5] Wang S, Wen S, Deng ZL, Li XP, Yang YM. Metasurface-based solid poincaré sphere polarizer. Phys Rev Lett 130, 123801 (2023). doi: 10.1103/PhysRevLett.130.123801

    CrossRef Google Scholar

    [6] Xu YH, Xu Q, Zhang XQ, Feng X, Lu YC et al. Stereo metasurfaces for efficient and broadband terahertz polarization conversion. Adv Funct Mater 32, 2207269 (2022). doi: 10.1002/adfm.202207269

    CrossRef Google Scholar

    [7] Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [8] Miyata M, Nemoto N, Shikama K, Kobayashi F, Hashimoto T. Full-color-sorting metalenses for high-sensitivity image sensors. Optica 8, 1596–1604 (2021). doi: 10.1364/OPTICA.444255

    CrossRef Google Scholar

    [9] Xiao XJ, Zhao YW, Ye X, Chen C, Lu XM et al. Large-scale achromatic flat lens by light frequency-domain coherence optimization. Light Sci Appl 11, 323 (2022). doi: 10.1038/s41377-022-01024-y

    CrossRef Google Scholar

    [10] Wei MG, Xu YH, Liu GG, Wu T, Liu WY et al. Extended metasurface spin functionalities from rotation of elements. Adv Opt Mater 10, 2201975 (2022). doi: 10.1002/adom.202201975

    CrossRef Google Scholar

    [11] Fu P, Ni PN, Wu B, Pei XZ, Wang QH et al. Metasurface enabled on-chip generation and manipulation of vector beams from vertical cavity surface-emitting lasers. Adv Mater 35, 2204286 (2023). doi: 10.1002/adma.202204286

    CrossRef Google Scholar

    [12] Dorrah AH, Rubin NA, Zaidi A, Tamagnone M, Capasso F. Metasurface optics for on-demand polarization transformations along the optical path. Nat Photonics 15, 287–296 (2021). doi: 10.1038/s41566-020-00750-2

    CrossRef Google Scholar

    [13] Gao S, Zhou CY, Liu WW, Yue WJ, Chen SQ et al. Dielectric polarization-filtering metasurface doublet for trifunctional control of full-space visible light. Laser Photonics Rev 16, 2100603 (2022). doi: 10.1002/lpor.202100603

    CrossRef Google Scholar

    [14] Yan JX, Wei QS, Liu Y, Geng GZ, Li JJ et al. Single pixel imaging key for holographic encryption based on spatial multiplexing metasurface. Small 18, 2203197 (2022). doi: 10.1002/smll.202203197

    CrossRef Google Scholar

    [15] Song MW, Feng L, Huo PC, Liu MZ, Huang CY et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat Nanotechnol 18, 71–78 (2023). doi: 10.1038/s41565-022-01256-4

    CrossRef Google Scholar

    [16] Song MW, Wang D, Kudyshev ZA, Xuan Y, Wang ZX et al. Enabling optical steganography, data storage, and encryption with plasmonic colors. Laser Photonics Rev 15, 2000343 (2021). doi: 10.1002/lpor.202000343

    CrossRef Google Scholar

    [17] Zhang F, Pu MB, Gao P, Jin JJ, Li X et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv Sci 7, 1903156 (2020). doi: 10.1002/advs.201903156

    CrossRef Google Scholar

    [18] Huang YJ, Xiao TX, Chen S, Xie ZW, Zheng J et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet. Opto-Electron Adv 6, 220073 (2023). doi: 10.29026/oea.2023.220073

    CrossRef Google Scholar

    [19] Tang DL, Shao ZL, Xie X, Zhou YJ, Zhang XH et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063

    CrossRef Google Scholar

    [20] Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Appl Phys Lett 82, 328–330 (2003). doi: 10.1063/1.1539300

    CrossRef Google Scholar

    [21] Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [22] Wen YF, Zhang Q, He Q, Zhang FF, Xiong LX et al. Shortening focal length of 100-mm aperture flat lens based on improved sagnac interferometer and bifacial liquid crystal. Adv Opt Mater 11, 2300127 (2023). doi: 10.1002/adom.202300127

    CrossRef Google Scholar

    [23] Zhang F, Zeng QY, Pu MB, Wang YQ, Guo YH et al. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces. Nanophotonics 9, 2829–2837 (2020). doi: 10.1515/nanoph-2020-0057

    CrossRef Google Scholar

    [24] Huang YJ, Luo J, Pu MB, Guo YH, Zhao ZY et al. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv Sci 6, 1801691 (2019). doi: 10.1002/advs.201801691

    CrossRef Google Scholar

    [25] Luo XG, Pu MB, Guo YH, Li X, Zhang F et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater 8, 2001194 (2020). doi: 10.1002/adom.202001194

    CrossRef Google Scholar

    [26] Song RR, Deng QL, Zhou SL, Pu MB. Catenary-based phase change metasurfaces for mid-infrared switchable wavefront control. Opt Express 29, 23006–23018 (2021). doi: 10.1364/OE.434844

    CrossRef Google Scholar

    [27] Zhang F, Pu MB, Li X, Ma XL, Guo YH et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [28] Zhang YX, Pu MB, Guo YH, Jin JJ, He Q et al. High-efficiency mid-infrared catenary metasurface for chiral spectrometer. Proc SPIE 12072, 120720F (2021).

    Google Scholar

    [29] Guo YH, Huang YJ, Li X, Pu MB, Gao P et al. Polarization-controlled broadband accelerating beams generation by single catenary‐shaped metasurface. Adv Opt Mater 7, 1900503 (2019). doi: 10.1002/adom.201900503

    CrossRef Google Scholar

    [30] Jin JJ, Li X, Guo YH, Pu MB, Gao P et al. Polarization-controlled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures. Nanoscale 11, 3952–3957 (2019). doi: 10.1039/C8NR09383K

    CrossRef Google Scholar

    [31] Luo XG, Zhang F, Pu MM, Xu MF. Catenary optics: a perspective of applications and challenges. J Phys Condens Matter 34, 381501 (2022). doi: 10.1088/1361-648X/ac808e

    CrossRef Google Scholar

    [32] Xie X, Pu M, Liu K, Ma X, Li X et al. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all‐metallic catenary meta‐mirror. Adv Mater Technol 4, 1900334 (2019). doi: 10.1002/admt.201900334

    CrossRef Google Scholar

    [33] Xu MF, Pu MB, Sang D, Zheng YH, Li X et al. Topology-optimized catenary-like metasurface for wide-angle and high-efficiency deflection: from a discrete to continuous geometric phase. Opt Express 29, 10181–10191 (2021). doi: 10.1364/OE.422112

    CrossRef Google Scholar

    [34] Mansouree M, Kwon H, Arbabi E, McClung A, Faraon A et al. Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica 7, 77–84 (2020). doi: 10.1364/OPTICA.374787

    CrossRef Google Scholar

    [35] Liu YJ, Zhang F, Xie T, Pu MB, Zhao ZY et al. Polarization-multiplexed metalens enabled by adjoint optimization. Chin Opt 14, 754–763 (2021). doi: 10.37188/CO.2021-0035

    CrossRef Google Scholar

    [36] Mansouree M, McClung A, Samudrala S, Arbabi A. Large-scale parametrized metasurface design using adjoint optimization. ACS Photonics 8, 455–463 (2021).

    Google Scholar

    [37] Zhang F, Pu MB, Li X, Gao P, Ma XL et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [38] Cai JX, Zhang F, Pu MB, Chen Y, Guo YH et al. Dispersion‐enabled symmetry switching of photonic angular‐momentum coupling. Adv Funct Mater 33, 2212147 (2023). doi: 10.1002/adfm.202212147

    CrossRef Google Scholar

    [39] Zhang F, Guo YH, Pu MB, Chen LW, Xu MF et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [40] Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [41] Li ZG, Stan L, Czaplewski DA, Yang XD, Gao J. Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization. Opt Lett 44, 114–117 (2019). doi: 10.1364/OL.44.000114

    CrossRef Google Scholar

    [42] Zhang JM, Wang GW, Wang T, Li FS. Genetic algorithms to automate the design of metasurfaces for absorption bandwidth broadening. ACS Appl Mater Interfaces 13, 7792–7800 (2021). doi: 10.1021/acsami.0c21984

    CrossRef Google Scholar

    [43] Hu JT, Liu CH, Ren XC, Lauhon LJ, Odom TW. Plasmonic lattice lenses for multiwavelength achromatic focusing. ACS Nano 10, 10275–10282 (2016). doi: 10.1021/acsnano.6b05855

    CrossRef Google Scholar

    [44] Nemat-Abad HM, Zareian-Jahromi E, Basiri R. Design of metasurface-based multi-layer THz filters utilizing optimization algorithm with distinct fitness function definitions. Plasmonics 16, 1865–1876 (2021). doi: 10.1007/s11468-021-01450-5

    CrossRef Google Scholar

    [45] Hojjati A, Soleimani M, Nayyeri V, Ramahi OM. Ternary optimization for designing metasurfaces. Sci Rep 11, 17110 (2021). doi: 10.1038/s41598-021-96564-5

    CrossRef Google Scholar

    [46] Ma TG, Tobah M, Wang HZ, Guo LJ. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electron Sci 1, 210012 (2022). doi: 10.29026/oes.2022.210012

    CrossRef Google Scholar

    [47] Lalau-Keraly CM, Bhargava S, Miller OD, Yablonovitch E. Adjoint shape optimization applied to electromagnetic design. Opt Express 21, 21693–21701 (2013). doi: 10.1364/OE.21.021693

    CrossRef Google Scholar

    [48] Miller OD. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design (University of California, Berkeley, 2012).

    Google Scholar

    [49] Ciattoni A, Crosignani B, Di Porto P. Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections. Opt Commun 177, 9–13 (2000). doi: 10.1016/S0030-4018(00)00569-1

    CrossRef Google Scholar

    [50] Li ZY, Pestourie R, Park JS, Huang YW, Johnson SG et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat Commun 13, 2409 (2022). doi: 10.1038/s41467-022-29973-3

    CrossRef Google Scholar

  • Supplementary information for Towards the performance limit of catenary meta-optics via field-driven optimization
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1948) PDF downloads(737) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint