Zhang YN, Chen YG, Wang T et al. Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters. Opto-Electron Adv 7, 230194 (2024). doi: 10.29026/oea.2024.230194
Citation: Zhang YN, Chen YG, Wang T et al. Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters. Opto-Electron Adv 7, 230194 (2024). doi: 10.29026/oea.2024.230194

Article Open Access

Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters

More Information
  • Real-world passive radiative cooling requires highly emissive, selective, and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power. Despite various selective thermal emitters have been demonstrated, it is still challenging to achieve these conditions simultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension. Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design, enabling a high emissivity of ~0.92 within the atmospheric transparency window 8–13 μm, a large spectral selectivity of ~1.8 and a wide emission angle up to 80 degrees, simultaneously. This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as ~15.4 °C under strong solar irradiation of ~800 W/m2, significantly surpassing the state-of-the-art results. The designed structures also show great potential in tackling the urban heat island effect, with modelling results suggesting a large energy saving and deployment area reduction. This research will make significant impact on passive radiative cooling, thermal energy photonics and tackling global climate change.
  • 加载中
  • [1] Raman AP, Anoma MA, Zhu LX et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). doi: 10.1038/nature13883

    CrossRef Google Scholar

    [2] Zhang YN, Chen X, Cai BY et al. Photonics empowered passive radiative cooling. Adv Photon Res 2, 2000106 (2021). doi: 10.1002/adpr.202000106

    CrossRef Google Scholar

    [3] Yin XB, Yang RG, Tan G et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370, 786–791 (2020). doi: 10.1126/science.abb0971

    CrossRef Google Scholar

    [4] Fan SH, Li W. Photonics and thermodynamics concepts in radiative cooling. Nat Photonics 16, 182–190 (2022). doi: 10.1038/s41566-021-00921-9

    CrossRef Google Scholar

    [5] Li T, Zhai Y, He SM et al. A radiative cooling structural material. Science 364, 760–763 (2019). doi: 10.1126/science.aau9101

    CrossRef Google Scholar

    [6] Zeng SN, Pian SJ, Su MY et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021). doi: 10.1126/science.abi5484

    CrossRef Google Scholar

    [7] So S, Yun J, Ko B et al. Radiative cooling for energy sustainability: from fundamentals to fabrication methods toward commercialization. Adv Sci 11, 2305067 (2024). doi: 10.1002/advs.202305067

    CrossRef Google Scholar

    [8] Rephaeli E, Raman A, Fan SH. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 13, 1457–1461 (2013). doi: 10.1021/nl4004283

    CrossRef Google Scholar

    [9] Hossain M, Jia BH, Gu M. A metamaterial emitter for highly efficient radiative cooling. Adv Opt Mater 3, 1047–1051 (2015). doi: 10.1002/adom.201500119

    CrossRef Google Scholar

    [10] Zhu LX, Raman AP, Fan SH. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc Natl Acad Sci USA 112, 12282–12287 (2015). doi: 10.1073/pnas.1509453112

    CrossRef Google Scholar

    [11] Zhai Y, Ma YG, David SN et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017). doi: 10.1126/science.aai7899

    CrossRef Google Scholar

    [12] Wang T, Zhang YA, Chen M et al. Scalable and waterborne titanium-dioxide-free thermochromic coatings for self-adaptive passive radiative cooling and heating. Cell Rep Phys Sci 3, 100782 (2022). doi: 10.1016/j.xcrp.2022.100782

    CrossRef Google Scholar

    [13] Gentle AR, Smith GB. Radiative heat pumping from the earth using surface phonon resonant nanoparticles. Nano Lett 10, 373–379 (2010). doi: 10.1021/nl903271d

    CrossRef Google Scholar

    [14] Chen Z, Zhu LX, Raman A et al. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat Commun 7, 13729 (2016). doi: 10.1038/ncomms13729

    CrossRef Google Scholar

    [15] Li W, Shi Y, Chen Z et al. Photonic thermal management of coloured objects. Nat Commun 9, 4240 (2018). doi: 10.1038/s41467-018-06535-0

    CrossRef Google Scholar

    [16] Chae D, Kim M, Jung PH et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl Mater Interfaces 12, 8073–8081 (2020). doi: 10.1021/acsami.9b16742

    CrossRef Google Scholar

    [17] Yao KQ, Ma HC, Huang M et al. Near-perfect selective photonic crystal emitter with nanoscale layers for daytime radiative cooling. ACS Appl Nano Mater 2, 5512–5519 (2019).

    Google Scholar

    [18] Mandal J, Fu YK, Overvig AC et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018). doi: 10.1126/science.aat9513

    CrossRef Google Scholar

    [19] Zou CJ, Ren GH, Hossain M et al. Metal-loaded dielectric resonator metasurfaces for radiative cooling. Adv Opt Mater 5, 1700460 (2017). doi: 10.1002/adom.201700460

    CrossRef Google Scholar

    [20] Sun K, Riedel CA, Wang YD et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft. ACS Photonics 5, 495–501 (2018). doi: 10.1021/acsphotonics.7b00991

    CrossRef Google Scholar

    [21] Zhu RK, Hu DW, Chen Z et al. Plasmon-enhanced infrared emission approaching the theoretical limit of radiative cooling ability. Nano Lett 20, 6974–6980 (2020). doi: 10.1021/acs.nanolett.0c01457

    CrossRef Google Scholar

    [22] Munday JN. Tackling climate change through radiative cooling. Joule 3, 2057–2060 (2019). doi: 10.1016/j.joule.2019.07.010

    CrossRef Google Scholar

    [23] Zhou L, Song HM, Liang JW et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat Sustain 2, 718–724 (2019). doi: 10.1038/s41893-019-0348-5

    CrossRef Google Scholar

    [24] Heo SY, Lee GJ, Kim DH et al. A Janus emitter for passive heat release from enclosures. Sci Adv 6, eabb1906 (2020). doi: 10.1126/sciadv.abb1906

    CrossRef Google Scholar

    [25] Tang KC, Dong KC, Li JC et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374, 1504–1509 (2021). doi: 10.1126/science.abf7136

    CrossRef Google Scholar

    [26] Wang T, Wu Y, Shi L et al. A structural polymer for highly efficient all-day passive radiative cooling. Nat Commun 12, 365 (2021). doi: 10.1038/s41467-020-20646-7

    CrossRef Google Scholar

    [27] Ma HC, Yao KQ, Dou SL et al. Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling. Solar Energy Mater Solar Cells 212, 110584 (2020). doi: 10.1016/j.solmat.2020.110584

    CrossRef Google Scholar

    [28] Wang X, Liu XH, Li ZY et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv Funct Mater 30, 1907562 (2020). doi: 10.1002/adfm.201907562

    CrossRef Google Scholar

    [29] Lin CJ, Li Y, Chi C et al. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv Mater 34, 2109350 (2022). doi: 10.1002/adma.202109350

    CrossRef Google Scholar

    [30] Kim M, Lee D, Son S et al. Visibly transparent radiative cooler under direct sunlight. Adv Opt Mater 9, 2002226 (2021). doi: 10.1002/adom.202002226

    CrossRef Google Scholar

    [31] Lee D, Go M, Son S et al. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426 (2021). doi: 10.1016/j.nanoen.2020.105426

    CrossRef Google Scholar

    [32] Qin B, Zhu YN, Zhou YW et al. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci Appl 12, 246 (2023). doi: 10.1038/s41377-023-01287-z

    CrossRef Google Scholar

    [33] Yun J, Chae D, So S et al. Optimally designed multimaterial microparticle–polymer composite paints for passive daytime radiative cooling. ACS Photonics 10, 2608–2617 (2023). doi: 10.1021/acsphotonics.3c00339

    CrossRef Google Scholar

    [34] Zhu YN, Zhou YW, Qin B et al. Night-time radiative warming using the atmosphere. Light Sci Appl 12, 268 (2023). doi: 10.1038/s41377-023-01315-y

    CrossRef Google Scholar

    [35] Wang T, Wu XY, Zhu Q et al. A scalable and durable polydimethylsiloxane-coated nanoporous polyethylene textile for daytime radiative cooling. Nanophotonics 13, 601–609 (2023). doi: 10.1515/nanoph-2023-0596

    CrossRef Google Scholar

    [36] Wang T, Tu SH, Chen YG et al. Scalable and flexible porous hybrid film as a thermal insulating subambient radiative cooler for energy-saving buildings. Natl Sci Open 2, 20220063 (2023). doi: 10.1360/nso/20220063

    CrossRef Google Scholar

    [37] Hossain M, Gu M. Radiative cooling: principles, progress, and potentials. Adv Sci 3, 1500360 (2016). doi: 10.1002/advs.201500360

    CrossRef Google Scholar

    [38] Zhang YA, Han J, Shi L et al. Extremely polarized and efficient hot electron intraband luminescence from aluminum nanostructures for nonlinear optical encoding. Laser Photon Rev 15, 2000339 (2021). doi: 10.1002/lpor.202000339

    CrossRef Google Scholar

    [39] Neshev DN, Miroshnichenko AE. Enabling smart vision with metasurfaces. Nat Photonics 17, 26–35 (2023).

    Google Scholar

    [40] Guo R, Rusak E, Staude I et al. Multipolar coupling in hybrid metal–dielectric metasurfaces. ACS Photonics 3, 349–353 (2016). doi: 10.1021/acsphotonics.6b00012

    CrossRef Google Scholar

    [41] Barreda Á, Vitale F, Minovich AE et al. Applications of hybrid metal-dielectric nanostructures: state of the art. Adv Photonics Res 3, 2100286 (2022). doi: 10.1002/adpr.202100286

    CrossRef Google Scholar

    [42] Zhang YA, Shi L, Hu DJ et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horiz 4, 601–609 (2019). doi: 10.1039/C9NH00003H

    CrossRef Google Scholar

    [43] Peurifoy J, Shen YC, Jing L et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci Adv 4, eaar4206 (2018). doi: 10.1126/sciadv.aar4206

    CrossRef Google Scholar

    [44] Zhang QM, Yu HY, Barbiero M et al. Artificial neural networks enabled by nanophotonics. Light Sci Appl 8, 42 (2019). doi: 10.1038/s41377-019-0151-0

    CrossRef Google Scholar

    [45] Ren HR, Shao W, Li Y et al. Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv 6, eaaz4261 (2020). doi: 10.1126/sciadv.aaz4261

    CrossRef Google Scholar

    [46] Ma W, Liu ZC, Kudyshev ZA et al. Deep learning for the design of photonic structures. Nat Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y

    CrossRef Google Scholar

    [47] Jiang JQ, Chen MK, Fan JA. Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater 6, 679–700 (2021).

    Google Scholar

    [48] Zhao DL, Aili A, Zhai Y et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019). doi: 10.1016/j.joule.2018.10.006

    CrossRef Google Scholar

    [49] Hinkel KM, Nelson FE, Klene AE et al. The urban heat island in winter at Barrow, Alaska. Int J Climatol 23, 1889–1905 (2003). doi: 10.1002/joc.971

    CrossRef Google Scholar

    [50] Calculation parameters of outdoor air. http://www.jianbiaoku.com/webarbs/book/16582/1663640.shtml.

    Google Scholar

    [51] Chen X, Wang YW. Calculation and analysis of anthropogenic heat flux in provinces of China from 2001 to 2009. In The 28th Annual Meeting of the Chinese Meteorological Society - S7 City Meteorological Fine Forecasting and Services 490–505 (Chinese Meteorological Society, 2011).

    Google Scholar

  • Supplementary information for Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint