Li WH, Chen J, Gao SZ et al. An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons. Opto-Electron Adv 7, 240040 (2024). doi: 10.29026/oea.2024.240040
Citation: Li WH, Chen J, Gao SZ et al. An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons. Opto-Electron Adv 7, 240040 (2024). doi: 10.29026/oea.2024.240040

Article Open Access

An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons

More Information
  • Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time. However, realizing the function synthesis remains an open challenge, and most existing system solutions are limited to narrow operating bands and high complexity and cost. Here, we propose an externally perceivable leaky-wave antenna (LWA) based on spoof surface plasmon polaritons (SSPPs), which can realize adaptive real-time switching between the “radiating” and “non-radiating” states and beam tracking at different frequencies. With the assistance of computer vision, the smart SSPP-LWA is able to detect the external target user or jammer, and intelligently track the target by self-adjusting the operating frequency. The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna, and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency. On the other hand, it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time. In addition, the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.
  • 加载中
  • [1] Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937

    CrossRef Google Scholar

    [2] Garcia-Vidal FJ, Martín-Moreno L, Pendry JB. Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt 7, S97–S101 (2005). doi: 10.1088/1464-4258/7/2/013

    CrossRef Google Scholar

    [3] Gan QQ, Fu Z, Ding YJ et al. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett 100, 256803 (2008). doi: 10.1103/PhysRevLett.100.256803

    CrossRef Google Scholar

    [4] Shen XP, Cui TJ, Martin-Cano D et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA 110, 40–45 (2013). doi: 10.1073/pnas.1210417110

    CrossRef Google Scholar

    [5] Ma HF, Shen XP, Cheng Q et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photon Rev 8, 146–151 (2014). doi: 10.1002/lpor.201300118

    CrossRef Google Scholar

    [6] Kianinejad A, Chen ZN, Qiu CW. Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation. IEEE Trans Microw Theory Tech 64, 3078–3086 (2016). doi: 10.1109/TMTT.2016.2604807

    CrossRef Google Scholar

    [7] He PH, Zhang HC, Gao XX et al. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements. Opto-Electron Adv 2, 190001 (2019).

    Google Scholar

    [8] Wang M, Sun S, Ma HF et al. Supercompact and ultrawideband surface plasmonic bandpass filter. IEEE Trans Microw Theory Tech 68, 732–740 (2020). doi: 10.1109/TMTT.2019.2952123

    CrossRef Google Scholar

    [9] Ye LF, Chen Y, Wang ZY et al. Compact spoof surface plasmon polariton waveguides and notch filters based on meander-strip units. IEEE Photonics Technol Lett 33, 135–138 (2021). doi: 10.1109/LPT.2020.3046837

    CrossRef Google Scholar

    [10] Liu YQ, Xu KD, Li JX et al. Millimeter-wave E-plane waveguide bandpass filters based on spoof surface plasmon polaritons. IEEE Trans Microw Theory Tech 70, 4399–4409 (2022). doi: 10.1109/TMTT.2022.3197593

    CrossRef Google Scholar

    [11] Liu XY, Lei Y, Zheng X et al. Reconfigurable spoof plasmonic coupler for dynamic switching between forward and backward propagations. Adv Mater Technol 7, 2200129 (2022). doi: 10.1002/admt.202200129

    CrossRef Google Scholar

    [12] Niu LY, He PH, Fan Y et al. Gain‐associated nonlinear phenomenon in single‐conductor odd‐mode plasmonic metamaterials. Laser Photon Rev 16, 2100619 (2022). doi: 10.1002/lpor.202100619

    CrossRef Google Scholar

    [13] Gao XX, Zhang JJ, Luo Y et al. Reconfigurable parametric amplifications of spoof surface plasmons. Adv Sci 8, 2100795 (2021). doi: 10.1002/advs.202100795

    CrossRef Google Scholar

    [14] Liu LL, Wu L, Zhang JJ et al. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv Sci 5, 1800661 (2018). doi: 10.1002/advs.201800661

    CrossRef Google Scholar

    [15] Zhang J, Zhang HC, Gao XX et al. Integrated spoof plasmonic circuits. Sci Bull 64, 843–855 (2019). doi: 10.1016/j.scib.2019.01.022

    CrossRef Google Scholar

    [16] Zhang HC, Zhang LP, He PH et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light Sci Appl 9, 113 (2020). doi: 10.1038/s41377-020-00355-y

    CrossRef Google Scholar

    [17] Tang WX, Zhang HC, Ma HF et al. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv Opt Mater 7, 1800421 (2019). doi: 10.1002/adom.201800421

    CrossRef Google Scholar

    [18] Pu MB, Ma XL, Guo YH et al. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt Express 26, 19555–19562 (2018). doi: 10.1364/OE.26.019555

    CrossRef Google Scholar

    [19] Guo YH, Zhang ZJ, Pu MB et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging. iScience 21, 145–156 (2019). doi: 10.1016/j.isci.2019.10.019

    CrossRef Google Scholar

    [20] Luo XG, Pu MB, Guo YH et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater 8, 2001194 (2020). doi: 10.1002/adom.202001194

    CrossRef Google Scholar

    [21] Gomez-Tornero JL, Quesada-Pereira FD, Alvarez-Melcon A. Analysis and design of periodic leaky-wave antennas for the millimeter waveband in hybrid waveguide-planar technology. IEEE Trans Antennas Propag 53, 2834–2842 (2005). doi: 10.1109/TAP.2005.854562

    CrossRef Google Scholar

    [22] Jackson DR, Caloz C, Itoh T. Leaky-wave antennas. Proc IEEE 100, 2194–2206 (2012). doi: 10.1109/JPROC.2012.2187410

    CrossRef Google Scholar

    [23] Wang M, Ma HF, Tang WX et al. A dual-band electronic-scanning leaky-wave antenna based on a corrugated microstrip line. IEEE Trans Antennas Propag 67, 3433–3438 (2019). doi: 10.1109/TAP.2019.2902746

    CrossRef Google Scholar

    [24] Cameron TR, Eleftheriades GV. Experimental validation of a wideband metasurface for wide-angle scanning leaky-wave antennas. IEEE Trans Antennas Propag 65, 5245–5256 (2017). doi: 10.1109/TAP.2017.2735454

    CrossRef Google Scholar

    [25] Mackay AJ, Eleftheriades GV. Meandered and dispersion-enhanced planar leaky-wave antenna with fast beam scanning. IEEE Antennas Wirel Propag Lett 20, 1596–1600 (2021). doi: 10.1109/LAWP.2021.3091979

    CrossRef Google Scholar

    [26] Karmokar DK, Esselle KP, Bird TS. Wideband microstrip leaky-wave antennas with two symmetrical side beams for simultaneous dual-beam scanning. IEEE Trans Antennas Propag 64, 1262–1269 (2016). doi: 10.1109/TAP.2016.2529646

    CrossRef Google Scholar

    [27] Chen HY, Ma H, Li YF et al. Wideband frequency scanning spoof surface plasmon polariton planar antenna based on transmissive phase gradient metasurface. IEEE Antennas Wirel Propag Lett 17, 463–467 (2018). doi: 10.1109/LAWP.2018.2795341

    CrossRef Google Scholar

    [28] Wang J, Zhao L, Hao ZC et al. Wide-angle frequency beam scanning antenna based on the higher-order modes of spoof surface plasmon polariton. IEEE Trans Antennas Propag 68, 7652–7657 (2020). doi: 10.1109/TAP.2020.2993325

    CrossRef Google Scholar

    [29] Ge SK, Zhang QF, Rashid AK et al. Analysis of asymmetrically corrugated goubau-line antenna for endfire radiation. IEEE Trans Antennas Propag 67, 7133–7138 (2019). doi: 10.1109/TAP.2019.2927633

    CrossRef Google Scholar

    [30] Zu HR, Wu B, Zhao YT et al. Dual-band antenna with large beam steering angle incorporating endfire and frequency scanning modes using double-layer SSPPs structure. IEEE Trans Antennas Propag 70, 46–55 (2022). doi: 10.1109/TAP.2021.3096556

    CrossRef Google Scholar

    [31] Sarkar A, Lim S. Annular surface plasmon polariton-based frequency-scanning leaky-wave antenna for full azimuth coverage. IEEE Trans Antennas Propag 70, 180–188 (2022). doi: 10.1109/TAP.2021.3098598

    CrossRef Google Scholar

    [32] Yin JY, Ren J, Zhang Q et al. Frequency-controlled broad-angle beam scanning of patch array fed by spoof surface plasmon polaritons. IEEE Trans Antennas Propag 64, 5181–5189 (2016). doi: 10.1109/TAP.2016.2623663

    CrossRef Google Scholar

    [33] Zhang G, Zhang QF, Chen YF et al. High-scanning-rate and wide-angle leaky-wave antennas based on glide-symmetry goubau line. IEEE Trans Antennas Propag 68, 2531–2540 (2020). doi: 10.1109/TAP.2019.2951524

    CrossRef Google Scholar

    [34] Lau JY, Hum SV. Reconfigurable transmitarray design approaches for beamforming applications. IEEE Trans Antennas Propag 60, 5679–5689 (2012). doi: 10.1109/TAP.2012.2213054

    CrossRef Google Scholar

    [35] Hong W, Jiang ZH, Yu C et al. Multibeam antenna technologies for 5G wireless communications. IEEE Trans Antennas Propag 65, 6231–6249 (2017). doi: 10.1109/TAP.2017.2712819

    CrossRef Google Scholar

    [36] Ahmed I, Khammari H, Shahid A et al. A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun Surv Tutorials 20, 3060–3097 (2018). doi: 10.1109/COMST.2018.2843719

    CrossRef Google Scholar

    [37] Zhao DX, Gu P, Zhong JC et al. Millimeter-wave integrated phased arrays. IEEE Trans Circuits Syst I Regul Pap 68, 3977–3990 (2021). doi: 10.1109/TCSI.2021.3093093

    CrossRef Google Scholar

    [38] Rappaport TS, Gutierrez F, Ben-Dor E et al. Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans Antennas Propag 61, 1850–1859 (2013). doi: 10.1109/TAP.2012.2235056

    CrossRef Google Scholar

    [39] Huang LB, Li X, Wan WT et al. Adaptive FDA radar transmit power allocation for target detection enhancement in clutter environment. IEEE Trans Veh Technol 72, 11111–11121 (2023). doi: 10.1109/TVT.2023.3270394

    CrossRef Google Scholar

    [40] Wang HL, Ma HF, Chen M et al. A reconfigurable multifunctional metasurface for full‐space control of electromagnetic waves. Adv Funct Mater 31, 2100275 (2021). doi: 10.1002/adfm.202100275

    CrossRef Google Scholar

    [41] Wang J, Kühne J, Karamanos T et al. All‐dielectric crescent metasurface sensor driven by bound states in the continuum. Adv Funct Mater 31, 2104652 (2021). doi: 10.1002/adfm.202104652

    CrossRef Google Scholar

    [42] Wu XY, Feng HY, Wan F et al. An Ultrathin, Fast-Response, Large-Scale Liquid-Crystal-Facilitated Multi-Functional Reconfigurable Metasurface for Comprehensive Wavefront Modulation. Adv Mater 36, 2402170 (2024). doi: 10.1002/adma.202402170

    CrossRef Google Scholar

    [43] Liu TH, Li WH, Meng YY et al. Six‐mode orbital angular momentum generator enabled by helicity‐assisted full‐space metasurface with flexible manipulation of phase, polarization, and spatial information. Adv Opt Mater 10, 2102638 (2022). doi: 10.1002/adom.202102638

    CrossRef Google Scholar

    [44] Di Renzo M, Zappone A, Debbah M et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Sel Areas Commun 38, 2450–2525 (2020). doi: 10.1109/JSAC.2020.3007211

    CrossRef Google Scholar

    [45] Wu QQ, Zhang R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wirel Commun 18, 5394–5409 (2019). doi: 10.1109/TWC.2019.2936025

    CrossRef Google Scholar

    [46] Cui TJ, Qi MQ, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 3, e218 (2014). doi: 10.1038/lsa.2014.99

    CrossRef Google Scholar

    [47] Zhu RC, Wang JF, Qiu TS et al. Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network. Opto-Electron Adv 6, 220148 (2023). doi: 10.29026/oea.2023.220148

    CrossRef Google Scholar

    [48] Qian C, Zheng B, Shen YC et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics 14, 383–390 (2020). doi: 10.1038/s41566-020-0604-2

    CrossRef Google Scholar

    [49] Ma Q, Bai GD, Jing HB et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl 8, 98 (2019). doi: 10.1038/s41377-019-0205-3

    CrossRef Google Scholar

    [50] Luo ZJ, Ren XY, Zhou L et al. A high‐performance nonlinear metasurface for spatial‐wave absorption. Adv Funct Mater 32, 2109544 (2022). doi: 10.1002/adfm.202109544

    CrossRef Google Scholar

    [51] Wan X, Wang JW, Huang ZA et al. Space–time–frequency modulation mechanisms of monochromatic and nonmonochromatic electromagnetic waves on a digital programmable transmission metasurface. Adv Funct Mater 32, 2107557 (2022). doi: 10.1002/adfm.202107557

    CrossRef Google Scholar

    [52] Ouyang M, Gao FF, Wang YC et al. Computer vision-aided reconfigurable intelligent surface-based beam tracking: prototyping and experimental results. IEEE Trans Wirel Commun 22, 8681–8693 (2023). doi: 10.1109/TWC.2023.3264752

    CrossRef Google Scholar

    [53] Li WH, Ma Q, Liu C et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision. Nat Commun 14, 989 (2023). doi: 10.1038/s41467-023-36645-3

    CrossRef Google Scholar

    [54] Wang B, Liu JH, Zhu SJ et al. A dual-input moving object detection method in remote sensing image sequences via temporal semantics. Remote Sens 15, 2230 (2023). doi: 10.3390/rs15092230

    CrossRef Google Scholar

    [55] Nigam N, Singh DP, Choudhary J. A review of different components of the intelligent traffic management system (ITMS). Symmetry 15, 583 (2023). doi: 10.3390/sym15030583

    CrossRef Google Scholar

    [56] Sha D, Gao JQ, Yang D et al. Calibrating stochastic traffic simulation models for safety and operational measures based on vehicle conflict distributions obtained from aerial and traffic camera videos. Accid Anal Prev 179, 106878 (2023). doi: 10.1016/j.aap.2022.106878

    CrossRef Google Scholar

    [57] Kong GS, Ma HF, Cai BG et al. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci Rep 6, 29600 (2016). doi: 10.1038/srep29600

    CrossRef Google Scholar

    [58] Wang Z, Li SQ, Zhang XQ et al. Excite spoof surface plasmons with tailored wavefronts using high‐efficiency terahertz metasurfaces. Adv Sci 7, 2000982 (2020). doi: 10.1002/advs.202000982

    CrossRef Google Scholar

    [59] Bansal A, Panagamuwa CJ, Whittow WG. Millimeter-wave beam steerable slot array antenna using an inter-digitated capacitor based corrugated SIW. IEEE Trans Antennas Propag 70, 11761–11770 (2022). doi: 10.1109/TAP.2022.3211013

    CrossRef Google Scholar

    [60] Wang Z, Dong Y. Amplitude and frequency modulated leaky wave antenna for reconfigurable intelligent radiation. IEEE Trans Antennas Propag 72, 2189–2201 (2024). doi: 10.1109/TAP.2024.3354038

    CrossRef Google Scholar

    [61] Yang D, Nam S. Frequency reconfigurable beam scanning squarely modulated reactance surface antenna with period and surface reactance control. IEEE Access 11, 72552–72561 (2023). doi: 10.1109/ACCESS.2023.3293889

    CrossRef Google Scholar

    [62] Wang SZ, Li Z, Wei B et al. A Ka-band circularly polarized fixed-frequency beam-scanning leaky-wave antenna based on groove gap waveguide with consistent high gains. IEEE Trans Antennas Propag 69, 1959–1969 (2021). doi: 10.1109/TAP.2020.3030955

    CrossRef Google Scholar

  • Supplementary information for An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(23) PDF downloads(9) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint