Tian X, Li RZ, Peng T et al. Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram. Opto-Electron Adv 7, 240060 (2024). doi: 10.29026/oea.2024.240060
Citation: Tian X, Li RZ, Peng T et al. Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram. Opto-Electron Adv 7, 240060 (2024). doi: 10.29026/oea.2024.240060

Article Open Access

Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram

More Information
  • Digital in-line holographic microscopy (DIHM) is a widely used interference technique for real-time reconstruction of living cells’ morphological information with large space-bandwidth product and compact setup. However, the need for a larger pixel size of detector to improve imaging photosensitivity, field-of-view, and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution. Additionally, the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image. The deep learning (DL) approach has emerged as a powerful tool for phase retrieval in DIHM, effectively addressing these challenges. However, most DL-based strategies are data-driven or end-to-end net approaches, suffering from excessive data dependency and limited generalization ability. Herein, a novel multi-prior physics-enhanced neural network with pixel super-resolution (MPPN-PSR) for phase retrieval of DIHM is proposed. It encapsulates the physical model prior, sparsity prior and deep image prior in an untrained deep neural network. The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods. With the capabilities of pixel super-resolution, twin-image elimination and high-throughput jointly from a single-shot intensity measurement, the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement.
  • 加载中
  • [1] Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Appl Opt 47, A52–A61 (2008). doi: 10.1364/AO.47.000A52

    CrossRef Google Scholar

    [2] Schnars U, Jüptner WPO. Digital recording and numerical reconstruction of holograms. Meas Sci Technol 13, R85–R101 (2002). doi: 10.1088/0957-0233/13/9/201

    CrossRef Google Scholar

    [3] Garcia-Sucerquia J, Xu WB, Jericho SK et al. Digital in-line holographic microscopy. Appl Opt 45, 836–850 (2006). doi: 10.1364/AO.45.000836

    CrossRef Google Scholar

    [4] Zhou J, Jin YB, Lu LP et al. Deep learning-enabled pixel-super-resolved quantitative phase microscopy from single-shot aliased intensity measurement. Laser Photonics Rev 18, 2300488 (2024). doi: 10.1002/lpor.202300488

    CrossRef Google Scholar

    [5] de Almeida JL, Comunello E, Sobieranski A et al. Twin-image suppression in digital in-line holography based on wave-front filtering. Pattern Anal Appl 24, 907–914 (2021). doi: 10.1007/s10044-020-00949-7

    CrossRef Google Scholar

    [6] Bai C, Peng T, Min JW et al. Dual-wavelength in-line digital holography with untrained deep neural networks. Photonics Res 9, 2501–2510 (2021). doi: 10.1364/PRJ.441054

    CrossRef Google Scholar

    [7] Zhang JL, Sun JS, Chen Q et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci Rep 7, 11777 (2017). doi: 10.1038/s41598-017-11715-x

    CrossRef Google Scholar

    [8] Luo W, Zhang YB, Feizi A et al. Pixel super-resolution using wavelength scanning. Light Sci Appl 5, e16060 (2016).

    Google Scholar

    [9] Pellizzari CJ, Spencer MF, Bouman CA. Coherent plug-and-play: digital holographic imaging through atmospheric turbulence using model-based iterative reconstruction and convolutional neural networks. IEEE Trans Comput Imag 6, 1607–1621 (2020). doi: 10.1109/TCI.2020.3042948

    CrossRef Google Scholar

    [10] Chang XY, Bian LH, Gao YH et al. Plug-and-play pixel super-resolution phase retrieval for digital holography. Opt Lett 47, 2658–2661 (2022). doi: 10.1364/OL.458117

    CrossRef Google Scholar

    [11] Bao P, Situ GH, Pedrini G et al. Lensless phase microscopy using phase retrieval with multiple illumination wavelengths. Appl Opt 51, 5486–5494 (2012). doi: 10.1364/AO.51.005486

    CrossRef Google Scholar

    [12] Luo W, Greenbaum A, Zhang YB et al. Synthetic aperture-based on-chip microscopy. Light Sci Appl 4, e261 (2015). doi: 10.1038/lsa.2015.34

    CrossRef Google Scholar

    [13] Yamaguchi I, Zhang T. Phase-shifting digital holography. Opt Lett 22, 1268–1270 (1997). doi: 10.1364/OL.22.001268

    CrossRef Google Scholar

    [14] Song J, Swisher CL, Im H et al. Sparsity-based pixel super resolution for lens-free digital in-line holography. Sci Rep 6, 24681 (2016). doi: 10.1038/srep24681

    CrossRef Google Scholar

    [15] Raupach SMF. Cascaded adaptive-mask algorithm for twin-image removal and its application to digital holograms of ice crystals. Appl Opt 48, 287–301 (2009). doi: 10.1364/AO.48.000287

    CrossRef Google Scholar

    [16] Zhang WH, Cao LC, Brady DJ et al. Twin-image-free holography: A compressive sensing approach. Phys Rev Lett 121, 093902 (2018). doi: 10.1103/PhysRevLett.121.093902

    CrossRef Google Scholar

    [17] Gao YH, Cao LC. Generalized optimization framework for pixel super-resolution imaging in digital holography. Opt Express 29, 28805–28823 (2021). doi: 10.1364/OE.434449

    CrossRef Google Scholar

    [18] Wang H, Lyu M, Situ GH. eHoloNet: A learning-based end-to-end approach for in-line digital holographic reconstruction. Opt Express 26, 22603–22614 (2018). doi: 10.1364/OE.26.022603

    CrossRef Google Scholar

    [19] Rivenson Y, Zhang YB, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci Appl 7, 17141 (2018).

    Google Scholar

    [20] Lempitsky V, Vedaldi A, Ulyanov D. Deep image prior. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 9446–9454 (IEEE, 2018); http://doi.org/10.1109/CVPR.2018.00984.

    Google Scholar

    [21] Wang F, Bian YM, Wang HC et al. Phase imaging with an untrained neural network. Light Sci Appl 9, 77 (2020). doi: 10.1038/s41377-020-0302-3

    CrossRef Google Scholar

    [22] Han F, Mu TK, Li HY et al. Deep image prior plus sparsity prior: Toward single-shot full-stokes spectropolarimetric imaging with a multiple-order retarder. Adv Photonics 2, 036009 (2023).

    Google Scholar

    [23] Galande AS, Thapa V, Gurram HPR et al. Untrained deep network powered with explicit denoiser for phase recovery in inline holography. Appl Phys Lett 122, 133701 (2023). doi: 10.1063/5.0144795

    CrossRef Google Scholar

    [24] Niknam F, Qazvini H, Latifi H. Holographic optical field recovery using a regularized untrained deep decoder network. Sci Rep 11, 10903 (2021). doi: 10.1038/s41598-021-90312-5

    CrossRef Google Scholar

    [25] Mait JN, Euliss GW, Athale RA. Computational imaging. Adv Opt Photonics 10, 409–483 (2018). doi: 10.1364/AOP.10.000409

    CrossRef Google Scholar

    [26] Zhao WS, Zhao SQ, Li LJ et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol 40, 606–617 (2022). doi: 10.1038/s41587-021-01092-2

    CrossRef Google Scholar

    [27] Zhao H, Gallo O, Frosio I et al. Loss functions for image restoration with neural networks. IEEE Trans Comput Imag 3, 47–57 (2017). doi: 10.1109/TCI.2016.2644865

    CrossRef Google Scholar

    [28] Ravishankar S, Ye JC, Fessler JA. Image reconstruction: from sparsity to data-adaptive methods and machine learning. Proc IEEE 108, 86–109 (2020). doi: 10.1109/JPROC.2019.2936204

    CrossRef Google Scholar

    [29] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention 234–241 (Springer, 2015); http://doi.org/10.1007/978-3-319-24574-4_28.

    Google Scholar

    [30] Schanz D, Gesemann S, Schröder A et al. Non-uniform optical transfer functions in particle imaging: Calibration and application to tomographic reconstruction. Meas Sci Technol 24, 024009 (2013). doi: 10.1088/0957-0233/24/2/024009

    CrossRef Google Scholar

    [31] Bai C, Liu C, Jia H et al. Compressed blind deconvolution and denoising for complementary beam subtraction light-sheet fluorescence microscopy. IEEE Trans Biomed Eng 66, 2979–2989 (2019). doi: 10.1109/TBME.2019.2899583

    CrossRef Google Scholar

    [32] Crete F, Dolmiere T, Ladret P et al. The blur effect: Perception and estimation with a new no-reference perceptual blur metric. In Proceedings of the SPIE 6492, Human Vision and Electronic Imaging XII 64920I (SPIE, 2007); http://doi.org/10.1117/12.702790.

    Google Scholar

    [33] Polyanskiy MN. Refractiveindex. Info database of optical constants. Sci Data 11, 94 (2024). doi: 10.1038/s41597-023-02898-2

    CrossRef Google Scholar

    [34] Luke SM, Vukusic P, Hallam B. Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales. Opt Express 17, 14729–14743 (2009). doi: 10.1364/OE.17.014729

    CrossRef Google Scholar

    [35] Zhang K, Liang JY, Van Gool L et al. Designing a practical degradation model for deep blind image super-resolution. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV) 4771–4780 (IEEE, 2021); http://doi.org/10.1109/ICCV48922.2021.00475.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(3)

Article Metrics

Article views(1262) PDF downloads(442) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint