Citation: | Fu BT, Gao RH, Yao N et al. Soliton microcomb generation by cavity polygon modes. Opto-Electron Adv 7, 240061 (2024). doi: 10.29026/oea.2024.240061 |
[1] | Kippenberg TJ, Gaeta AL, Lipson M et al. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018). doi: 10.1126/science.aan8083 |
[2] | Herr T, Brasch V, Jost JD et al. Temporal solitons in optical microresonators. Nat Photonics 8, 145–152 (2014). doi: 10.1038/nphoton.2013.343 |
[3] | Papp SB, Beha K, Del'Haye P et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014). doi: 10.1364/OPTICA.1.000010 |
[4] | Liu JQ, Lucas E, Raja AS et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat Photonics 14, 486–491 (2020). doi: 10.1038/s41566-020-0617-x |
[5] | Wang WQ, Wang LR, Zhang WF. Advances in soliton microcomb generation. Adv Photonics 2, 034001 (2020). |
[6] | Bai Y, Zhang MH, Shi Q et al. Brillouin-Kerr soliton frequency combs in an optical microresonator. Phys Rev Lett 126, 063901 (2021). doi: 10.1103/PhysRevLett.126.063901 |
[7] | Wan S, Niu R, Wang ZY et al. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photon Res 8, 1342–1349 (2020). doi: 10.1364/PRJ.397619 |
[8] | Chen HJ, Ji QX, Wang HM et al. Chaos-assisted two-octave-spanning microcombs. Nat Commun 11, 2336 (2020). doi: 10.1038/s41467-020-15914-5 |
[9] | Geng Y, Zhou H, Han XJ et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat Commun 13, 1070 (2022). doi: 10.1038/s41467-022-28712-y |
[10] | Moille G, Westly D, Orji NG et al. Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Appl Phys Lett 119, 121103 (2021). doi: 10.1063/5.0061238 |
[11] | Yuan ZQ, Gao MD, Yu Y et al. Soliton pulse pairs at multiple colours in normal dispersion microresonators. Nat Photonics 17, 977–983 (2023). doi: 10.1038/s41566-023-01257-2 |
[12] | Wu RB, Zhang JH, Yao N et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt Lett 43, 4116–4119 (2018). doi: 10.1364/OL.43.004116 |
[13] | Yu MJ, Okawachi Y, Cheng R et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci Appl 9, 9 (2020). doi: 10.1038/s41377-020-0246-7 |
[14] | Zhao YJ, Liu XY, Yvind K et al. Widely-tunable, multi-band Raman laser based on dispersion-managed thin-film lithium niobate microring resonators. Commun Phys 6, 350 (2023). doi: 10.1038/s42005-023-01477-6 |
[15] | Zhao GH, Lin JT, Fu BT et al. Integrated multi-color Raman Microlasers with ultra-low pump levels in single high-Q lithium niobate microdisks. Laser Photonics Rev 2024, 2301328 (2024). doi: 10.1002/lpor.202301328 |
[16] | Gong Z, Li M, Liu XW et al. Photonic dissipation control for Kerr soliton generation in strongly Raman-active media. Phys Rev Lett 125, 183901 (2020). doi: 10.1103/PhysRevLett.125.183901 |
[17] | Jia YC, Wang L, Chen F. Ion-cut lithium niobate on insulator technology: Recent advances and perspectives. Appl Phys Rev 8, 011307 (2021). doi: 10.1063/5.0037771 |
[18] | Lin JT, Bo F, Cheng Y et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon Res 8, 1910–1936 (2020). doi: 10.1364/PRJ.395305 |
[19] | Zhu D, Shao LB, Yu MJ et al. Integrated photonics on thin-film lithium niobate. Adv Opt Photon 13, 242–352 (2021). doi: 10.1364/AOP.411024 |
[20] | Huang YW, Feng J, Li YH et al. High-performance hyperentanglement generation and manipulation based on lithium niobate waveguides. Phys Rev Appl 17, 054002 (2022). doi: 10.1103/PhysRevApplied.17.054002 |
[21] | Xue GT, Niu YF, Liu XY et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys Rev Appl 15, 064059 (2021). doi: 10.1103/PhysRevApplied.15.064059 |
[22] | Xu MY, He MB, Zhang HG et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun 11, 3911 (2020). doi: 10.1038/s41467-020-17806-0 |
[23] | Wang C, Zhang M, Yu MJ et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun 10, 978 (2019). doi: 10.1038/s41467-019-08969-6 |
[24] | Lu JJ, Puzyrev DN, Pankratov VV et al. Two-colour dissipative solitons and breathers in microresonator second-harmonic generation. Nat Commun 14, 2798 (2023). doi: 10.1038/s41467-023-38412-w |
[25] | He Y, Yang QF, Ling JW et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6 , 1138–1144 (2019). |
[26] | Wan S, Wang PY, Ma R et al. Photorefraction-assisted self-emergence of dissipative Kerr solitons. Laser Photonic Rev 18, 2300627 (2024). doi: 10.1002/lpor.202300627 |
[27] | Gong Z, Liu XW, Xu YT et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators. Opt Lett 44, 3182–3185 (2019). doi: 10.1364/OL.44.003182 |
[28] | Yang C, Yang S, Du F et al. 1550-nm band soliton microcombs in Ytterbium-doped lithium-niobate microrings. Laser Photonics Rev 17, 2200510 (2023). doi: 10.1002/lpor.202200510 |
[29] | Lin JT, Farajollahi S, Fang ZW et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv Photonics 4, 036001 (2022). |
[30] | Gao RH, Fu BT, Yao N et al. Electro-optically tunable low phase-noise microwave synthesizer in an active lithium niobate microdisk. Laser Photonics Rev 17, 2200903 (2023). doi: 10.1002/lpor.202200903 |
[31] | Fu BT, Gao RH, Lin JT et al. Modes trimming and clustering in a weakly perturbed high-Q whispering gallery microresonator. Laser Photonics Rev 17, 2300116 (2023). doi: 10.1002/lpor.202300116 |
[32] | Farajollahi S, Fang ZW, Lin JT et al. Multimode perturbation modeling for cavity polygon and star modes. Phys Rev A 108, 033520 (2023). doi: 10.1103/PhysRevA.108.033520 |
[33] | Guan JL, Li CT, Gao RH et al. Monolithically integrated narrow-bandwidth disk laser on thin-film lithium niobate. Opt Laser Technol 168, 109908 (2024). doi: 10.1016/j.optlastec.2023.109908 |
[34] | Li Q, Briles TC, Westly DA et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017). doi: 10.1364/OPTICA.4.000193 |
[35] | Gao RH, Yao N, Guan JL et al. Lithium niobate microring with ultra-high Q factor above 108. Chin Opt Lett 20, 011902 (2022). doi: 10.3788/COL202220.011902 |
Supplementary information for Soliton microcomb generation by cavity polygon modes |
Raman comb generation. (a) The loaded Q factor of the fundamental WGM around 1561.32 nm wavelength. Inset: the scanning electron microscope (SEM) image of the fabricated microdisk, and the scale bar is 20 μm. (b) The transmission spectrum of the WGMs, where the fundamental mode family is labeled with red dots. (c) The spectrum of Raman comb when pumped at 1561.33 nm. Inset: The optical micrograph of the fundamental WGMs. (d) The spectrum of Raman comb when pumped at 1561.31 nm. (e) and (f) The enlarged spectral region labelled with the colored boxes in Fig. 1(d).
Soliton comb generation from polygon modes. (a) The measured loaded-Q factor of the mode around 1542.80 nm. Inset: the optical micrograph of the polygon modes. (b) The transmission spectrum of the square mode family (labelled with red dots). (c) The spectrum of the comb lines when pumping at 1542.79 nm. (d) The RF spectrum of soliton comb, where signal and background are denoted as Sig. and BG.
Dispersion design. (a) Simulated group refractive index curves. Here, the fundamental WGM TE0 is denoted as TE0 mode. (b) Simulated group velocity dispersion curves. (c) Simulated and its corresponding experimental integrated dispersion curves of the square modes, corresponding to the second-order dispersion D2/(2π) of 0.8 MHz. (d) The effective cavity nonlinear volumes of WGMs and square mode as a function of cosΘλ,R. Inset: the calculated mode profile of the polygon mode.
Comparison of geometrical features between the fundamental WGM and the square mode. (a) The WGM orbit cosΘ (Cosine) as a function of eigenvalue. (b) The mode distribution characteristics of fundamental WGM. (c) Close-up images of the WGM orbits for the relative mode numbers of −50, 0, and 50. (d) The classical orbit as a function of eigenvalue. (e) The mode distribution characteristics of the square mode. (f) Close-up images of the square orbits for the relative mode numbers of −50, 0, and 50.
Evolution of the Kerr comb generation. (a-c) The spectra of the comb lines when tuning the pump wavelength from 1542.83 nm to 1542.81 nm. Inset in Fig. 5(c): the RF spectrum of chaotic comb. (d) The transmission spectrum during wavelength scanning, exhibiting a soliton step.