Wang WQ, Huang ZW. Stimulated Raman scattering microscopy with phase-controlled light focusing and aberration correction for rapid and label-free, volumetric deep tissue imaging. Opto-Electron Adv 7, 240064 (2024). doi: 10.29026/oea.2024.240064
Citation: Wang WQ, Huang ZW. Stimulated Raman scattering microscopy with phase-controlled light focusing and aberration correction for rapid and label-free, volumetric deep tissue imaging. Opto-Electron Adv 7, 240064 (2024). doi: 10.29026/oea.2024.240064

Article Open Access

Stimulated Raman scattering microscopy with phase-controlled light focusing and aberration correction for rapid and label-free, volumetric deep tissue imaging

More Information
  • We report a novel stimulated Raman scattering (SRS) microscopy technique featuring phase-controlled light focusing and aberration corrections for rapid, deep tissue 3D chemical imaging with subcellular resolution. To accomplish phase-controlled SRS (PC-SRS), we utilize a single spatial light modulator to electronically tune the axial positioning of both the shortened-length Bessel pump and the focused Gaussian Stokes beams, enabling z-scanning-free optical sectioning in the sample. By incorporating Zernike polynomials into the phase patterns, we simultaneously correct the system aberrations at two separate wavelengths (~240 nm difference), achieving a ~3-fold enhancement in signal-to-noise ratio over the uncorrected imaging system. PC-SRS provides >2-fold improvement in imaging depth in various samples (e.g., polystyrene bead phantoms, porcine brain tissue) as well as achieves SRS 3D imaging speed of ~13 Hz per volume for real-time monitoring of Brownian motion of polymer beads in water, superior to conventional point-scanning SRS 3D imaging. We further utilize PC-SRS to observe the metabolic activities of the entire tumor liver in living zebrafish in cell-silent region, unraveling the upregulated metabolism in liver tumor compared to normal liver. This work shows that PC-SRS provides unprecedented insights into morpho-chemistry, metabolic and dynamic functioning of live cells and tissue in real-time at the subcellular level.
  • 加载中
  • [1] Bae K, Zheng W, Lin K et al. Epi-detected hyperspectral stimulated Raman scattering microscopy for label-free molecular subtyping of glioblastomas. Anal Chem 90, 10249–10255 (2018). doi: 10.1021/acs.analchem.8b01677

    CrossRef Google Scholar

    [2] Shi LY, Zheng CG, Shen YH et al. Optical imaging of metabolic dynamics in animals. Nat Commun 9, 2995 (2018). doi: 10.1038/s41467-018-05401-3

    CrossRef Google Scholar

    [3] Bae K, Zheng W, Ma Y et al. Real-time monitoring of pharmacokinetics of mitochondria-targeting molecules in live cells with bioorthogonal hyperspectral stimulated Raman scattering microscopy. Anal Chem 92, 740–748 (2020). doi: 10.1021/acs.analchem.9b02838

    CrossRef Google Scholar

    [4] Lu FK, Basu S, Igras V et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci USA 112, 11624–11629 (2015). doi: 10.1073/pnas.1515121112

    CrossRef Google Scholar

    [5] Wang Z, Zheng W, Hsu C Y S et al. Polarization-resolved hyperspectral stimulated Raman scattering microscopy for label-free biomolecular imaging of the tooth. Appl Phys Lett 108, 033701 (2016). doi: 10.1063/1.4939923

    CrossRef Google Scholar

    [6] Bae K, Zheng W, Huang ZW. Quantitative assessment of spinal cord injury using circularly polarized coherent anti-Stokes Raman scattering microscopy. Appl Phys Lett 111, 063704 (2017). doi: 10.1063/1.4991792

    CrossRef Google Scholar

    [7] Lin SL, Gong L, Huang ZW. Super‐resolution two‐photon fluorescence tomography through the phase‐shifted optical beatings of bessel beams for high‐resolution deeper tissue 3D imaging. Laser Photonics Rev 18, 2300634 (2024). doi: 10.1002/lpor.202300634

    CrossRef Google Scholar

    [8] Gong L, Zheng W, Ma Yet al. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat Photonics 14, 115–122 (2020). doi: 10.1038/s41566-019-0535-y

    CrossRef Google Scholar

    [9] Lin J, Lu FK, Zheng W et al. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique. J Biomed Opt 16, 116024 (2011). doi: 10.1117/1.3655353

    CrossRef Google Scholar

    [10] Nandakumar P, Kovalev A, Volkmer A. Vibrational imaging based on stimulated Raman scattering microscopy. New J Phys 11, 033026 (2009). doi: 10.1088/1367-2630/11/3/033026

    CrossRef Google Scholar

    [11] Wang Z, Zheng W, Huang ZW. Lock-in-detection-free line-scan stimulated Raman scattering microscopy for near video-rate Raman imaging. Opt Lett 41, 3960–3963 (2016). doi: 10.1364/OL.41.003960

    CrossRef Google Scholar

    [12] Chapple PB, Staromlynska J, Hermann JA et al. Single-beam Z-Scan: measurement techniques and analysis. J Nonlinear Opt Phys Mater 6, 251–293 (1997). doi: 10.1142/S0218863597000204

    CrossRef Google Scholar

    [13] Wu JL, Ji N, Tsia KK. Speed scaling in multiphoton fluorescence microscopy. Nat Photonics 15, 800–812 (2021). doi: 10.1038/s41566-021-00881-0

    CrossRef Google Scholar

    [14] Hill AH, Manifold B, Fu D. Tissue imaging depth limit of stimulated Raman scattering microscopy. Biomed. Opt Express 11, 762–774 (2020). doi: 10.1364/BOE.382396

    CrossRef Google Scholar

    [15] Chen XL, Zhang C, Lin P et al. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography. Nat Commun 8, 15117 (2017). doi: 10.1038/ncomms15117

    CrossRef Google Scholar

    [16] Gong L, Lin SL, Huang ZW. Stimulated Raman scattering tomography enables label-free volumetric deep tissue imaging. Laser Photonics Rev 15, 2100069 (2021). doi: 10.1002/lpor.202100069

    CrossRef Google Scholar

    [17] Nussbaum A. Teaching of advanced geometric optics. Appl Opt 17, 2128–2129 (1978). doi: 10.1364/AO.17.002128

    CrossRef Google Scholar

    [18] Duocastella M, Arnold CB. Bessel and annular beams for materials processing. Laser & Photonics Rev 6, 607–621 (2012).

    Google Scholar

    [19] Mahmoud MA, Shalaby MY, Khalil D. Propagation of Bessel beams generated using finite-width Durnin ring. Appl Opt 52, 256–263 (2013). doi: 10.1364/AO.52.000256

    CrossRef Google Scholar

    [20] Saidi IS, Jacques SL, Tittel FK. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Appl Opt 34, 7410–7418 (1995 doi: 10.1364/AO.34.007410

    CrossRef Google Scholar

    [21] Li HK, Li Y, Lu JW et al. Liver-specific androgen receptor knockout attenuates early liver tumor development in zebrafish. Sci Rep 9, 10645 (2019). doi: 10.1038/s41598-019-46378-3

    CrossRef Google Scholar

    [22] Xin L, Huang MZ, Huang ZW. Quantitative assessment and monitoring of microplastics and nanoplastics distributions and lipid metabolism in live zebrafish using hyperspectral stimulated Raman scattering microscopy. Environ Int 187, 108679 (2024). doi: 10.1016/j.envint.2024.108679

    CrossRef Google Scholar

    [23] Wang WQ, Huang ZW. Stimulated Raman scattering tomography for rapid three-dimensional chemical imaging of cells and tissue. Adv Photonics 6, 026001 (2024).

    Google Scholar

    [24] Huang K, Ye HP, Teng JH et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev 8, 152–157 (2014). doi: 10.1002/lpor.201300123

    CrossRef Google Scholar

    [25] Fahrbach FO, Rohrbach A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat Commun 3, 632 (2012 doi: 10.1038/ncomms1646

    CrossRef Google Scholar

    [26] Xin L, Luo ZC, Liu XG et al. Unveiling the spatiotemporal and dose responses within a single live cancer cell to photoswitchable upconversion nanoparticle therapeutics using hybrid hyperspectral stimulated raman scattering and transient absorption microscopy. Anal Chem 96, 6148–6157 (2024 doi: 10.1021/acs.analchem.3c04898

    CrossRef Google Scholar

    [27] Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49, 6449–6465 (1989).

    Google Scholar

    [28] Antaris AL, Chen H, Cheng K et al. A small-molecule dye for NIR-II imaging. Nat Mater 15, 235–242 (2016). doi: 10.1038/nmat4476

    CrossRef Google Scholar

    [29] Druon F, Chériaux G, Faure J et al. Wave-front correction of femtosecond terawatt lasers by deformable mirrors. Opt Lett 23, 1043–1045 (1998). doi: 10.1364/OL.23.001043

    CrossRef Google Scholar

    [30] Platt BC, Shack R. History and principles of Shack-Hartmann wavefront sensing. J Refract Surg 17, S573–S577 (2001).

    Google Scholar

    [31] Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7, 141–147 (2010). doi: 10.1038/nmeth.1411

    CrossRef Google Scholar

    [32] Ersumo NT, Yalcin C, Antipa N et al. A micromirror array with annular partitioning for high-speed random-access axial focusing. Light Sci Appl 9, 183 (2020). doi: 10.1038/s41377-020-00420-6

    CrossRef Google Scholar

    [33] Geng Q, Gu CL, Cheng JY et al. Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging. Optica 4, 674–677 (2017). doi: 10.1364/OPTICA.4.000674

    CrossRef Google Scholar

    [34] Wang N, Wang XY, Yan TY et al. Label-free structural and functional volumetric imaging by dual-modality optical-Raman projection tomography. Sci Adv 9, eadf3504 (2023). doi: 10.1126/sciadv.adf3504

    CrossRef Google Scholar

    [35] Shu C, Gong L, Huang ZW. Bessel beam beating-based spontaneous Raman tomography enables high-contrast deep tissue Raman measurements. ACS Photonics 11, 2022–2034 (2024). doi: 10.1021/acsphotonics.4c00160

    CrossRef Google Scholar

    [36] Demers JLH, Esmonde-White FWL, Esmonde-White KA et al. Next-generation Raman tomography instrument for non-invasive in vivo bone imaging. Biomed Opt Express 6, 793–806 (2015). doi: 10.1364/BOE.6.000793

    CrossRef Google Scholar

  • Supplementary information for Stimulated Raman scattering microscopy with phase-controlled light focusing and aberration correction for rapid and label-free, volumetric deep tissue imaging
    Media S1
    Media S2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(565) PDF downloads(191) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint