Zhou YJ, Liu T, Dai CH et al. Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences. Opto-Electron Adv 7, 240086 (2024). doi: 10.29026/oea.2024.240086
Citation: Zhou YJ, Liu T, Dai CH et al. Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences. Opto-Electron Adv 7, 240086 (2024). doi: 10.29026/oea.2024.240086

Article Open Access

Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences

More Information
  • Multiplexing multiple yet distinct functionalities in one single device is highly desired for modern integration optics, but conventional devices are usually of bulky sizes and/or low efficiencies. While recently proposed metasurfaces can be ultra-thin and highly efficient, functionalities multiplexed by metadevices so far are typically restricted to two, dictated by the number of independent polarization states of the incident light. Here, we propose a generic approach to design metadevices exhibiting wave-control functionalities far exceeding two, based on coherent wave interferences continuously tuned by varying the incident polarization. After designing a series of building-block metaatoms with optical properties experimentally characterized, we construct two metadevices based on the proposed strategy and experimentally demonstrate their polarization-tuned multifunctionalities at the wavelength of 1550 nm. Specifically, upon continuously modulating the incident polarization along different paths on the Poincare’s sphere, we show that the first device can generate two spatially non-overlapping vortex beams with strengths continuously tuned, while the second device can generate a vectorial vortex beam carrying continuously-tuned polarization distribution and/or orbital angular momentum. Our proposed strategy significantly expands the wave-control functionalities equipped with a single optical device, which may stimulate numerous applications in integration optics.
  • 加载中
  • [1] Yu NF, Aieta F, Genevet P et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12, 6328–6333 (2012). doi: 10.1021/nl303445u

    CrossRef Google Scholar

    [2] Hao JM, Yuan Y, Ran LX et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett 99, 063908 (2007). doi: 10.1103/PhysRevLett.99.063908

    CrossRef Google Scholar

    [3] Mueller JPB, Rubin NA, Devlin RC et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [4] Wang S, Wen S, Deng ZL et al. Metasurface-based solid poincaré sphere polarizer. Phys Rev Lett 130, 123801 (2023). doi: 10.1103/PhysRevLett.130.123801

    CrossRef Google Scholar

    [5] Wang JJ, Li PS, Zhao XQ et al. Optical bound states in the continuum in periodic structures: Mechanisms, effects, and applications. Photonics Insights 3, R01 (2024). doi: 10.3788/PI.2024.R01

    CrossRef Google Scholar

    [6] Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [7] Sun SL, Yang KY, Wang CM et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12, 6223–6229 (2012). doi: 10.1021/nl3032668

    CrossRef Google Scholar

    [8] Fang ZN, Li HP, Chen Y et al. Deterministic approach to design passive anomalous-diffraction metasurfaces with nearly 100% efficiency. Nanophotonics 12, 2383–2396 (2023). doi: 10.1515/nanoph-2022-0755

    CrossRef Google Scholar

    [9] Xu HX, Ma SJ, Ling XH et al. Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces. ACS Photonics 5, 1691–1702 (2018). doi: 10.1021/acsphotonics.7b01036

    CrossRef Google Scholar

    [10] Ma Q, Liu C, Xiao Q et al. Information metasurfaces and intelligent metasurfaces. Photonics Insights 1, R01 (2022). doi: 10.3788/PI.2022.R01

    CrossRef Google Scholar

    [11] Zhang F, Pu MB, Li X et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [12] Sun SL, He Q, Xiao SY et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 11, 426–431 (2012). doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [13] Tcvetkova SN, Kwon DH, Díaz-Rubio A et al. Near-perfect conversion of a propagating plane wave into a surface wave using metasurfaces. Phys Rev B 97, 115447 (2018). doi: 10.1103/PhysRevB.97.115447

    CrossRef Google Scholar

    [14] Cai T, Tang SW, Wang GM et al. High‐performance bifunctional metasurfaces in transmission and reflection geometries. Adv Opt Mater 5, 1600506 (2017). doi: 10.1002/adom.201600506

    CrossRef Google Scholar

    [15] Xu Q, Lang YH, Jiang XH et al. Meta-optics inspired surface plasmon devices. Photonics Insights 2, R02 (2023). doi: 10.3788/PI.2023.R02

    CrossRef Google Scholar

    [16] Aieta F, Genevet P, Kats MA et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12, 4932–4936 (2012). doi: 10.1021/nl302516v

    CrossRef Google Scholar

    [17] Arbabi A, Horie Y, Ball AJ et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6, 7069 (2015). doi: 10.1038/ncomms8069

    CrossRef Google Scholar

    [18] Liu FF, Wang DY, Zhu H et al. High‐efficiency metasurface‐based surface‐plasmon lenses. Laser Photonics Rev 17, 2201001 (2023). doi: 10.1002/lpor.202201001

    CrossRef Google Scholar

    [19] Wang SM, Wu PC, Su VC et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [20] Xu BB, Li HM, Gao SL et al. Metalens-integrated compact imaging devices for wide-field microscopy. Adv Photonics 2, 066004 (2020).

    Google Scholar

    [21] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [22] Chen WT, Yang KY, Wang CM et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14, 225–230 (2014). doi: 10.1021/nl403811d

    CrossRef Google Scholar

    [23] Zheng GX, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [24] Guo XY, Li P, Zhong JZ et al. Stokes meta-hologram toward optical cryptography. Nat Commun 13, 6687 (2022). doi: 10.1038/s41467-022-34542-9

    CrossRef Google Scholar

    [25] Yang ZJ, Huang PS, Lin YT et al. Asymmetric full-color vectorial meta-holograms empowered by pairs of exceptional points. Nano Lett 24, 844–851 (2024). doi: 10.1021/acs.nanolett.3c03611

    CrossRef Google Scholar

    [26] Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [27] Wang DY, Liu T, Zhou YJ et al. High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics 10, 685–695 (2020). doi: 10.1515/nanoph-2020-0465

    CrossRef Google Scholar

    [28] Wang DY, Liu FF, Liu T et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci Appl 10, 67 (2021). doi: 10.1038/s41377-021-00504-x

    CrossRef Google Scholar

    [29] Ding F, Chen YT, Yang YQ, et al. Multifunctional metamirrors for broadband focused vector‐beam generation. Adv Opt Mater 7, 1900724 (2019). doi: 10.1002/adom.201900724

    CrossRef Google Scholar

    [30] Liu ZX, Liu YY, Ke YG et al. Generation of arbitrary vector vortex beams on hybrid-order poincaré sphere. Photonics Res 5, 15–21 (2017). doi: 10.1364/PRJ.5.000015

    CrossRef Google Scholar

    [31] Li H, Duan SX, Zheng CL et al. Longitudinal manipulation of scalar to vector vortex beams evolution empowered by all‐silicon metasurfaces. Adv Opt Mater 11, 2301368 (2023). doi: 10.1002/adom.202301368

    CrossRef Google Scholar

    [32] Yue FY, Wen DD, Xin JT et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558–1563 (2016). doi: 10.1021/acsphotonics.6b00392

    CrossRef Google Scholar

    [33] Cui GS, Gu MN, Cheng C et al. Multifunctional all-dielectric quarter-wave plate metasurfaces for generating focused vector beams of bell-like states. Nanophotonics 13, 1631–1644 (2024). doi: 10.1515/nanoph-2023-0923

    CrossRef Google Scholar

    [34] Li X, Chen LW, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [35] Li X, Chen QM, Zhang X et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060

    CrossRef Google Scholar

    [36] Shi ZJ, Zhu AY, Li ZY et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. Sci Adv 6, eaba3367 (2020). doi: 10.1126/sciadv.aba3367

    CrossRef Google Scholar

    [37] Zhang F, Xie X, Pu MB et al. Multistate switching of photonic angular momentum coupling in phase‐change metadevices. Adv Mater 32, 1908194 (2020). doi: 10.1002/adma.201908194

    CrossRef Google Scholar

    [38] Liu YC, Xu K, Fan XH et al. Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates. Opto-Electron Adv 7, 230108 (2024). doi: 10.29026/oea.2024.230108

    CrossRef Google Scholar

    [39] Chen J, Wang DP, Si GY et al. Planar peristrophic multiplexing metasurfaces. Opto-Electron Adv 6, 220141 (2023). doi: 10.29026/oea.2023.220141

    CrossRef Google Scholar

    [40] Xu HX, Tang SW, Ling XH et al. Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking. Ann Phys 529, 1700045 (2017). doi: 10.1002/andp.201700045

    CrossRef Google Scholar

    [41] Yang WX, Chen K, Luo XY et al. Polarization-selective bifunctional metasurface for high-efficiency millimeter-wave folded transmitarray antenna with circular polarization. IEEE Trans Antennas Propag 70, 8184–8194 (2022). doi: 10.1109/TAP.2022.3168746

    CrossRef Google Scholar

    [42] Ding F, Deshpande R, Bozhevolnyi SI. Bifunctional gap-plasmon metasurfaces for visible light: Polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci Appl 7, 17178 (2018).

    Google Scholar

    [43] Cai XD, Tang R, Zhou HY et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv Photonics 3, 036003 (2021).

    Google Scholar

    [44] Zhang Q, He ZH, Xie ZW et al. Diffractive optical elements 75 years on: from micro-optics to metasurfaces. Photonics Insights 2, R09 (2023). doi: 10.3788/PI.2023.R09

    CrossRef Google Scholar

    [45] Xu Q, Su XQ, Zhang XQ et al. Mechanically reprogrammable pancharatnam-berry metasurface for microwaves. Adv Photonics 4, 016002 (2022).

    Google Scholar

    [46] Luo WJ, Sun SL, Xu HX et al. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Phys Rev Appl 7, 044033 (2017). doi: 10.1103/PhysRevApplied.7.044033

    CrossRef Google Scholar

    [47] Xie X, Pu MB, Jin JJ et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [48] Cong LQ, Xu NN, Han JG et al. A tunable dispersion‐free terahertz metadevice with pancharatnam–berry‐phase‐enabled modulation and polarization control. Adv Mater 27, 6630–6636 (2015). doi: 10.1002/adma.201502716

    CrossRef Google Scholar

    [49] Ye WM, Zeuner F, Li X et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 7, 11930 (2016). doi: 10.1038/ncomms11930

    CrossRef Google Scholar

    [50] Guo YH, Pu MB, Zhang F et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photonics Insights 1, R03 (2022). doi: 10.3788/PI.2022.R03

    CrossRef Google Scholar

    [51] Yang YM, Wang WY, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14, 1394–1399 (2014). doi: 10.1021/nl4044482

    CrossRef Google Scholar

    [52] Liu YF, Zhou L, Wen YZ et al. Optical vector vortex generation by spherulites with cylindrical anisotropy. Nano Lett 22, 2444–2449 (2022). doi: 10.1021/acs.nanolett.2c00171

    CrossRef Google Scholar

    [53] Ling XH, Luo HL, Guan FX et al. Vortex generation in the spin-orbit interaction of a light beam propagating inside a uniaxial medium: origin and efficiency. Opt Express 28, 27258–27267 (2020). doi: 10.1364/OE.403650

    CrossRef Google Scholar

    [54] Ling XH, Guan FX, Cai XD et al. Topology‐induced phase transitions in spin‐orbit photonics. Laser Photonics Rev 15, 2000492 (2021). doi: 10.1002/lpor.202000492

    CrossRef Google Scholar

  • Supplementary information for Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint