Hu J, Lin WH, Shao LY et al. High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor. Opto-Electron Adv 7, 240105 (2024). doi: 10.29026/oea.2024.240105
Citation: Hu J, Lin WH, Shao LY et al. High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor. Opto-Electron Adv 7, 240105 (2024). doi: 10.29026/oea.2024.240105

Article Open Access

High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor

More Information
  • The specific detection of tumor markers is crucial in early tumor screening and subsequent treatment processes. To accurately distinguish the signal response caused by trace markers, the high demodulation resolution of the sensor is necessary. In this paper, we propose a dual-wavelength fiber laser sensing system enhanced with microwave photonics demodulation technology to achieve high-resolution tumor marker detection. This sensing system can simultaneously perform spectral wavelength-domain and frequency-domain analyses. Experimental results demonstrate that this system's refractive index (RI) sensitivity reaches 1083 nm/RIU by wavelength analysis and –1902 GHz/RIU by frequency analysis, with ideal detection resolutions of 1.85×10–5 RIU and 5.26×10–8 RIU, respectively. Compared with traditional wavelength domain analysis, the demodulation resolution is improved by three orders of magnitude, based on the same sensing structure. To validate its biosensing performance, carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is selected as the detection target. Experimental results show that the improved sensing system has a limit of detection (LOD) of 0.076 ng/mL and a detection resolution of 0.008 ng/mL. Experimental results obtained from human serum samples are consistent with clinical data, highlighting the strong clinical application potential of the proposed sensing system and analysis method.
  • 加载中
  • [1] Sung H, Ferlay J, Siegel RL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209–249 (2021). doi: 10.3322/caac.21660

    CrossRef Google Scholar

    [2] Crosby D, Bhatia S, Brindle KM et al. Early detection of cancer. Science 375, eaay9040 (2022). doi: 10.1126/science.aay9040

    CrossRef Google Scholar

    [3] Ren J, Cai H, Li Y et al. Tumor markers for early detection of ovarian cancer. Expert Rev Mol Diagn 10, 787–798 (2010). doi: 10.1586/erm.10.39

    CrossRef Google Scholar

    [4] Zhou JF, Fan X, Chen N et al. Identification of CEACAM5 as a biomarker for prewarning and prognosis in gastric cancer. J Histochem Cytochem 63, 922–930 (2015). doi: 10.1369/0022155415609098

    CrossRef Google Scholar

    [5] Su DS, Chen PY, Chiu HC et al. Disease antigens detection by silicon nanowires with the efficiency optimization of their antibodies on a chip. Biosens Bioelectron 141, 111209 (2019). doi: 10.1016/j.bios.2019.03.042

    CrossRef Google Scholar

    [6] Zhang DS, Li WX, Ma ZF et al. Improved ELISA for tumor marker detection using electro-readout-mode based on label triggered degradation of methylene blue. Biosens Bioelectron 126, 800–805 (2019). doi: 10.1016/j.bios.2018.11.038

    CrossRef Google Scholar

    [7] Zhao LJ, Wang J, Su DD et al. The DNA controllable peroxidase mimetic activity of MoS2 nanosheets for constructing a robust colorimetric biosensor. Nanoscale 12, 19420–19428 (2020). doi: 10.1039/D0NR05649A

    CrossRef Google Scholar

    [8] Filik H, Avan AA. Electrochemical and electrochemiluminescence dendrimer-based nanostructured immunosensors for tumor marker detection: a review. Curr Med Chem 28, 3490–3513 (2021). doi: 10.2174/0929867327666201019143647

    CrossRef Google Scholar

    [9] Wang TY, Zhu YZ, Weng SY et al. Optical biosensor based on SERS with signal calibration function for quantitative detection of carcinoembryonic antigen. Biomed Opt Express 13, 5962–5970 (2022). doi: 10.1364/BOE.474273

    CrossRef Google Scholar

    [10] Liu JJ, Jalali M, Mahshid S et al. Are plasmonic optical biosensors ready for use in point-of-need applications. Analyst 145, 364–384 (2020). doi: 10.1039/C9AN02149C

    CrossRef Google Scholar

    [11] Socorro-Leránoz AB, Santano D, Del Villar I et al. Trends in the design of wavelength-based optical fibre biosensors (2008-2018). Biosens Bioelectron: X 1, 100015 (2019).

    Google Scholar

    [12] Liang LL, Jin L, Ran Y et al. Fiber light-coupled optofluidic waveguide (FLOW) immunosensor for highly sensitive detection of p53 protein. Anal Chem 90, 10851–10857 (2018). doi: 10.1021/acs.analchem.8b02123

    CrossRef Google Scholar

    [13] Chen XY, Xu P, Lin WE et al. Label-free detection of breast cancer cells using a functionalized tilted fiber grating. Biomed Opt Express 13, 2117–2129 (2022). doi: 10.1364/BOE.454645

    CrossRef Google Scholar

    [14] Zhang YX, Wu H, Wang H et al. Ultraminiature optical fiber-tip directly-printed plasmonic biosensors for label-free biodetection. Biosens Bioelectron 218, 114761 (2022). doi: 10.1016/j.bios.2022.114761

    CrossRef Google Scholar

    [15] Esposito F, Sansone L, Srivastava A et al. Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing. Biosens Bioelectron 172, 112747 (2021). doi: 10.1016/j.bios.2020.112747

    CrossRef Google Scholar

    [16] Xiao AX, Huang YY, Zheng JY et al. An optical microfiber biosensor for CEACAM5 detection in serum: sensitization by a nanosphere interface. ACS Appl Mater Interfaces 12, 1799–1805 (2020). doi: 10.1021/acsami.9b16702

    CrossRef Google Scholar

    [17] Bian SM, Shang M, Sawan M. Rapid biosensing SARS-CoV-2 antibodies in vaccinated healthy donors. Biosens Bioelectron 204, 114054 (2022). doi: 10.1016/j.bios.2022.114054

    CrossRef Google Scholar

    [18] Sun LP, Huang Y, Huang TS et al. Optical microfiber reader for enzyme-linked immunosorbent assay. Anal Chem 91, 14141–14148 (2019). doi: 10.1021/acs.analchem.9b04119

    CrossRef Google Scholar

    [19] Hu J, He PP, Zhao F et al. Magnetic microspheres enhanced peanut structure cascaded lasso shaped fiber laser biosensor for cancer marker-CEACAM5 detection in serum. Talanta 271, 125625 (2024). doi: 10.1016/j.talanta.2024.125625

    CrossRef Google Scholar

    [20] Yang X, Gong CY, Zhang CL et al. Fiber optofluidic microlasers: structures, characteristics, and applications. Laser Photon Rev 16, 2100171 (2022). doi: 10.1002/lpor.202100171

    CrossRef Google Scholar

    [21] Hu J, Song EL, Liu YH et al. Fiber laser-based lasso-shaped biosensor for high precision detection of cancer biomarker-CEACAM5 in serum. Biosensors 13, 674 (2023). doi: 10.3390/bios13070674

    CrossRef Google Scholar

    [22] Capmany J, Novak D. Microwave photonics combines two worlds. Nat Photonics 1, 319–330 (2007). doi: 10.1038/nphoton.2007.89

    CrossRef Google Scholar

    [23] Yao JP. Microwave photonics. J Lightwave Technol 27, 314–335 (2009). doi: 10.1109/JLT.2008.2009551

    CrossRef Google Scholar

    [24] Xiao DR, Wang GQ, Yu FH et al. Optical curvature sensor with high resolution based on in-line fiber Mach-Zehnder interferometer and microwave photonic filter. Opt Express 30, 5402–5413 (2022). doi: 10.1364/OE.445982

    CrossRef Google Scholar

    [25] Cao Y, Wang XD, Guo T et al. High-resolution and temperature-compensational HER2 antigen detection based on microwave photonic interrogation. Sens Actuators B Chem 245, 583–589 (2017). doi: 10.1016/j.snb.2017.01.085

    CrossRef Google Scholar

    [26] Pakarzadeh H, Sharif V, Vigneswaran D et al. Graphene-assisted tunable D-shaped photonic crystal fiber sensor in the visible and IR regions. J Opt Soc Am B 39, 1490–1496 (2022). doi: 10.1364/JOSAB.450393

    CrossRef Google Scholar

    [27] Divya J, Selvendran S. Surface plasmon resonance-based gold-coated hollow-core negative curvature optical fiber sensor. Biosensors 13, 148 (2023). doi: 10.3390/bios13020148

    CrossRef Google Scholar

    [28] Wang SF, Shen T, Feng Y et al. D-type photonic crystal fiber refractive index sensor with ultra-high fabrication stability and ultra-wide detection range. Opt Quantum Electron 56, 515 (2024). doi: 10.1007/s11082-023-05834-1

    CrossRef Google Scholar

    [29] Wang FM, Wei Y, Han YH. High sensitivity and wide range refractive index sensor based on surface plasmon resonance photonic crystal fiber. Sensors 23, 6617 (2023). doi: 10.3390/s23146617

    CrossRef Google Scholar

    [30] Han B, Ma YX, Wu H et al. Random raman fiber laser as a liquid refractive index sensor. Photonic Sens 14, 240121 (2024). doi: 10.1007/s13320-023-0697-6

    CrossRef Google Scholar

    [31] Guo PL, Liu HH, Zhou ZT et al. Spatially modulated fiber speckle for high-sensitivity refractive index sensing. Sensors 23, 6814 (2023). doi: 10.3390/s23156814

    CrossRef Google Scholar

    [32] Wang GY, Liao BL, Cao Y et al. Microwave photonic interrogation of a high-speed and high-resolution multipoint refractive index sensor. J Lightwave Technol 40, 1245–1251 (2022). doi: 10.1109/JLT.2021.3127239

    CrossRef Google Scholar

    [33] Zhang YF, Zhang AL, Wang JF et al. High-sensitivity and high-resolution RI sensor with ultrawide measurement range based on NCF with large offset splicing and MPF interrogation. IEEE Sens J 22, 22707–22713 (2022). doi: 10.1109/JSEN.2022.3218572

    CrossRef Google Scholar

    [34] Chen LH, Chan CC, Ni K et al. Label-free fiber-optic interferometric immunosensors based on waist-enlarged fusion taper. Sens Actuators B Chem 178, 176–184 (2013). doi: 10.1016/j.snb.2012.12.071

    CrossRef Google Scholar

    [35] Liu LH, Shan DD, Zhou XH et al. TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosens Bioelectron 106, 117–121 (2018). doi: 10.1016/j.bios.2018.01.066

    CrossRef Google Scholar

    [36] Susu L, Vulpoi A, Astilean S et al. Portable plasmonic paper-based biosensor for simple and rapid indirect detection of CEACAM5 biomarker via metal-enhanced fluorescence. Int J Mol Sci 23, 11982 (2022). doi: 10.3390/ijms231911982

    CrossRef Google Scholar

    [37] Li P, Li WQ, Xie ZH et al. A label-free and signal-amplifiable assay method for colorimetric detection of carcinoembryonic antigen. Biotechnol Bioeng 119, 504–512 (2022). doi: 10.1002/bit.28003

    CrossRef Google Scholar

    [38] Li C, Ma XX, Guan YX et al. Microcantilever array biosensor for simultaneous detection of carcinoembryonic antigens and α-fetoprotein based on real-time monitoring of the profile of cantilever. ACS Sens 4, 3034–3041 (2019). doi: 10.1021/acssensors.9b01604

    CrossRef Google Scholar

    [39] Wang RN, Huang Y, Chi YW. Gold nanoparticles-oxidized multi-walled carbon nanotubes as electrochemiluminescence immunosensors. Analyst 147, 3096–3100 (2022). doi: 10.1039/D2AN00661H

    CrossRef Google Scholar

    [40] Truta LAANA, Sales MGF. Carcinoembryonic antigen imprinting by electropolymerization on a common conductive glass support and its determination in serum samples. Sens Actuators B Chem 287, 53–63 (2019). doi: 10.1016/j.snb.2019.02.033

    CrossRef Google Scholar

    [41] Browning-Kelley ME, Wadu-Mesthrige K, Hari V et al. Atomic force microscopic study of specific antigen/antibody binding. Langmuir 13, 343–350 (1997). doi: 10.1021/la960918x

    CrossRef Google Scholar

    [42] Chen L, Leng YK, Liu B et al. Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode-no core-singlemode coupler for Staphylococcus aureus detection. Sens Actuators B Chem 320, 128283 (2020). doi: 10.1016/j.snb.2020.128283

    CrossRef Google Scholar

  • Supplementary information for High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint