Citation: | Wang QS, Fang Y, Meng Y et al. Vortex-field enhancement through high-threshold geometric metasurface. Opto-Electron Adv 7, 240112 (2024). doi: 10.29026/oea.2024.240112 |
[1] | Allen L, Beijersbergen MW, Spreeuw RJC et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185 |
[2] | Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161 |
[3] | Shen YJ, Wang XJ, Xie ZW et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 8, 90 (2019). doi: 10.1038/s41377-019-0194-2 |
[4] | Zhang TC, Dong KC, Li JC et al. Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum. Nat Commun 14, 6014 (2023). doi: 10.1038/s41467-023-41068-1 |
[5] | Apurv Chaitanya N, Aadhi A, Jabir MV et al. Frequency-doubling characteristics of high-power, ultrafast vortex beams. Opt Lett 40, 2614–2617 (2015). doi: 10.1364/OL.40.002614 |
[6] | Ivanov M, Thiele I, Bergé L et al. Intensity modulated terahertz vortex wave generation in air plasma by two-color femtosecond laser pulses. Opt Lett 44, 3889–3892 (2019). doi: 10.1364/OL.44.003889 |
[7] | Hamazaki J, Morita R, Chujo K et al. Optical-vortex laser ablation. Opt Express 18, 2144–2151 (2010). doi: 10.1364/OE.18.002144 |
[8] | Ma HX, Li XZ, Tai YP et al. Generation of circular optical vortex array. Ann Phys 529, 1700285 (2017). doi: 10.1002/andp.201700285 |
[9] | Tian YH, Wang LL, Duan GY et al. Multi-trap optical tweezers based on composite vortex beams. Opt Commun 485, 126712 (2021). doi: 10.1016/j.optcom.2020.126712 |
[10] | Anguita JA, Herreros J, Djordjevic IB. Coherent multimode OAM superpositions for multidimensional modulation. IEEE Photonics J 6, 7900811 (2014). |
[11] | Xie GD, Liu C, Li L et al. Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients. Opt Lett 42, 991–994 (2017). doi: 10.1364/OL.42.000991 |
[12] | Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Opt Express 23, 26221–26233 (2015). doi: 10.1364/OE.23.026221 |
[13] | Huang SJ, Miao Z, He C et al. Composite vortex beams by coaxial superposition of Laguerre-Gaussian beams. Opt Lasers Eng 78, 132–139 (2016). doi: 10.1016/j.optlaseng.2015.10.008 |
[14] | Zhang YX, Pu MB, Jin JJ et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058 |
[15] | Xie X, Pu MB, Jin JJ et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902 |
[16] | Zhang F, Pu MB, Luo J et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron Eng 44, 319–325 (2017). |
[17] | Luo XG, Zhang F, Pu MB et al. Catenary optics: a perspective of applications and challenges. J Phys Condens Matter 34, 381501 (2022). doi: 10.1088/1361-648X/ac808e |
[18] | Luo XG. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31, 1804680 (2019). doi: 10.1002/adma.201804680 |
[19] | Liu WW, Li ZC, Ansari MA et al. Design strategies and applications of dimensional optical field manipulation based on metasurfaces. Adv Mater 35, 2208884 (2023). doi: 10.1002/adma.202208884 |
[20] | Zhang F, Pu MB, Li X et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157 |
[21] | Ossiander M, Meretska ML, Hampel HK et al. Extreme ultraviolet metalens by vacuum guiding. Science 380, 59–63 (2023). doi: 10.1126/science.adg6881 |
[22] | Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024). doi: 10.29026/oes.2024.230033 |
[23] | Fu JC, Jiang MT, Wang Z et al. Supercritical metalens at h-line for high-resolution direct laser writing. Opto-Electron Sci 3, 230035 (2024). doi: 10.29026/oes.2024.230035 |
[24] | Li X, Chen LW, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[25] | Overvig AC, Shrestha S, Malek SC et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci Appl 8, 92 (2019). doi: 10.1038/s41377-019-0201-7 |
[26] | Fu R, Chen KX, Li ZL et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oea.2022.220011 |
[27] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[28] | Zang HF, Zhang ZY, Huang ZT et al. High-precision two-dimensional displacement metrology based on matrix metasurface. Sci Adv 10, eadk2265 (2024). doi: 10.1126/sciadv.adk2265 |
[29] | Zhang YX, Jin JJ, Pu MB et al. Ultracompact metasurface for simultaneous detection of polarization state and orbital angular momentum. Laser Photonics Rev 18, 2301012 (2024). doi: 10.1002/lpor.202301012 |
[30] | Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186 |
[31] | Dorrah AH, Rubin NA, Zaidi A et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat Photonics 15, 287–296 (2021). doi: 10.1038/s41566-020-00750-2 |
[32] | Pu MB, Li X, Ma XL et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[33] | Zhang F, Zeng QY, Pu MB et al. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces. Nanophotonics 9, 2829–2837 (2020). doi: 10.1515/nanoph-2020-0057 |
[34] | Liu MZ, Huo PC, Zhu WQ et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat Commun 12, 2230 (2021). doi: 10.1038/s41467-021-22462-z |
[35] | Georgi P, Wei QS, Sain B et al. Optical secret sharing with cascaded metasurface holography. Sci Adv 7, eabf9718 (2021). doi: 10.1126/sciadv.abf9718 |
[36] | Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z |
[37] | Zheng CL, Wang GC, Li J et al. All-dielectric metasurface for manipulating the superpositions of orbital angular momentum via spin-decoupling. Adv Opt Mater 9, 2002007 (2021). doi: 10.1002/adom.202002007 |
[38] | Ahmed H, Intaravanne Y, Ming Y et al. Multichannel superposition of grafted perfect vortex beams. Adv Mater 34, 2203044 (2022). doi: 10.1002/adma.202203044 |
[39] | Ming Y, Intaravanne Y, Ahmed H et al. Creating composite vortex beams with a single geometric metasurface. Adv Mater 34, 2109714 (2022). doi: 10.1002/adma.202109714 |
[40] | Kai Y, Lem J, Ossiander M et al. High-power laser beam shaping using a metasurface for shock excitation and focusing at the microscale. Opt Express 31, 31308–31315 (2023). doi: 10.1364/OE.487894 |
[41] | Xie LH, Tao RM, Guo C et al. High-power cylindrical vector beams generated from an all-fiber linearly polarized laser by metasurface extracavity conversion. Appl Opt 60, 7346–7350 (2021). doi: 10.1364/AO.431393 |
[42] | Wu QY, Zhou JX, Chen XY et al. Single-shot quantitative amplitude and phase imaging based on a pair of all-dielectric metasurfaces. Optica 10, 619–625 (2023). doi: 10.1364/OPTICA.483366 |
[43] | Xu DY, Xu WH, Yang Q et al. All-optical object identification and three-dimensional reconstruction based on optical computing metasurface. Opto-Electron Adv 6, 230120 (2023). doi: 10.29026/oea.2023.230120 |
[44] | Sakakura M, Lei YH, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light Sci Appl 9, 15 (2020). doi: 10.1038/s41377-020-0250-y |
[45] | Shayeganrad G, Chang X, Wang HJ et al. High damage threshold birefringent elements produced by ultrafast laser nanostructuring in silica glass. Opt Express 30, 41002–41011 (2022). doi: 10.1364/OE.473469 |
[46] | Yan Y, Yue Y, Huang H et al. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Opt Lett 38, 3930–3933 (2013). doi: 10.1364/OL.38.003930 |
[47] | D’Errico A, D’Amelio R, Piccirillo B et al. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams. Optica 4, 1350–1357 (2017). doi: 10.1364/OPTICA.4.001350 |
[48] | Fu SY, Zhai YW, Zhang JQ et al. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX 1, 19 (2020). doi: 10.1186/s43074-020-00019-5 |
[49] | Huo PC, Yu RX, Liu MZ et al. Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography. Opto-Electron Adv 7, 230184 (2024). doi: 10.29026/oea.2024.230184 |
[50] | Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1 |
[51] | Mishchik K, D’Amico C, Velpula PK et al. Ultrafast laser induced electronic and structural modifications in bulk fused silica. J Appl Phys 114, 133502 (2013). doi: 10.1063/1.4822313 |
[52] | Cox AJ, DeWeerd AJ, Linden J. An experiment to measure Mie and Rayleigh total scattering cross sections. Am J Phys 70, 620–625 (2002). doi: 10.1119/1.1466815 |
[53] | Shimotsuma Y, Sakakura M, Kazansky PG et al. Ultrafast manipulation of self-assembled form birefringence in glass. Adv Mater 22, 4039–4043 (2010). doi: 10.1002/adma.201000921 |
[54] | Lei YH, Wang HJ, Skuja L et al. Ultrafast laser writing in different types of silica glass. Laser Photonics Rev 17, 2200978 (2023). doi: 10.1002/lpor.202200978 |
Vortex-field enhancement through high-threshold geometric metasurface |
(a) Schematic diagram of the metasurface for the generation and superposition of MCVBs. OAM components with equally spaced topological charge (l) are encoded within the output beam. LIBS: laser induced birefringent structure. The output light is confined with higher localized optical intensity due to the superposition effect. (b) Illustrate of the principle for MCVBs generation based on a sliced phase pattern in the azimuthal direction. Two-fold rotational symmetry (N=2), l1=0, and l2=1 are chosen for example. And θ is an initial phase delay that can be optimized to modify the properties of MCVBs, such as the OAM spectrum, for maximizing the intensity gain.
Design of the metasurface phase based on a sliced phase pattern in the azimuthal direction. (a) Evolution of intensity gain at z=1 m with respect to the initial phase delays β1 and β2. (b–d) Phase profile of the desired metasurface, OAM spectrum, and intensity distribution at a distance of 1 m for β1=0 and β2=0. (e) Intensity distribution along the propagation direction for β1=0 and β2=0. The intensity distribution is normalized to the maximum intensity of the Gaussian beam along the propagation direction.
Laser-induced form birefringence with different pulse durations, pulse densities, and pulse energies. (a, c) Angle of the fast axis, intensity, and retardance image of laser-modified regions induced by different pulse durations and pulse densities, respectively. (b, d) Dependence of transmittance and retardance of laser-modified regions on pulse duration and pulse density, respectively. (e, f) Pseudo color maps of retardance and transmittance of laser-modified regions induced by different pulse energies and pulse densities. The birefringence was characterized at a wavelength of 655 nm, and the transmittance was measured at a wavelength of 808 nm.
Prepared metasurfaces with type II and type X modifications. (a, b) Photographs of metasurfaces with type II and type X modifications inside silica glass. (c, d) Images of the fast axis angle of the fabricated metasurfaces.White lines in (d) indicate the fast axis angle of the fabricated birefringent nanostructures. Orange curves in (d) indicate the fast axis angle of the catenary structures. (e) Phase evolution in the azimuthal direction of the designed and fabricated metasurfaces. (f) Transmission spectra of the two fabricated metasurfaces with reference to pristine silica glass. Transmittance of the type X metasurface is greater than 99.4% in the near-infrared range.
Characterization of optical field distribution modulated by the prepared metasurfaces. (a) Intensity distribution of the modulated beam along the propagation direction. The simulated patterns modulated by continuous phase and multi-level phase as well as the measured patterns modulated by metasurfaces of type II and type X are compared. (b) Normalized intensity distribution along the dashed lines indicated in a) for both the simulated and measured optical patterns. The normalized intensity of each line is expressed as: Inor(xl)= I(xl)/max[I(xl)], where I(xl) is the intensity along the line. (c) Intensity gain along the propagation distance.
LIDT of the prepared metasurfaces with (a) type II and (b) type X birefringent nanostructures.