Wang QS, Fang Y, Meng Y et al. Vortex-field enhancement through high-threshold geometric metasurface. Opto-Electron Adv 7, 240112 (2024). doi: 10.29026/oea.2024.240112
Citation: Wang QS, Fang Y, Meng Y et al. Vortex-field enhancement through high-threshold geometric metasurface. Opto-Electron Adv 7, 240112 (2024). doi: 10.29026/oea.2024.240112

Article Open Access

Vortex-field enhancement through high-threshold geometric metasurface

More Information
  • Intense vortex beam is expected to empower captivating phenomena and applications in high power laser-matter interactions. Currently, the superposition of multiple vortex beams has shown the unique ability to tailor and enhance the vortex field. However, traditional strategies to generate such beams suffer from large volume or/and low laser-induced damage threshold, hindering the practical widespread applications. Herein, a single high-threshold metasurface is proposed and experimentally demonstrated for the generation and superposition of multiple collinear vortex beams. This scheme takes advantage of the high conversion efficiency of phase-only modulation in the metasurface design by adopting the concept of a sliced phase pattern in the azimuthal direction. An optical hot spot with an enhanced intensity and steady spatial propagation is experimentally achieved. Moreover, femtosecond laser-induced birefringent nanostructures embedded in silica glass are utilized as the building block with high optical efficiency. Transmittance greater than 99.4% in the near-infrared range and laser-induced damage threshold as high as 68.0 J/cm2 (at 1064 nm, 6 ns) are experimentally verified. Considering these remarkable performances, the demonstrated high-threshold metasurface has promising applications in a host of high-power laser fields.
  • 加载中
  • [1] Allen L, Beijersbergen MW, Spreeuw RJC et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [2] Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161

    CrossRef Google Scholar

    [3] Shen YJ, Wang XJ, Xie ZW et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 8, 90 (2019). doi: 10.1038/s41377-019-0194-2

    CrossRef Google Scholar

    [4] Zhang TC, Dong KC, Li JC et al. Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum. Nat Commun 14, 6014 (2023). doi: 10.1038/s41467-023-41068-1

    CrossRef Google Scholar

    [5] Apurv Chaitanya N, Aadhi A, Jabir MV et al. Frequency-doubling characteristics of high-power, ultrafast vortex beams. Opt Lett 40, 2614–2617 (2015). doi: 10.1364/OL.40.002614

    CrossRef Google Scholar

    [6] Ivanov M, Thiele I, Bergé L et al. Intensity modulated terahertz vortex wave generation in air plasma by two-color femtosecond laser pulses. Opt Lett 44, 3889–3892 (2019). doi: 10.1364/OL.44.003889

    CrossRef Google Scholar

    [7] Hamazaki J, Morita R, Chujo K et al. Optical-vortex laser ablation. Opt Express 18, 2144–2151 (2010). doi: 10.1364/OE.18.002144

    CrossRef Google Scholar

    [8] Ma HX, Li XZ, Tai YP et al. Generation of circular optical vortex array. Ann Phys 529, 1700285 (2017). doi: 10.1002/andp.201700285

    CrossRef Google Scholar

    [9] Tian YH, Wang LL, Duan GY et al. Multi-trap optical tweezers based on composite vortex beams. Opt Commun 485, 126712 (2021). doi: 10.1016/j.optcom.2020.126712

    CrossRef Google Scholar

    [10] Anguita JA, Herreros J, Djordjevic IB. Coherent multimode OAM superpositions for multidimensional modulation. IEEE Photonics J 6, 7900811 (2014).

    Google Scholar

    [11] Xie GD, Liu C, Li L et al. Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients. Opt Lett 42, 991–994 (2017). doi: 10.1364/OL.42.000991

    CrossRef Google Scholar

    [12] Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Opt Express 23, 26221–26233 (2015). doi: 10.1364/OE.23.026221

    CrossRef Google Scholar

    [13] Huang SJ, Miao Z, He C et al. Composite vortex beams by coaxial superposition of Laguerre-Gaussian beams. Opt Lasers Eng 78, 132–139 (2016). doi: 10.1016/j.optlaseng.2015.10.008

    CrossRef Google Scholar

    [14] Zhang YX, Pu MB, Jin JJ et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [15] Xie X, Pu MB, Jin JJ et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [16] Zhang F, Pu MB, Luo J et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron Eng 44, 319–325 (2017).

    Google Scholar

    [17] Luo XG, Zhang F, Pu MB et al. Catenary optics: a perspective of applications and challenges. J Phys Condens Matter 34, 381501 (2022). doi: 10.1088/1361-648X/ac808e

    CrossRef Google Scholar

    [18] Luo XG. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31, 1804680 (2019). doi: 10.1002/adma.201804680

    CrossRef Google Scholar

    [19] Liu WW, Li ZC, Ansari MA et al. Design strategies and applications of dimensional optical field manipulation based on metasurfaces. Adv Mater 35, 2208884 (2023). doi: 10.1002/adma.202208884

    CrossRef Google Scholar

    [20] Zhang F, Pu MB, Li X et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [21] Ossiander M, Meretska ML, Hampel HK et al. Extreme ultraviolet metalens by vacuum guiding. Science 380, 59–63 (2023). doi: 10.1126/science.adg6881

    CrossRef Google Scholar

    [22] Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024). doi: 10.29026/oes.2024.230033

    CrossRef Google Scholar

    [23] Fu JC, Jiang MT, Wang Z et al. Supercritical metalens at h-line for high-resolution direct laser writing. Opto-Electron Sci 3, 230035 (2024). doi: 10.29026/oes.2024.230035

    CrossRef Google Scholar

    [24] Li X, Chen LW, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [25] Overvig AC, Shrestha S, Malek SC et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci Appl 8, 92 (2019). doi: 10.1038/s41377-019-0201-7

    CrossRef Google Scholar

    [26] Fu R, Chen KX, Li ZL et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oea.2022.220011

    CrossRef Google Scholar

    [27] Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [28] Zang HF, Zhang ZY, Huang ZT et al. High-precision two-dimensional displacement metrology based on matrix metasurface. Sci Adv 10, eadk2265 (2024). doi: 10.1126/sciadv.adk2265

    CrossRef Google Scholar

    [29] Zhang YX, Jin JJ, Pu MB et al. Ultracompact metasurface for simultaneous detection of polarization state and orbital angular momentum. Laser Photonics Rev 18, 2301012 (2024). doi: 10.1002/lpor.202301012

    CrossRef Google Scholar

    [30] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [31] Dorrah AH, Rubin NA, Zaidi A et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat Photonics 15, 287–296 (2021). doi: 10.1038/s41566-020-00750-2

    CrossRef Google Scholar

    [32] Pu MB, Li X, Ma XL et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [33] Zhang F, Zeng QY, Pu MB et al. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces. Nanophotonics 9, 2829–2837 (2020). doi: 10.1515/nanoph-2020-0057

    CrossRef Google Scholar

    [34] Liu MZ, Huo PC, Zhu WQ et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat Commun 12, 2230 (2021). doi: 10.1038/s41467-021-22462-z

    CrossRef Google Scholar

    [35] Georgi P, Wei QS, Sain B et al. Optical secret sharing with cascaded metasurface holography. Sci Adv 7, eabf9718 (2021). doi: 10.1126/sciadv.abf9718

    CrossRef Google Scholar

    [36] Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [37] Zheng CL, Wang GC, Li J et al. All-dielectric metasurface for manipulating the superpositions of orbital angular momentum via spin-decoupling. Adv Opt Mater 9, 2002007 (2021). doi: 10.1002/adom.202002007

    CrossRef Google Scholar

    [38] Ahmed H, Intaravanne Y, Ming Y et al. Multichannel superposition of grafted perfect vortex beams. Adv Mater 34, 2203044 (2022). doi: 10.1002/adma.202203044

    CrossRef Google Scholar

    [39] Ming Y, Intaravanne Y, Ahmed H et al. Creating composite vortex beams with a single geometric metasurface. Adv Mater 34, 2109714 (2022). doi: 10.1002/adma.202109714

    CrossRef Google Scholar

    [40] Kai Y, Lem J, Ossiander M et al. High-power laser beam shaping using a metasurface for shock excitation and focusing at the microscale. Opt Express 31, 31308–31315 (2023). doi: 10.1364/OE.487894

    CrossRef Google Scholar

    [41] Xie LH, Tao RM, Guo C et al. High-power cylindrical vector beams generated from an all-fiber linearly polarized laser by metasurface extracavity conversion. Appl Opt 60, 7346–7350 (2021). doi: 10.1364/AO.431393

    CrossRef Google Scholar

    [42] Wu QY, Zhou JX, Chen XY et al. Single-shot quantitative amplitude and phase imaging based on a pair of all-dielectric metasurfaces. Optica 10, 619–625 (2023). doi: 10.1364/OPTICA.483366

    CrossRef Google Scholar

    [43] Xu DY, Xu WH, Yang Q et al. All-optical object identification and three-dimensional reconstruction based on optical computing metasurface. Opto-Electron Adv 6, 230120 (2023). doi: 10.29026/oea.2023.230120

    CrossRef Google Scholar

    [44] Sakakura M, Lei YH, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light Sci Appl 9, 15 (2020). doi: 10.1038/s41377-020-0250-y

    CrossRef Google Scholar

    [45] Shayeganrad G, Chang X, Wang HJ et al. High damage threshold birefringent elements produced by ultrafast laser nanostructuring in silica glass. Opt Express 30, 41002–41011 (2022). doi: 10.1364/OE.473469

    CrossRef Google Scholar

    [46] Yan Y, Yue Y, Huang H et al. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Opt Lett 38, 3930–3933 (2013). doi: 10.1364/OL.38.003930

    CrossRef Google Scholar

    [47] D’Errico A, D’Amelio R, Piccirillo B et al. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams. Optica 4, 1350–1357 (2017). doi: 10.1364/OPTICA.4.001350

    CrossRef Google Scholar

    [48] Fu SY, Zhai YW, Zhang JQ et al. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX 1, 19 (2020). doi: 10.1186/s43074-020-00019-5

    CrossRef Google Scholar

    [49] Huo PC, Yu RX, Liu MZ et al. Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography. Opto-Electron Adv 7, 230184 (2024). doi: 10.29026/oea.2024.230184

    CrossRef Google Scholar

    [50] Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [51] Mishchik K, D’Amico C, Velpula PK et al. Ultrafast laser induced electronic and structural modifications in bulk fused silica. J Appl Phys 114, 133502 (2013). doi: 10.1063/1.4822313

    CrossRef Google Scholar

    [52] Cox AJ, DeWeerd AJ, Linden J. An experiment to measure Mie and Rayleigh total scattering cross sections. Am J Phys 70, 620–625 (2002). doi: 10.1119/1.1466815

    CrossRef Google Scholar

    [53] Shimotsuma Y, Sakakura M, Kazansky PG et al. Ultrafast manipulation of self-assembled form birefringence in glass. Adv Mater 22, 4039–4043 (2010). doi: 10.1002/adma.201000921

    CrossRef Google Scholar

    [54] Lei YH, Wang HJ, Skuja L et al. Ultrafast laser writing in different types of silica glass. Laser Photonics Rev 17, 2200978 (2023). doi: 10.1002/lpor.202200978

    CrossRef Google Scholar

  • Vortex-field enhancement through high-threshold geometric metasurface
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint