Citation: | Zhao SQ, Fan YC, Yang RS et al. Smart reconfigurable metadevices made of shape memory alloy metamaterials. Opto-Electron Adv 8, 240109 (2025). doi: 10.29026/oea.2025.240109 |
[1] | Hess O, Pendry JB, Maier SA et al. Active nanoplasmonic metamaterials. Nat Mater 11, 573–584 (2012). doi: 10.1038/nmat3356 |
[2] | Kadic M, Milton GW, van Hecke M et al. 3D metamaterials. Nat Rev Phys 1, 198–210 (2019). doi: 10.1038/s42254-018-0018-y |
[3] | Kruk SS, Wong ZJ, Pshenay-Severin E et al. Magnetic hyperbolic optical metamaterials. Nat Commun 7, 11329 (2016). doi: 10.1038/ncomms11329 |
[4] | Liu N, Guo HC, Fu LW et al. Three-dimensional photonic metamaterials at optical frequencies. Nat Mater 7, 31–37 (2008). doi: 10.1038/nmat2072 |
[5] | Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001). doi: 10.1126/science.1058847 |
[6] | Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater 11, 917–924 (2012). doi: 10.1038/nmat3431 |
[7] | Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 5, 523–530 (2011). doi: 10.1038/nphoton.2011.154 |
[8] | Yang FB, Zhang ZR, Xu LJ et al. Controlling mass and energy diffusion with metamaterials. Rev Mod Phys 96, 015002 (2024). doi: 10.1103/RevModPhys.96.015002 |
[9] | Arbabi A, Arbabi E, Horie Y et al. Planar metasurface retroreflector. Nat Photonics 11, 415–420 (2017). doi: 10.1038/nphoton.2017.96 |
[10] | Lee GY, Hong JY, Hwang SH et al. Metasurface eyepiece for augmented reality. Nat Commun 9, 4562 (2018). doi: 10.1038/s41467-018-07011-5 |
[11] | Wu GB, Dai JY, Shum KM et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves. Nat Commun 14, 5155 (2023). doi: 10.1038/s41467-023-40717-9 |
[12] | Qin J, Jiang SB, Wang ZS et al. Metasurface micro/nano-optical sensors: principles and applications. ACS Nano 16, 11598–11618 (2022). doi: 10.1021/acsnano.2c03310 |
[13] | Wang YL, Zhao C, Wang JJ et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci Adv 7, eabe4553 (2021). doi: 10.1126/sciadv.abe4553 |
[14] | Lin DM, Fan PY, Hasman E et al. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213 |
[15] | Wang FL, Zhao SQ, Wen YZ et al. High efficiency visible achromatic metalens design via deep learning. Adv Opt Mater 11, 2300394 (2023). doi: 10.1002/adom.202300394 |
[16] | Wang Q, Zhang XQ, Xu YH et al. A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater 3, 779–785 (2015). doi: 10.1002/adom.201400557 |
[17] | High AA, Devlin RC, Dibos A et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015). doi: 10.1038/nature14477 |
[18] | Zheng GX, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2 |
[19] | Chen HT, Padilla WJ, Cich MJ et al. A metamaterial solid-state terahertz phase modulator. Nat Photonics 3, 148–151 (2009). doi: 10.1038/nphoton.2009.3 |
[20] | Kang L, Cui YH, Lan SF et al. Electrifying photonic metamaterials for tunable nonlinear optics. Nat Commun 5, 4680 (2014). doi: 10.1038/ncomms5680 |
[21] | Ma CP, Wu S, Ze QJ et al. Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors. ACS Appl MaterInterfaces 13, 12639–12648 (2021). doi: 10.1021/acsami.0c13863 |
[22] | Montgomery SM, Wu S, Kuang X et al. Magneto-mechanical metamaterials with widely tunable mechanical properties and acoustic bandgaps. Adv Funct Mater 31, 2005319 (2021). doi: 10.1002/adfm.202005319 |
[23] | Shrekenhamer D, Chen WC, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110, 177403 (2013). doi: 10.1103/PhysRevLett.110.177403 |
[24] | Kats MA, Blanchard R, Genevet P et al. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt Lett 38, 368–370 (2013). doi: 10.1364/OL.38.000368 |
[25] | Lewandowski W, Fruhnert M, Mieczkowski J et al. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat Commun 6, 6590 (2015). doi: 10.1038/ncomms7590 |
[26] | Tao H, Strikwerda AC, Fan K et al. Reconfigurable terahertz metamaterials. Phys Rev Lett 103, 147401 (2009). doi: 10.1103/PhysRevLett.103.147401 |
[27] | Degiron A, Mock JJ, Smith DR. Modulating and tuning the response of metamaterials at the unit cell level. Opt Express 15, 1115–1127 (2007). doi: 10.1364/OE.15.001115 |
[28] | Driscoll T, Kim HT, Chae BG et al. Memory metamaterials. Science 325, 1518–1521 (2009). doi: 10.1126/science.1176580 |
[29] | Ou JY, Plum E, Jiang L et al. Reconfigurable photonic metamaterials. Nano Lett 11, 2142–2144 (2011). doi: 10.1021/nl200791r |
[30] | Wang WH, Srivastava YK, Gupta M et al. Photoswitchable anapole metasurfaces. Adv Opt Mater 10, 2102284 (2022). doi: 10.1002/adom.202102284 |
[31] | Buehler WJ, Gilfrich JV, Wiley RC. Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34, 1475–1477 (1963). doi: 10.1063/1.1729603 |
[32] | Ölander A. An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc 54, 3819–3833 (1932). doi: 10.1021/ja01349a004 |
[33] | Chluba C, Ge WW, Lima de Miranda R et al. Ultralow-fatigue shape memory alloy films. Science 348, 1004–1007 (2015). doi: 10.1126/science.1261164 |
[34] | Ueland SM, Chen Y, Schuh CA. Oligocrystalline shape memory alloys. Adv Funct Mater 22, 2094–2099 (2012). doi: 10.1002/adfm.201103019 |
[35] | Baskourelos K, Tsilipakos O, Stefański T et al. Topological extraordinary optical transmission. Phys Rev Res 4, L032011 (2022). doi: 10.1103/PhysRevResearch.4.L032011 |
[36] | Brolo AG. Plasmonics for future biosensors. Nat Photonics 6, 709–713 (2012). doi: 10.1038/nphoton.2012.266 |
[37] | Bethe HA. Theory of diffraction by small holes. Phys Rev 66, 163–182 (1944). doi: 10.1103/PhysRev.66.163 |
[38] | Ebbesen TW, Lezec HJ, Ghaemi HF et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). doi: 10.1038/35570 |
[39] | Lezec HJ, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt Express 12, 3629–3651 (2004). doi: 10.1364/OPEX.12.003629 |
[40] | Liu HT, Lalanne P. Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008). doi: 10.1038/nature06762 |
[41] | Martín-Moreno L, García-Vidal FJ, Lezec HJ et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86, 1114–1117 (2001). doi: 10.1103/PhysRevLett.86.1114 |
[42] | Pendry JB, Martín-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004). doi: 10.1126/science.1098999 |
[43] | Aydin K, Cakmak AO, Sahin L et al. Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture. Phys Rev Lett 102, 013904 (2009). doi: 10.1103/PhysRevLett.102.013904 |
[44] | Chen WC, Landy NI, Kempa K et al. A subwavelength extraordinary-optical-transmission channel in babinet metamaterials. Adv Opt Mater 1, 221–226 (2013). doi: 10.1002/adom.201200016 |
[45] | Navarro-Cía M, Beruete M, Campillo I et al. Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission. Phys Rev B 83, 115112 (2011). doi: 10.1103/PhysRevB.83.115112 |
[46] | Smith DR, Padilla WJ, Vier DC et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84, 4184–4187 (2000). doi: 10.1103/PhysRevLett.84.4184 |
[47] | Yang YM, Kravchenko II, Briggs DP et al. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 5, 5753 (2014). doi: 10.1038/ncomms6753 |
[48] | Wu SK, Lin HC, Lin TY. Electrical resistivity of Ti–Ni binary and Ti–Ni–X (X= Fe, Cu) ternary shape memory alloys. Mater Sci Eng A 438–440, 536–539 (2006). doi: 10.1016/j.msea.2005.12.059 |
[49] | Fedotov VA, Rose M, Prosvirnin SL et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 99, 147401 (2007). doi: 10.1103/PhysRevLett.99.147401 |
[50] | Li WC, Wang Y, Chen T et al. Algorithmic encoding of adaptive responses in temperature-sensing multimaterial architectures. Sci Adv 9, eadk0620 (2023). doi: 10.1126/sciadv.adk0620 |
[51] | Wang QH, Gao BT, Raglione M et al. Design, fabrication, and modulation of THz bandpass metamaterials. Laser Photonics Rev 13, 1900071 (2019). doi: 10.1002/lpor.201900071 |
[52] | Wu B, Jiang W, Jiang JQ et al. Wave manipulation in intelligent metamaterials: recent progress and prospects. Adv Funct Mater 34, 2316745 (2024). doi: 10.1002/adfm.202316745 |
[53] | Chen CX, Kaj K, Zhao XG et al. On-demand terahertz surface wave generation with microelectromechanical-system-based metasurface. Optica 9, 17–25 (2022). doi: 10.1364/OPTICA.444999 |
[54] | Cong LQ, Pitchappa P, Lee C et al. Active phase transition via loss engineering in a terahertz MEMS metamaterial. Adv Mater 29, 1700733 (2017). doi: 10.1002/adma.201700733 |
Supplementary information for Smart reconfigurable metadevices made of shape memory alloy metamaterials |
![]() |
Schematic function tunability with temperature and designs of the smart metadevices. (a) O-SME: one-way shape memory effect; T-SME: two-way shape memory effect. (b) and (c) To demonstrate the concept, three devices are designed.
Experimental verification of tunable EOT-like behavior. (a) Illustration of thermal tunable metadevices with EOT-like response in C-band. (b) Schematics and samples of two metadevices. (c) and (e) are simulated, (d) and (f) are measured transmission results for SRR and long stick structure, respectively. Insets of (c) and (d) plot enhancement factor for models in (b).
The control over the operating frequency and amplitude of EOT-like peak and near-field distribution. (a) and (b) show the tunable abilities of proposed metadevice for operating frequency and transmission amplitude. (c–f) Schematic of distribution of simulated currents and electric fields for SRR and long stick model. External excitation electric field induced a ring current for SRR, while a dipole current for long stick model. Such current distribution leads to electric field distribution in (e) and (f).
Dual-band and periodic model. (a) and (c) are measured, (b) and (d) are simulated transmission results for left-pass and right-pass independent, respectively. (e) The concept that the SRR is extended to form metasurfaces. (f) Under the same polarized electromagnetic signal, the metasurfaces made of SRR possess identical performance with metadevice working in waveguide.
Independent transmission modulation of the dual-band model. (a) and (b) are measured independent transmission modulation results for left-pass (operating frequency: f1) and right-pass (operating frequency: f2), respectively.