Chakkoria JJ, Dubey A, Mitchell A et al. Ferroelectric domain engineering of lithium niobate. Opto-Electron Adv 8, 240139 (2025). doi: 10.29026/oea.2025.240139
Citation: Chakkoria JJ, Dubey A, Mitchell A et al. Ferroelectric domain engineering of lithium niobate. Opto-Electron Adv 8, 240139 (2025). doi: 10.29026/oea.2025.240139

Review Open Access

Ferroelectric domain engineering of lithium niobate

More Information
  • Lithium niobate (LN) has remained at the forefront of academic research and industrial applications due to its rich material properties, which include second-order nonlinear optic, electro-optic, and piezoelectric properties. A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN, which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials. In this review paper, we provide an overview of the domain engineering techniques developed for LN, their principles, and the typical domain size and pattern uniformity they provide, which is important for devices that require high-resolution domain patterns with good reproducibility. It also highlights each technique's benefits, limitations, and adaptability for an application, along with possible improvements and future advancement prospects. Further, the review provides a brief overview of domain visualization methods, which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform, which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.
  • 加载中
  • [1] Zachariasen FWH. Standard x-ray diffraction powder patterns. [Kl. ] 1 Mat. Mat Naturv-Idensk Kl 4 , 1–8 (1928).

    Google Scholar

    [2] Ballman AA. Growth of piezoelectric and ferroelectric materials by the czochraiski technique. J Am Ceram Soc 48, 112–113 (1965). doi: 10.1111/j.1151-2916.1965.tb11814.x

    CrossRef Google Scholar

    [3] Nassau K, Levinstein HJ, Loiacono GM. Ferroelectric lithium niobate. 2. Preparation of single domain crystals. J Phys Chem Solids 27, 989–996 (1966). doi: 10.1016/0022-3697(66)90071-0

    CrossRef Google Scholar

    [4] Popescu ST, Petris A, Vlad IV. Interferometric measurement of the pyroelectric coefficient in lithium niobate. J Appl Phys 113, 043101 (2013). doi: 10.1063/1.4788696

    CrossRef Google Scholar

    [5] Smith RT, Welsh FS. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J Appl Phys 42, 2219–2230 (1971). doi: 10.1063/1.1660528

    CrossRef Google Scholar

    [6] Peterson GE, Ballman AA, Lenzo PV et al. Electro-optic properties of LiNbO3. Appl Phys Lett 5, 62–64 (1964). doi: 10.1063/1.1754053

    CrossRef Google Scholar

    [7] Ashkin A, Boyd GD, Dziedzic JM et al. Optically-induced refractive index inhomogeneities in LiNbO3 AND LiTaO3. Appl Phys Lett 9, 72–74 (1966). doi: 10.1063/1.1754607

    CrossRef Google Scholar

    [8] Bell DT, Li RCM. Surface-acoustic-wave resonators. Proc IEEE 64, 711–721 (1976). doi: 10.1109/PROC.1976.10200

    CrossRef Google Scholar

    [9] Graham RA. Pressure dependence of the piezoelectric polarization of LiNbO3 and LiTaO3. Ferroelectrics 10, 65–69 (1976). doi: 10.1080/00150197608241952

    CrossRef Google Scholar

    [10] Smith RG, Nassau K, Galvin MF. Efficient continuous optical second-harmonic generation. Appl Phys Lett 7, 256–258 (1965). doi: 10.1063/1.1754246

    CrossRef Google Scholar

    [11] Rauber A. In Kaldis E. Current Topics in Materials Science, Vol. 1, (North-Holland, Amsterdam, 1978).

    Google Scholar

    [12] Boes A, Chang L, Langrock C et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023). doi: 10.1126/science.abj4396

    CrossRef Google Scholar

    [13] Ruppel CCW, Reindl L, Weigel R. SAW devices and their wireless communications applications. IEEE Microw Mag 3, 65–71 (2002).

    Google Scholar

    [14] Wooten EL, Kissa KM, Yi-Yan A et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron 6, 69–82 (2000). doi: 10.1109/2944.826874

    CrossRef Google Scholar

    [15] Yudistira D, Boes A, Djafari-Rouhani B et al. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling. Phys Rev Lett 113, 215503 (2014). doi: 10.1103/PhysRevLett.113.215503

    CrossRef Google Scholar

    [16] Yudistira D, Janner D, Benchabane S et al. Integrated acousto-optic polarization converter in a ZX-cut LiNbO3 waveguide superlattice. Opt Lett 34, 3205–3207 (2009). doi: 10.1364/OL.34.003205

    CrossRef Google Scholar

    [17] Yamada M, Nada N, Saitoh M et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl Phys Lett 62, 435–436 (1993). doi: 10.1063/1.108925

    CrossRef Google Scholar

    [18] Wu RB, Wang M, Xu J et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8, 910 (2018). doi: 10.3390/nano8110910

    CrossRef Google Scholar

    [19] Desiatov B, Shams-Ansari A, Zhang M et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019). doi: 10.1364/OPTICA.6.000380

    CrossRef Google Scholar

    [20] Chen PK, Briggs I, Cui CH et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat Nanotechnol 19, 44–50 (2024). doi: 10.1038/s41565-023-01525-w

    CrossRef Google Scholar

    [21] Wang C, Langrock C, Marandi A et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018). doi: 10.1364/OPTICA.5.001438

    CrossRef Google Scholar

    [22] Lu JJ, Surya JB, Liu XW et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica 6, 1455–1460 (2019). doi: 10.1364/OPTICA.6.001455

    CrossRef Google Scholar

    [23] He MB, Xu MY, Ren YX et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics 13, 359–364 (2019). doi: 10.1038/s41566-019-0378-6

    CrossRef Google Scholar

    [24] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018). doi: 10.1038/s41586-018-0551-y

    CrossRef Google Scholar

    [25] Zhang M, Wang C, Kharel P et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652–667 (2021). doi: 10.1364/OPTICA.415762

    CrossRef Google Scholar

    [26] Weis RS, Gaylord TK. Lithium niobate: summary of physical properties and crystal structure. Appl Phys A 37, 191–203 (1985). doi: 10.1007/BF00614817

    CrossRef Google Scholar

    [27] Boes AS. Laser light induced domain engineering of lithium niobate for photonic and phononic applications (RMIT University, Melbourne, 2016).

    Google Scholar

    [28] Ying Y. Light-assisted domain engineering, waveguide fabrication and microstructuring of lithium niobate (University of Southampton, Southampton, 2010).

    Google Scholar

    [29] Abrahams SC, Reddy JM, Bernstein JL. Ferroelectric Lithium niobate. 3. Single crystal X-ray diffraction study at 24°C. J Phys Chem Solids 27, 997–1012 (1966). doi: 10.1016/0022-3697(66)90072-2

    CrossRef Google Scholar

    [30] Abrahams SC, Hamilton WC, Reddy JM. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24°C. J Phys Chem Solids 27, 1013–1018 (1966). doi: 10.1016/0022-3697(66)90073-4

    CrossRef Google Scholar

    [31] Wong KK. Properties of Lithium Niobate (INSPEC/Institution of Electrical Engineers, London, 2002).

    Google Scholar

    [32] Gopalan V, Sanford NA, Aust JA et al. Crystal growth, characterization, and domain studies in lithium niobate and lithium tantalate ferroelectrics. Handb Adv Electron Photonic Mater Dev 4, 57–114 (2001).

    Google Scholar

    [33] Gopalan V, Dierolf V, Scrymgeour DA. Defect-domain wall interactions in trigonal ferroelectrics. Annu Rev Mater Res 37, 449–489 (2007). doi: 10.1146/annurev.matsci.37.052506.084247

    CrossRef Google Scholar

    [34] Prokhorov AM, Kuz’minov YS. Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, 1990).

    Google Scholar

    [35] Schirmer FO, Thiemann O, Wöhlecke M. Defects in LiNbO3-I. Experimental aspects. J Phys Chem Solids 52, 185–200 (1991). doi: 10.1016/0022-3697(91)90064-7

    CrossRef Google Scholar

    [36] Lines ME, Glass AM. Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 2001).

    Google Scholar

    [37] Gui L, Hu H, Garcia-Granda M et al. Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation. Opt Express 17, 3923–3928 (2009). doi: 10.1364/OE.17.003923

    CrossRef Google Scholar

    [38] Jungk T, Hoffmann Á, Soergel E. New insights into ferroelectric domain imaging with piezoresponse force microscopy. In Ferraro P, Grilli S, De Natale P. Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques 205–226 (Springer, Berlin, 2014).

    Google Scholar

    [39] Nassau K, Levinstein HJ, Loiacono GM. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching. J Phys Chem Solids 27, 983–988 (1966). doi: 10.1016/0022-3697(66)90070-9

    CrossRef Google Scholar

    [40] Sones CL, Mailis S, Brocklesby WS et al. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J Mater Chem 12, 295–298 (2002). doi: 10.1039/b106279b

    CrossRef Google Scholar

    [41] Niizeki N, Yamada T, Toyoda H. Growth ridges, etched hillocks, and crystal structure of lithium niobate. Jpn J Appl Phys 6, 318–327 (1967). doi: 10.1143/JJAP.6.318

    CrossRef Google Scholar

    [42] Valdivia CE. Light-induced ferroelectric domain engineering in lithium niobate & lithium tantalate (University of Southampton, Southampton, 2007).

    Google Scholar

    [43] Bermúdez V, Caccavale F, Sada C et al. Etching effect on periodic domain structures of lithium niobate crystals. J Cryst Growth 191, 589–593 (1998). doi: 10.1016/S0022-0248(98)00394-7

    CrossRef Google Scholar

    [44] Güthner P, Dransfeld K. Local poling of ferroelectric polymers by scanning force microscopy. Appl Phys Lett 61, 1137–1139 (1992). doi: 10.1063/1.107693

    CrossRef Google Scholar

    [45] Soergel E. Piezoresponse force microscopy (PFM). J Phys D Appl Phys 44, 464003 (2011). doi: 10.1088/0022-3727/44/46/464003

    CrossRef Google Scholar

    [46] Soergel E. Visualization of ferroelectric domains in bulk single crystals. Appl Phys B 81, 729–751 (2005).

    Google Scholar

    [47] Slautin BN, Zhu H, Shur VY. Submicron periodical poling by local switching in ion sliced lithium niobate thin films with a dielectric layer. Ceram Int 47, 32900–32904 (2021). doi: 10.1016/j.ceramint.2021.08.188

    CrossRef Google Scholar

    [48] Qian YZ, Zhang ZQ, Liu YZ et al. Graphical direct writing of macroscale domain structures with nanoscale spatial resolution in nonpolar-cut lithium niobate on insulators. Phys Rev Appl 17, 054049 (2022). doi: 10.1103/PhysRevApplied.17.054049

    CrossRef Google Scholar

    [49] Reitzig S, Rüsing M, Zhao J et al. “Seeing is believing”—in-depth analysis by co-imaging of periodically-poled x-cut lithium niobate thin films. Crystals 11, 288 (2021). doi: 10.3390/cryst11030288

    CrossRef Google Scholar

    [50] Jungk T, Hoffmann Á, Soergel E. Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy. New J Phys 11, 033029 (2009). doi: 10.1088/1367-2630/11/3/033029

    CrossRef Google Scholar

    [51] Rüsing M, Zhao J, Mookherjea S. Second harmonic microscopy of poled x-cut thin film lithium niobate: Understanding the contrast mechanism. J Appl Phys 126, 114105 (2019). doi: 10.1063/1.5113727

    CrossRef Google Scholar

    [52] Berth G, Quiring V, Sohler W et al. Depth-resolved analysis of ferroelectric domain structures in Ti: PPLN waveguides by nonlinear confocal laser scanning microscopy. Ferroelectrics 352, 78–85 (2007). doi: 10.1080/00150190701358159

    CrossRef Google Scholar

    [53] Huang XY, Wei DZ, Wang YM et al. Second-harmonic interference imaging of ferroelectric domains through a scanning microscope. J Phys D Appl Phys 50, 485105 (2017). doi: 10.1088/1361-6463/aa9258

    CrossRef Google Scholar

    [54] Kaneshiro J, Uesu Y, Fukui T. Visibility of inverted domain structures using the second harmonic generation microscope: comparison of interference and non-interference cases. J Opt Soc Am B 27, 888–894 (2010). doi: 10.1364/JOSAB.27.000888

    CrossRef Google Scholar

    [55] Wei DZ, Liu DM, Hu XP et al. Superposed second-harmonic Talbot self-image from a PPLT crystal. Laser Phys Lett 11, 095402 (2014). doi: 10.1088/1612-2011/11/9/095402

    CrossRef Google Scholar

    [56] Zhao J, Rüsing M, Mookherjea S. Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides. Opt Express 27, 12025–12038 (2019). doi: 10.1364/OE.27.012025

    CrossRef Google Scholar

    [57] Mackwitz P, Rüsing M, Berth G et al. Periodic domain inversion in x-cut single-crystal lithium niobate thin film. Appl Phys Lett 108, 152902 (2016). doi: 10.1063/1.4946010

    CrossRef Google Scholar

    [58] Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photonics Rev 14, 1900407 (2020). doi: 10.1002/lpor.201900407

    CrossRef Google Scholar

    [59] Chen X, Karpinski P, Shvedov V et al. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl Phys Lett 107, 141102 (2015). doi: 10.1063/1.4932199

    CrossRef Google Scholar

    [60] Sheng Y, Best A, Butt HJ et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt Express 18, 16539–16545 (2010). doi: 10.1364/OE.18.016539

    CrossRef Google Scholar

    [61] Deng XW, Chen XF. Domain wall characterization in ferroelectrics by using localized nonlinearities. Opt Express 18, 15597–15602 (2010). doi: 10.1364/OE.18.015597

    CrossRef Google Scholar

    [62] Roppo V, Kalinowski K, Sheng Y et al. Unified approach to Čerenkov second harmonic generation. Opt Express 21, 25715–25726 (2013). doi: 10.1364/OE.21.025715

    CrossRef Google Scholar

    [63] Chen X, Karpinski P, Shvedov V et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Opt Lett 41, 2410–2413 (2016). doi: 10.1364/OL.41.002410

    CrossRef Google Scholar

    [64] Gopalan V, Mitchell TE. In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy. J Appl Phys 85, 2304–2311 (1999). doi: 10.1063/1.369542

    CrossRef Google Scholar

    [65] Müller M, Soergel E, Buse K. Visualization of ferroelectric domains with coherent light. Opt Lett 28, 2515–2517 (2003). doi: 10.1364/OL.28.002515

    CrossRef Google Scholar

    [66] Gopalan V, Gupta MC. Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals. J Appl Phys 80, 6099–6106 (1996). doi: 10.1063/1.363684

    CrossRef Google Scholar

    [67] Younesi M, Geiss R, Rajaee S et al. Periodic poling with a micrometer-range period in thin-film lithium niobate on insulator. J Opt Soc Am B 38, 685–691 (2021). doi: 10.1364/JOSAB.414298

    CrossRef Google Scholar

    [68] Armstrong JA, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric. Phys Rev 127, 1918–1939 (1962). doi: 10.1103/PhysRev.127.1918

    CrossRef Google Scholar

    [69] Fedulov A, Shapiro ZI, Ladyzhinskii PB. The growth of crystals of LiNbO3, LiTaO3 and NaNbO3 by the Czochralski method. Sov Phys Crystallogr 10, 218–220 (1965).

    Google Scholar

    [70] Nassau K, Levinstein HJ. Ferroelectric behavior of lithium niobate. Appl Phys Lett 7, 69–70 (1965). doi: 10.1063/1.1754304

    CrossRef Google Scholar

    [71] Nakamura K, Ando H, Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Appl Phys Lett 50, 1413–1414 (1987). doi: 10.1063/1.97838

    CrossRef Google Scholar

    [72] Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide. J Appl Phys 50, 4599–4603 (1979). doi: 10.1063/1.326568

    CrossRef Google Scholar

    [73] Bermúdez V, Callejo D, Vilaplana R et al. Engineering of lithium niobate domain structure through the off-centered Czochralski growth technique. J Cryst Growth 237 –239, 677–681 (2002).

    Google Scholar

    [74] Lim EJ, Fejer MM, Byer RL. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide. Electron Lett 25, 174–175 (1989). doi: 10.1049/el:19890127

    CrossRef Google Scholar

    [75] Feisst A, Koidl P. Current induced periodic ferroelectric domain structures in LiNbO3 applied for efficient nonlinear optical frequency mixing. Appl Phys Lett 47, 1125–1127 (1985). doi: 10.1063/1.96349

    CrossRef Google Scholar

    [76] Naumova II, Evlanova NF, Gliko OA et al. Czochralski-grown lithium niobate with regular domain structure. Ferroelectrics 190, 107–112 (1997). doi: 10.1080/00150199708014101

    CrossRef Google Scholar

    [77] Sada C, Argiolas N, Bazzan M. On the dynamics of periodically-poled lithium niobate formation by off-center Czochralski technique. Appl Phys Lett 79, 2163–2165 (2001). doi: 10.1063/1.1408603

    CrossRef Google Scholar

    [78] Ming NB, Hong JF, Feng D. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals. J Mater Sci 17, 1663–1670 (1982). doi: 10.1007/BF00540793

    CrossRef Google Scholar

    [79] Feng D, Ming NB, Hong JF et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl Phys Lett 37, 607–609 (1980). doi: 10.1063/1.92035

    CrossRef Google Scholar

    [80] Poberaj G, Koechlin M, Sulser F et al. Ion-sliced lithium niobate thin films for active photonic devices. Opt Mater 31, 1054–1058 (2009). doi: 10.1016/j.optmat.2007.12.019

    CrossRef Google Scholar

    [81] Nakamura K, Shimizu H. Local domain inversion in ferroelectric crystals and its application to piezoelectric devices. In Proceedings of IEEE Ultrasonics Symposium 309–318 (IEEE, 1989); http://doi.org/10.1109/ULTSYM.1989.67000.

    Google Scholar

    [82] Rosenman G, Kugel VD, Angert N. Domain inversion in LiNbO3 optical waveguides. Ferroelectrics 157, 111–116 (1994). doi: 10.1080/00150199408229491

    CrossRef Google Scholar

    [83] Kugel VD, Rosenman G. Polarization reversal in LiNbO3 crystals under asymmetric diffusion conditions. Appl Phys Lett 65, 2398–2400 (1994). doi: 10.1063/1.112687

    CrossRef Google Scholar

    [84] Thaniyavarn S, Findakly T, Booher D et al. Domain inversion effects in Ti-LiNbO3 integrated optical devices. Proc SPIE 559, 124–128 (1985). doi: 10.1117/12.949596

    CrossRef Google Scholar

    [85] Rosenman G, Kugel VD, Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics 172, 7–18 (1995). doi: 10.1080/00150199508018452

    CrossRef Google Scholar

    [86] Huang CY, Lin CH, Chen YH et al. Electro-optic Ti: PPLN waveguide as efficient optical wavelength filter and polarization mode converter. Opt Express 15, 2548–2554 (2007). doi: 10.1364/OE.15.002548

    CrossRef Google Scholar

    [87] Webjörn J, Pruneri V, Russell PSJ et al. Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes. Electron Lett 30, 894–895 (1994). doi: 10.1049/el:19940562

    CrossRef Google Scholar

    [88] Liang LY, Wang FL, Sang YH et al. Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes. CrystEngComm 21, 941–947 (2019). doi: 10.1039/C8CE01748D

    CrossRef Google Scholar

    [89] Miller GD. Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance (Stanford University , Stanford, 1998).

    Google Scholar

    [90] Stivala S, Pasquazi A, Colace L et al. Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects. J Opt Soc Am B 24, 1564–1570 (2007). doi: 10.1364/JOSAB.24.001564

    CrossRef Google Scholar

    [91] Mizuuchi K, Morikawa A, Sugita T et al. Electric-field poling in Mg-doped LiNbO3. J Appl Phys 96, 6585–6590 (2004). doi: 10.1063/1.1811391

    CrossRef Google Scholar

    [92] Chang L, Li YF, Volet N et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531–535 (2016). doi: 10.1364/OPTICA.3.000531

    CrossRef Google Scholar

    [93] Nagy JT, Reano RM. Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films. Opt Mater Express 9, 3146–3155 (2019). doi: 10.1364/OME.9.003146

    CrossRef Google Scholar

    [94] Chang L, Boes A, Shu HW et al. Second order nonlinear photonic integrated platforms for optical signal processing. IEEE J Sel Top Quantum Electron 27, 5100111 (2021).

    Google Scholar

    [95] Chen JY, Tang C, Ma ZH et al. Efficient and highly tunable second-harmonic generation in Z-cut periodically poled lithium niobate nanowaveguides. Opt Lett 45, 3789–3792 (2020). doi: 10.1364/OL.393445

    CrossRef Google Scholar

    [96] Zhao J, Rüsing M, Roeper M et al. Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. J Appl Phys 127, 193104 (2020). doi: 10.1063/1.5143266

    CrossRef Google Scholar

    [97] Boes A, Chang L, Nguyen T et al. Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls. J Phys Photonics 3, 012008 (2021). doi: 10.1088/2515-7647/abd23a

    CrossRef Google Scholar

    [98] Rosenman G, Urenski P, Agronin A et al. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Appl Phys Lett 82, 103–105 (2003). doi: 10.1063/1.1534410

    CrossRef Google Scholar

    [99] Agronin A, Rosenwaks Y, Rosenman G. Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy. Appl Phys Lett 85, 452–454 (2004). doi: 10.1063/1.1772858

    CrossRef Google Scholar

    [100] Lilienblum M, Ofan A, Hoffmann Á et al. Low-voltage nanodomain writing in He-implanted lithium niobate crystals. Appl Phys Lett 96, 082902 (2010). doi: 10.1063/1.3319839

    CrossRef Google Scholar

    [101] Ofan A, Lilienblum M, Gaathon O et al. Large-area regular nanodomain patterning in He-irradiated lithium niobate crystals. Nanotechnology 22, 285309 (2011). doi: 10.1088/0957-4484/22/28/285309

    CrossRef Google Scholar

    [102] Ma JN, Cheng XY, Zheng NC et al. Fabrication of 100-nm-period domain structure in lithium niobate on insulator. Opt Express 31, 37464–37471 (2023). doi: 10.1364/oe.501804

    CrossRef Google Scholar

    [103] Gainutdinov RV, Volk TR, Zhang HH. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates. Appl Phys Lett 107, 162903 (2015). doi: 10.1063/1.4934186

    CrossRef Google Scholar

    [104] Shao GH, Bai YH, Cui GX et al. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses. AIP Adv 6, 075011 (2016). doi: 10.1063/1.4959197

    CrossRef Google Scholar

    [105] Volk T, Gainutdinov R, Zhang HH. Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy. Crystals 7, 137 (2017). doi: 10.3390/cryst7050137

    CrossRef Google Scholar

    [106] Ma JN, Zheng NC, Chen PC et al. Tip-induced nanoscale domain engineering in x-cut lithium niobate on insulator. Opt Express 32, 14801–14807 (2024). doi: 10.1364/oe.518885

    CrossRef Google Scholar

    [107] Chezganov DS, Shur VY, Vlasov EO et al. Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals. Appl Phys Lett 110, 082903 (2017). doi: 10.1063/1.4977043

    CrossRef Google Scholar

    [108] Chezganov DS, Vlasov EO, Neradovskiy MM et al. Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate. Appl Phys Lett 108, 192903 (2016). doi: 10.1063/1.4949360

    CrossRef Google Scholar

    [109] Ito H, Takyu C, Inaba H. Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes. Electron Lett 27, 1221–1222 (1991). doi: 10.1049/el:19910766

    CrossRef Google Scholar

    [110] Nutt ACG, Gopalan V, Gupta MC. Domain inversion in LiNbO3 using direct electron-beam writing. Appl Phys Lett 60, 2828–2830 (1992). doi: 10.1063/1.106837

    CrossRef Google Scholar

    [111] Restoin C, Darraud-Taupiac C, Decossas JL et al. Ferroelectric domain inversion by electron beam on LiNbO3 and Ti: LiNbO3. J Appl Phys 88, 6665–6668 (2000). doi: 10.1063/1.1286231

    CrossRef Google Scholar

    [112] Restoin C, Darraud-Taupiac C, Decossas JL et al. Electron-beam poling on Ti: LiNbO3. Appl Opt 40, 6056–6061 (2001). doi: 10.1364/AO.40.006056

    CrossRef Google Scholar

    [113] Shur VY, Chezganov DS, Smirnov MM et al. Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate. Appl Phys Lett 105, 052908 (2014). doi: 10.1063/1.4891842

    CrossRef Google Scholar

    [114] Chezganov DS, Smirnov MM, Kuznetsov DK et al. Electron beam domain patterning of MgO-doped lithium niobate crystals covered by resist layer. Ferroelectrics 476, 117–126 (2015). doi: 10.1080/00150193.2015.998909

    CrossRef Google Scholar

    [115] He J, Tang SH, Qin YQ et al. Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography. J Appl Phys 93, 9943–9946 (2003). doi: 10.1063/1.1575918

    CrossRef Google Scholar

    [116] Volk TR, Kokhanchik LS, Gainutdinov RV et al. Domain formation on the nonpolar lithium niobate surfaces under electron-beam irradiation: a review. J Adv Dielectr 8, 1830001 (2018). doi: 10.1142/S2010135X18300013

    CrossRef Google Scholar

    [117] Kurimura S, Shimoya I, Uesu Y. Domain inversion by an electron-beam-induced electric field in MgO: LiNbO3, LiNbO3 and LiTaO3. Jpn J Appl Phys 35, L31–L33 (1996). doi: 10.1143/JJAP.35.L31

    CrossRef Google Scholar

    [118] Mizuuchi K, Yamamoto K. Domain inversion in LiTaO3 using an ion beam. Electron Lett 29, 2064–2066 (1993). doi: 10.1049/el:19931379

    CrossRef Google Scholar

    [119] Chezganov DS, Vlasov EO, Gimadeeva LV et al. Growth of isolated domains induced by focused ion beam irradiation in congruent lithium niobate. Ferroelectrics 508, 16–25 (2017). doi: 10.1080/00150193.2017.1286214

    CrossRef Google Scholar

    [120] Chezganov DS, Vlasov EO, Pashnina EA et al. Domain patterning of non-polar cut lithium niobate by focused ion beam. Ferroelectrics 559, 66–76 (2020). doi: 10.1080/00150193.2020.1722007

    CrossRef Google Scholar

    [121] Li XJ, Terabe K, Hatano H et al. Nano-domain engineering in LiNbO3 by focused ion beam. Jpn J Appl Phy 44, L1550–L1552 (2005). doi: 10.1143/JJAP.44.L1550

    CrossRef Google Scholar

    [122] Nikolaeva EV, Shur VY, Dolbilov MA et al. Formation of nanoscale domain structures and abnormal switching kinetics in lithium niobate with surface layer modified by implantation of copper ions. Ferroelectrics 374, 73–77 (2008). doi: 10.1080/00150190802427143

    CrossRef Google Scholar

    [123] Kokhanchik LS, Borodin MV, Shandarov SM et al. Periodic domain structures formed under electron-beam irradiation in LiNbO3 plates and Ti: LiNbO3 planar waveguides of the Y cut. Phys Solid State 52, 1722–1730 (2010). doi: 10.1134/S106378341008024X

    CrossRef Google Scholar

    [124] Krasnokutska I, Tambasco JLJ, Peruzzo A. Submicron domain engineering in periodically poled lithium niobate on insulator. (2021).

    Google Scholar

    [125] Ying CYJ, Muir AC, Valdivia CE et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photonics Rev 6, 526–548 (2012). doi: 10.1002/lpor.201100022

    CrossRef Google Scholar

    [126] Hou PP, Zhi YN, Liu LR. Laser-induced preferential domain nucleation in hafnium-doped congruent lithium niobate crystal. Appl Phys A 99, 105–109 (2010). doi: 10.1007/s00339-009-5520-8

    CrossRef Google Scholar

    [127] Dierolf V, Sandmann C. Direct-write method for domain inversion patterns in LiNbO3. Appl Phys Lett 84, 3987–3989 (2004). doi: 10.1063/1.1753057

    CrossRef Google Scholar

    [128] Wang WJ, Kong YF, Liu HD et al. Light-induced domain reversal in doped lithium niobate crystals. J Appl Phys 105, 043105 (2009). doi: 10.1063/1.3079478

    CrossRef Google Scholar

    [129] Wengler MC, Heinemeyer U, Soergel E et al. Ultraviolet light-assisted domain inversion in magnesium-doped lithium niobate crystals. J Appl Phys 98, 064104 (2005). doi: 10.1063/1.2058184

    CrossRef Google Scholar

    [130] Valdivia CE, Sones CL, Mailis S et al. Ultrashort-pulse optically-assisted domain engineering in lithium niobate. Ferroelectrics 340, 75–82 (2006). doi: 10.1080/00150190600888983

    CrossRef Google Scholar

    [131] Sones CL, Wengler MC, Wengler MC et al. Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals. Appl Phys Lett 86, 212901 (2005). doi: 10.1063/1.1929099

    CrossRef Google Scholar

    [132] Zhi YN, Liu DA, Qu WJ et al. Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal. Appl Phys Lett 90, 042904 (2007). doi: 10.1063/1.2434151

    CrossRef Google Scholar

    [133] Sones CL, Muir AC, Ying YJ et al. Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling. Appl Phys Lett 92, 072905 (2008). doi: 10.1063/1.2884185

    CrossRef Google Scholar

    [134] Steigerwald H, Ying YJ, Eason RW et al. Direct writing of ferroelectric domains on the x-and y-faces of lithium niobate using a continuous wave ultraviolet laser. Appl Phys Lett 98, 062902 (2011). doi: 10.1063/1.3553194

    CrossRef Google Scholar

    [135] Boes A, Steigerwald H, Yudistira D et al. Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals. Appl Phys Lett 105, 092904 (2014). doi: 10.1063/1.4895387

    CrossRef Google Scholar

    [136] Zisis G, Martinez-Jimenez G, Franz Y et al. Laser-induced ferroelectric domain engineering in LiNbO3 crystals using an amorphous silicon overlayer. J Opt 19, 084010 (2017). doi: 10.1088/2040-8986/aa7726

    CrossRef Google Scholar

    [137] Muir AC, Sones CL, Sones CL et al. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser. Opt Express 16, 2336–2350 (2008). doi: 10.1364/OE.16.002336

    CrossRef Google Scholar

    [138] Boes A, Crasto T, Steigerwald H et al. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light. Appl Phys Lett 103, 142904 (2013). doi: 10.1063/1.4823702

    CrossRef Google Scholar

    [139] Boes A, Sivan V, Ren GH et al. Precise, reproducible nano-domain engineering in lithium niobate crystals. Appl Phys Lett 107, 022901 (2015). doi: 10.1063/1.4926910

    CrossRef Google Scholar

    [140] Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [141] Xu XY, Wang TX, Chen PC et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 609, 496–501 (2022). doi: 10.1038/s41586-022-05042-z

    CrossRef Google Scholar

    [142] Shur VY, Kosobokov MS, Makaev AV et al. Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Mater 219, 117270 (2021). doi: 10.1016/j.actamat.2021.117270

    CrossRef Google Scholar

    [143] Wang TX, Xu XY, Yang L et al. Fabrication of lithium niobate fork grating by laser-writing-induced selective chemical etching. Nanophotonics 11, 829–834 (2022). doi: 10.1515/nanoph-2021-0446

    CrossRef Google Scholar

    [144] Li G. Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions (University of Paderborn, Paderborn, 2010).

    Google Scholar

    [145] Lin JT, Yao N, Hao ZZ et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett 122, 173903 (2019). doi: 10.1103/PhysRevLett.122.173903

    CrossRef Google Scholar

    [146] Chen MW, Wang CY, Tian XH et al. Wafer-scale periodic poling of thin-film lithium niobate. Materials 17, 1720 (2024). doi: 10.3390/ma17081720

    CrossRef Google Scholar

    [147] Luke K, Kharel P, Reimer C et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt Express 28, 24452–24458 (2020). doi: 10.1364/OE.401959

    CrossRef Google Scholar

    [148] Yan CL, Gu BS, Zhao S et al. Red and green light generation in TPPLNOI ridge optical waveguide with 1550 nm picosecond laser. Opt Commun 529, 129023 (2023). doi: 10.1016/j.optcom.2022.129023

    CrossRef Google Scholar

    [149] Ye XN, Liu SJ, Chen YP et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt Lett 45, 523–526 (2020). doi: 10.1364/OL.383450

    CrossRef Google Scholar

    [150] Henry A, Barral D, Zaquine I et al. Correlated twin-photon generation in a silicon nitride loaded thin film PPLN waveguide. Opt Express 31, 7277–7289 (2023). doi: 10.1364/OE.479658

    CrossRef Google Scholar

    [151] Chen JY, Sua YM, Fan H et al. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum 1, 229–242 (2018). doi: 10.1364/OSAC.1.000229

    CrossRef Google Scholar

    [152] Lu CY, Zhang YT, Qiu J et al. Highly tunable birefringent phase-matched second-harmonic generation in an angle-cut lithium niobate-on-insulator ridge waveguide. Opt Lett 47, 1081–1084 (2022). doi: 10.1364/OL.449634

    CrossRef Google Scholar

    [153] Wang L, Li LQ, Zhang XT et al. Type I phase matching in thin film of lithium niobate on insulator. Results Phys 16, 103011 (2020). doi: 10.1016/j.rinp.2020.103011

    CrossRef Google Scholar

    [154] Okubo S, Onae A, Nakamura K et al. Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica 5, 188–192 (2018). doi: 10.1364/OPTICA.5.000188

    CrossRef Google Scholar

    [155] Sun Y, Tu HH, Boppart SA. Nonlinear optical imaging by detection with optical parametric amplification (invited paper). J Innov Opt Health Sci 16, 2245001 (2023). doi: 10.1142/S1793545822450018

    CrossRef Google Scholar

    [156] Denzer W, Hancock G, Hutchinson A et al. Mid-infrared generation and spectroscopy with a PPLN ridge waveguide. Appl Phys B 86, 437–441 (2007). doi: 10.1007/s00340-006-2570-x

    CrossRef Google Scholar

    [157] Baxter GW, He Y, Orr BJ. A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy. Appl Phys B 67, 753–756 (1998). doi: 10.1007/s003400050576

    CrossRef Google Scholar

    [158] César-Cuello J, Carnoto I, García-Muñoz LE et al. Towards a lithium niobate photonic integrated circuit for quantum sensing applications. Photonics 11, 239 (2024). doi: 10.3390/photonics11030239

    CrossRef Google Scholar

    [159] Manzoni C, Cerullo G. Design criteria for ultrafast optical parametric amplifiers. J Opt 18, 103501 (2016). doi: 10.1088/2040-8978/18/10/103501

    CrossRef Google Scholar

    [160] Shimizu S, Kobayashi T, Kazama T et al. PPLN-based optical parametric amplification for wideband WDM transmission. J Light Technol 40, 3374–3384 (2022). doi: 10.1109/JLT.2022.3142749

    CrossRef Google Scholar

    [161] Zhao J, Ma CX, Rüsing M et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys Rev Lett 124, 163603 (2020). doi: 10.1103/PhysRevLett.124.163603

    CrossRef Google Scholar

    [162] Boyd RW. Nonlinear Optics (Academic Press, San Diego, 2003).

    Google Scholar

    [163] Hickstein DD, Carlson DR, Kowligy A et al. High-harmonic generation in periodically poled waveguides. Optica 4, 1538–1544 (2017). doi: 10.1364/OPTICA.4.001538

    CrossRef Google Scholar

    [164] Wu TH, Ledezma L, Fredrick C et al. Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. Nat Photonics 18, 218–223 (2024).

    Google Scholar

    [165] Rao DSS, Jensen M, Grüner-Nielsen L et al. Shot-noise limited, supercontinuum-based optical coherence tomography. Light Sci Appl 10, 133 (2021). doi: 10.1038/s41377-021-00574-x

    CrossRef Google Scholar

    [166] Canalias C, Pasiskevicius V. Mirrorless optical parametric oscillator. Nat Photonics 1, 459–462 (2007). doi: 10.1038/nphoton.2007.137

    CrossRef Google Scholar

    [167] Boes A, Chang L, Nguyen T et al. Enhanced nonlinearity in lithium niobate on insulator (LNOI) waveguides through engineering of lateral leakage. In CLEO: QELS_Fundamental Science 2019, FW3B. 4 (Optica Publishing Group, 2019); http://doi.org/10.1364/CLEO_QELS.2019.FW3B.4.

    Google Scholar

    [168] Wu Y, Wei JJ, Zeng C et al. Efficient sum-frequency generation of a yellow laser in a thin-film lithium niobate waveguide. Opt Lett 49, 2833–2836 (2024). doi: 10.1364/OL.522924

    CrossRef Google Scholar

    [169] Umeki T, Tadanaga O, Asobe M. Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide. IEEE J Quantum Electron 46, 1206–1213 (2010). doi: 10.1109/JQE.2010.2045475

    CrossRef Google Scholar

    [170] Parameswaran KR, Kurz JR, Roussev RV et al. Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide. Opt Lett 27, 43–45 (2002). doi: 10.1364/OL.27.000043

    CrossRef Google Scholar

    [171] Cho CY, Lai JY, Hsu CS et al. Power scaling of continuous-wave second harmonic generation in a MgO: PPLN ridge waveguide and the application to a compact wavelength conversion module. Opt Lett 46, 2852–2855 (2021). doi: 10.1364/OL.427850

    CrossRef Google Scholar

    [172] Berry SA, Carpenter LG, Gray AC et al. Zn-indiffused diced ridge waveguides in MgO: PPLN generating 1 watt 780 nm SHG at 70% efficiency. OSA Continuum 2, 3456–3464 (2019). doi: 10.1364/OSAC.2.003456

    CrossRef Google Scholar

    [173] Choge DK, Chen HX, Guo L et al. Simultaneous second-harmonic, sum-frequency generation and stimulated Raman scattering in MgO: PPLN. Materials 11, 2266 (2018). doi: 10.3390/ma11112266

    CrossRef Google Scholar

    [174] Choge DK, Chen HX, Guo L et al. Double-pass high-efficiency sum-frequency generation of a broadband orange laser in a single MgO: PPLN crystal. Opt Mater Express 9, 837–844 (2019). doi: 10.1364/OME.9.000837

    CrossRef Google Scholar

    [175] Kumar SC, Sukeert, Ebrahim-Zadeh M. High-power continuous-wave mid-infrared difference-frequency generation in the presence of thermal effects. J Opt Soc Am B 38, B14–B20 (2021). doi: 10.1364/JOSAB.425672

    CrossRef Google Scholar

    [176] Mazzotti D, De Natale P, Giusfredi G et al. Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers. Appl Phys B 70, 747–750 (2000). doi: 10.1007/s003400000263

    CrossRef Google Scholar

    [177] Hirano M, Morimoto A. Optical frequency comb generation using a quasi-velocity-matched Fabry-Perot phase modulator. Opt Rev 15, 224–229 (2008). doi: 10.1007/s10043-008-0035-7

    CrossRef Google Scholar

    [178] Kim DS, Arisawa M, Morimoto A et al. Femtosecond optical pulse generation using quasi-velocity-matched electrooptic phase modulator. IEEE J Sel Top Quantum Electron 2, 493–499 (1996). doi: 10.1109/2944.571749

    CrossRef Google Scholar

    [179] Wang Y, Shi JH, Yang JL et al. Design of quasi-velocity-matched LiTaO3 phase modulator. Proc SPIE 4220, 135–138 (2000). doi: 10.1117/12.401694

    CrossRef Google Scholar

    [180] Guo FZ, Yu CT, Chen L et al. Quasi-velocity-matched electrooptic phase modulator for the synthesis of ultrashort optical pulses. IEEE J Quantum Electron 33, 879–882 (1997). doi: 10.1109/3.572164

    CrossRef Google Scholar

    [181] Chen XF, Shi JH, Chen YP et al. Electro-optic Solc-type wavelength filter in periodically poled lithium niobate. Opt Lett 28, 2115–2117 (2003). doi: 10.1364/OL.28.002115

    CrossRef Google Scholar

    [182] Lu YQ, Zhu YY, Ming NB. Electro-optic effect and its applications in periodically poled optical superlattice LiNbO3. In Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Postconference Edition. CLEO ’99. Conference on Lasers and Electro-Optics (IEEE Cat. No. 99CH37013) 448 (IEEE, 1999); http://doi.org/10.1109/CLEO.1999.834429.

    Google Scholar

    [183] Ding TT, Zheng YL, Chen XF. On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide. J Lightw Technol 37, 1296–1300 (2019). doi: 10.1109/JLT.2019.2892317

    CrossRef Google Scholar

    [184] Sohler W, Hu H, Ricken R et al. Integrated optical devices in lithium niobate. Opt Photonics News 19, 24–31 (2008).

    Google Scholar

    [185] Morgan D, Paige EGS. Surface Acoustic Wave Filters: with Applications to Electronic Communications and Signal Processing (Academic Press, Amsterdam, 2007).

    Google Scholar

    [186] Gronewold TMA. Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges. Anal Chim Acta 603, 119–128 (2007). doi: 10.1016/j.aca.2007.09.056

    CrossRef Google Scholar

    [187] Länge K, Rapp BE, Rapp M. Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391, 1509–1519 (2008). doi: 10.1007/s00216-008-1911-5

    CrossRef Google Scholar

    [188] Lee SW, Rhim JW, Park SW et al. A micro rate gyroscope based on the SAW gyroscopic effect. J Micromech Microeng 17, 2272–2279 (2007). doi: 10.1088/0960-1317/17/11/014

    CrossRef Google Scholar

    [189] Pekarčíková M, Hofmann M, Menzel S et al. Investigation of high power effects on Ti/Al and Ta-Si-N/Cu/Ta-Si-N electrodes for SAW devices. IEEE Trans Ultrason Ferroelectr Freq Control 52, 911–917 (2005). doi: 10.1109/TUFFC.2005.1503977

    CrossRef Google Scholar

    [190] Lu YQ, Zhu YY, Chen YF et al. Optical properties of an ionic-type phononic crystal. Science 284, 1822–1824 (1999). doi: 10.1126/science.284.5421.1822

    CrossRef Google Scholar

    [191] Friend J, Yeo LY. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83, 647–704 (2011). doi: 10.1103/RevModPhys.83.647

    CrossRef Google Scholar

    [192] Boes A, Yudistira D, Rezk A et al. Ultraviolet direct domain writing on 128° YX-cut LiNbO3: for SAW applications. In Proceedings of 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy 272–274 (IEEE, 2013); http://doi.org/10.1109/ISAF.2013.6748659.

    Google Scholar

    [193] Chen X, Ali Mohammad M, Conway J et al. High performance lithium niobate surface acoustic wave transducers in the 4–12 GHz super high frequency range. J Vac Sci Technol B 33, 06F401 (2015). doi: 10.1116/1.4935561

    CrossRef Google Scholar

    [194] Yudistira D, Benchabane S, Janner D et al. Surface acoustic wave generation in Z X-cut LiNbO3 superlattices using coplanar electrodes. Appl Phys Lett 95, 052901 (2009). doi: 10.1063/1.3190518

    CrossRef Google Scholar

    [195] Gustafsson MV, Aref T, Kockum AF et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014). doi: 10.1126/science.1257219

    CrossRef Google Scholar

    [196] O’Connell AD, Hofheinz M, Ansmann M et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010). doi: 10.1038/nature08967

    CrossRef Google Scholar

    [197] Olsson III RH, El-Kady I. Microfabricated phononic crystal devices and applications. Meas Sci Technol 20, 012002 (2009). doi: 10.1088/0957-0233/20/1/012002

    CrossRef Google Scholar

    [198] Huang CP, Zhu YY. Piezoelectric-induced polariton coupling in a superlattice. Phys Rev Lett 94, 117401 (2005). doi: 10.1103/PhysRevLett.94.117401

    CrossRef Google Scholar

    [199] Yudistira D, Boes A, Dumas B et al. Phonon-polariton entrapment in homogenous surface phonon cavities. Ann Phys 528, 365–372 (2016). doi: 10.1002/andp.201500348

    CrossRef Google Scholar

    [200] Barry IE, Ross GW, Smith PGR et al. Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains. Mater Lett 37, 246–254 (1998). doi: 10.1016/S0167-577X(98)00100-1

    CrossRef Google Scholar

    [201] Yudistira D, Boes A, Graczykowski B et al. Nanoscale pillar hypersonic surface phononic crystals. Phys Rev B 94, 094304 (2016). doi: 10.1103/PhysRevB.94.094304

    CrossRef Google Scholar

    [202] Ying CYJ, Sones CL, Peacock AC et al. Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping. Opt Express 18, 11508–11513 (2010). doi: 10.1364/OE.18.011508

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(24)

Tables(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint