Citation: | Chakkoria JJ, Dubey A, Mitchell A et al. Ferroelectric domain engineering of lithium niobate. Opto-Electron Adv 8, 240139 (2025). doi: 10.29026/oea.2025.240139 |
[1] | Zachariasen FWH. Standard x-ray diffraction powder patterns. [Kl. ] 1 Mat. Mat Naturv-Idensk Kl 4 , 1–8 (1928). |
[2] | Ballman AA. Growth of piezoelectric and ferroelectric materials by the czochraiski technique. J Am Ceram Soc 48, 112–113 (1965). doi: 10.1111/j.1151-2916.1965.tb11814.x |
[3] | Nassau K, Levinstein HJ, Loiacono GM. Ferroelectric lithium niobate. 2. Preparation of single domain crystals. J Phys Chem Solids 27, 989–996 (1966). doi: 10.1016/0022-3697(66)90071-0 |
[4] | Popescu ST, Petris A, Vlad IV. Interferometric measurement of the pyroelectric coefficient in lithium niobate. J Appl Phys 113, 043101 (2013). doi: 10.1063/1.4788696 |
[5] | Smith RT, Welsh FS. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J Appl Phys 42, 2219–2230 (1971). doi: 10.1063/1.1660528 |
[6] | Peterson GE, Ballman AA, Lenzo PV et al. Electro-optic properties of LiNbO3. Appl Phys Lett 5, 62–64 (1964). doi: 10.1063/1.1754053 |
[7] | Ashkin A, Boyd GD, Dziedzic JM et al. Optically-induced refractive index inhomogeneities in LiNbO3 AND LiTaO3. Appl Phys Lett 9, 72–74 (1966). doi: 10.1063/1.1754607 |
[8] | Bell DT, Li RCM. Surface-acoustic-wave resonators. Proc IEEE 64, 711–721 (1976). doi: 10.1109/PROC.1976.10200 |
[9] | Graham RA. Pressure dependence of the piezoelectric polarization of LiNbO3 and LiTaO3. Ferroelectrics 10, 65–69 (1976). doi: 10.1080/00150197608241952 |
[10] | Smith RG, Nassau K, Galvin MF. Efficient continuous optical second-harmonic generation. Appl Phys Lett 7, 256–258 (1965). doi: 10.1063/1.1754246 |
[11] | Rauber A. In Kaldis E. Current Topics in Materials Science, Vol. 1, (North-Holland, Amsterdam, 1978). |
[12] | Boes A, Chang L, Langrock C et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023). doi: 10.1126/science.abj4396 |
[13] | Ruppel CCW, Reindl L, Weigel R. SAW devices and their wireless communications applications. IEEE Microw Mag 3, 65–71 (2002). |
[14] | Wooten EL, Kissa KM, Yi-Yan A et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron 6, 69–82 (2000). doi: 10.1109/2944.826874 |
[15] | Yudistira D, Boes A, Djafari-Rouhani B et al. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling. Phys Rev Lett 113, 215503 (2014). doi: 10.1103/PhysRevLett.113.215503 |
[16] | Yudistira D, Janner D, Benchabane S et al. Integrated acousto-optic polarization converter in a ZX-cut LiNbO3 waveguide superlattice. Opt Lett 34, 3205–3207 (2009). doi: 10.1364/OL.34.003205 |
[17] | Yamada M, Nada N, Saitoh M et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl Phys Lett 62, 435–436 (1993). doi: 10.1063/1.108925 |
[18] | Wu RB, Wang M, Xu J et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8, 910 (2018). doi: 10.3390/nano8110910 |
[19] | Desiatov B, Shams-Ansari A, Zhang M et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019). doi: 10.1364/OPTICA.6.000380 |
[20] | Chen PK, Briggs I, Cui CH et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat Nanotechnol 19, 44–50 (2024). doi: 10.1038/s41565-023-01525-w |
[21] | Wang C, Langrock C, Marandi A et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018). doi: 10.1364/OPTICA.5.001438 |
[22] | Lu JJ, Surya JB, Liu XW et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica 6, 1455–1460 (2019). doi: 10.1364/OPTICA.6.001455 |
[23] | He MB, Xu MY, Ren YX et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics 13, 359–364 (2019). doi: 10.1038/s41566-019-0378-6 |
[24] | Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018). doi: 10.1038/s41586-018-0551-y |
[25] | Zhang M, Wang C, Kharel P et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652–667 (2021). doi: 10.1364/OPTICA.415762 |
[26] | Weis RS, Gaylord TK. Lithium niobate: summary of physical properties and crystal structure. Appl Phys A 37, 191–203 (1985). doi: 10.1007/BF00614817 |
[27] | Boes AS. Laser light induced domain engineering of lithium niobate for photonic and phononic applications (RMIT University, Melbourne, 2016). |
[28] | Ying Y. Light-assisted domain engineering, waveguide fabrication and microstructuring of lithium niobate (University of Southampton, Southampton, 2010). |
[29] | Abrahams SC, Reddy JM, Bernstein JL. Ferroelectric Lithium niobate. 3. Single crystal X-ray diffraction study at 24°C. J Phys Chem Solids 27, 997–1012 (1966). doi: 10.1016/0022-3697(66)90072-2 |
[30] | Abrahams SC, Hamilton WC, Reddy JM. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24°C. J Phys Chem Solids 27, 1013–1018 (1966). doi: 10.1016/0022-3697(66)90073-4 |
[31] | Wong KK. Properties of Lithium Niobate (INSPEC/Institution of Electrical Engineers, London, 2002). |
[32] | Gopalan V, Sanford NA, Aust JA et al. Crystal growth, characterization, and domain studies in lithium niobate and lithium tantalate ferroelectrics. Handb Adv Electron Photonic Mater Dev 4, 57–114 (2001). |
[33] | Gopalan V, Dierolf V, Scrymgeour DA. Defect-domain wall interactions in trigonal ferroelectrics. Annu Rev Mater Res 37, 449–489 (2007). doi: 10.1146/annurev.matsci.37.052506.084247 |
[34] | Prokhorov AM, Kuz’minov YS. Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, 1990). |
[35] | Schirmer FO, Thiemann O, Wöhlecke M. Defects in LiNbO3-I. Experimental aspects. J Phys Chem Solids 52, 185–200 (1991). doi: 10.1016/0022-3697(91)90064-7 |
[36] | Lines ME, Glass AM. Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 2001). |
[37] | Gui L, Hu H, Garcia-Granda M et al. Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation. Opt Express 17, 3923–3928 (2009). doi: 10.1364/OE.17.003923 |
[38] | Jungk T, Hoffmann Á, Soergel E. New insights into ferroelectric domain imaging with piezoresponse force microscopy. In Ferraro P, Grilli S, De Natale P. Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques 205–226 (Springer, Berlin, 2014). |
[39] | Nassau K, Levinstein HJ, Loiacono GM. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching. J Phys Chem Solids 27, 983–988 (1966). doi: 10.1016/0022-3697(66)90070-9 |
[40] | Sones CL, Mailis S, Brocklesby WS et al. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J Mater Chem 12, 295–298 (2002). doi: 10.1039/b106279b |
[41] | Niizeki N, Yamada T, Toyoda H. Growth ridges, etched hillocks, and crystal structure of lithium niobate. Jpn J Appl Phys 6, 318–327 (1967). doi: 10.1143/JJAP.6.318 |
[42] | Valdivia CE. Light-induced ferroelectric domain engineering in lithium niobate & lithium tantalate (University of Southampton, Southampton, 2007). |
[43] | Bermúdez V, Caccavale F, Sada C et al. Etching effect on periodic domain structures of lithium niobate crystals. J Cryst Growth 191, 589–593 (1998). doi: 10.1016/S0022-0248(98)00394-7 |
[44] | Güthner P, Dransfeld K. Local poling of ferroelectric polymers by scanning force microscopy. Appl Phys Lett 61, 1137–1139 (1992). doi: 10.1063/1.107693 |
[45] | Soergel E. Piezoresponse force microscopy (PFM). J Phys D Appl Phys 44, 464003 (2011). doi: 10.1088/0022-3727/44/46/464003 |
[46] | Soergel E. Visualization of ferroelectric domains in bulk single crystals. Appl Phys B 81, 729–751 (2005). |
[47] | Slautin BN, Zhu H, Shur VY. Submicron periodical poling by local switching in ion sliced lithium niobate thin films with a dielectric layer. Ceram Int 47, 32900–32904 (2021). doi: 10.1016/j.ceramint.2021.08.188 |
[48] | Qian YZ, Zhang ZQ, Liu YZ et al. Graphical direct writing of macroscale domain structures with nanoscale spatial resolution in nonpolar-cut lithium niobate on insulators. Phys Rev Appl 17, 054049 (2022). doi: 10.1103/PhysRevApplied.17.054049 |
[49] | Reitzig S, Rüsing M, Zhao J et al. “Seeing is believing”—in-depth analysis by co-imaging of periodically-poled x-cut lithium niobate thin films. Crystals 11, 288 (2021). doi: 10.3390/cryst11030288 |
[50] | Jungk T, Hoffmann Á, Soergel E. Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy. New J Phys 11, 033029 (2009). doi: 10.1088/1367-2630/11/3/033029 |
[51] | Rüsing M, Zhao J, Mookherjea S. Second harmonic microscopy of poled x-cut thin film lithium niobate: Understanding the contrast mechanism. J Appl Phys 126, 114105 (2019). doi: 10.1063/1.5113727 |
[52] | Berth G, Quiring V, Sohler W et al. Depth-resolved analysis of ferroelectric domain structures in Ti: PPLN waveguides by nonlinear confocal laser scanning microscopy. Ferroelectrics 352, 78–85 (2007). doi: 10.1080/00150190701358159 |
[53] | Huang XY, Wei DZ, Wang YM et al. Second-harmonic interference imaging of ferroelectric domains through a scanning microscope. J Phys D Appl Phys 50, 485105 (2017). doi: 10.1088/1361-6463/aa9258 |
[54] | Kaneshiro J, Uesu Y, Fukui T. Visibility of inverted domain structures using the second harmonic generation microscope: comparison of interference and non-interference cases. J Opt Soc Am B 27, 888–894 (2010). doi: 10.1364/JOSAB.27.000888 |
[55] | Wei DZ, Liu DM, Hu XP et al. Superposed second-harmonic Talbot self-image from a PPLT crystal. Laser Phys Lett 11, 095402 (2014). doi: 10.1088/1612-2011/11/9/095402 |
[56] | Zhao J, Rüsing M, Mookherjea S. Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides. Opt Express 27, 12025–12038 (2019). doi: 10.1364/OE.27.012025 |
[57] | Mackwitz P, Rüsing M, Berth G et al. Periodic domain inversion in x-cut single-crystal lithium niobate thin film. Appl Phys Lett 108, 152902 (2016). doi: 10.1063/1.4946010 |
[58] | Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photonics Rev 14, 1900407 (2020). doi: 10.1002/lpor.201900407 |
[59] | Chen X, Karpinski P, Shvedov V et al. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl Phys Lett 107, 141102 (2015). doi: 10.1063/1.4932199 |
[60] | Sheng Y, Best A, Butt HJ et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt Express 18, 16539–16545 (2010). doi: 10.1364/OE.18.016539 |
[61] | Deng XW, Chen XF. Domain wall characterization in ferroelectrics by using localized nonlinearities. Opt Express 18, 15597–15602 (2010). doi: 10.1364/OE.18.015597 |
[62] | Roppo V, Kalinowski K, Sheng Y et al. Unified approach to Čerenkov second harmonic generation. Opt Express 21, 25715–25726 (2013). doi: 10.1364/OE.21.025715 |
[63] | Chen X, Karpinski P, Shvedov V et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Opt Lett 41, 2410–2413 (2016). doi: 10.1364/OL.41.002410 |
[64] | Gopalan V, Mitchell TE. In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy. J Appl Phys 85, 2304–2311 (1999). doi: 10.1063/1.369542 |
[65] | Müller M, Soergel E, Buse K. Visualization of ferroelectric domains with coherent light. Opt Lett 28, 2515–2517 (2003). doi: 10.1364/OL.28.002515 |
[66] | Gopalan V, Gupta MC. Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals. J Appl Phys 80, 6099–6106 (1996). doi: 10.1063/1.363684 |
[67] | Younesi M, Geiss R, Rajaee S et al. Periodic poling with a micrometer-range period in thin-film lithium niobate on insulator. J Opt Soc Am B 38, 685–691 (2021). doi: 10.1364/JOSAB.414298 |
[68] | Armstrong JA, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric. Phys Rev 127, 1918–1939 (1962). doi: 10.1103/PhysRev.127.1918 |
[69] | Fedulov A, Shapiro ZI, Ladyzhinskii PB. The growth of crystals of LiNbO3, LiTaO3 and NaNbO3 by the Czochralski method. Sov Phys Crystallogr 10, 218–220 (1965). |
[70] | Nassau K, Levinstein HJ. Ferroelectric behavior of lithium niobate. Appl Phys Lett 7, 69–70 (1965). doi: 10.1063/1.1754304 |
[71] | Nakamura K, Ando H, Shimizu H. Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment. Appl Phys Lett 50, 1413–1414 (1987). doi: 10.1063/1.97838 |
[72] | Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide. J Appl Phys 50, 4599–4603 (1979). doi: 10.1063/1.326568 |
[73] | Bermúdez V, Callejo D, Vilaplana R et al. Engineering of lithium niobate domain structure through the off-centered Czochralski growth technique. J Cryst Growth 237 –239, 677–681 (2002). |
[74] | Lim EJ, Fejer MM, Byer RL. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide. Electron Lett 25, 174–175 (1989). doi: 10.1049/el:19890127 |
[75] | Feisst A, Koidl P. Current induced periodic ferroelectric domain structures in LiNbO3 applied for efficient nonlinear optical frequency mixing. Appl Phys Lett 47, 1125–1127 (1985). doi: 10.1063/1.96349 |
[76] | Naumova II, Evlanova NF, Gliko OA et al. Czochralski-grown lithium niobate with regular domain structure. Ferroelectrics 190, 107–112 (1997). doi: 10.1080/00150199708014101 |
[77] | Sada C, Argiolas N, Bazzan M. On the dynamics of periodically-poled lithium niobate formation by off-center Czochralski technique. Appl Phys Lett 79, 2163–2165 (2001). doi: 10.1063/1.1408603 |
[78] | Ming NB, Hong JF, Feng D. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals. J Mater Sci 17, 1663–1670 (1982). doi: 10.1007/BF00540793 |
[79] | Feng D, Ming NB, Hong JF et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl Phys Lett 37, 607–609 (1980). doi: 10.1063/1.92035 |
[80] | Poberaj G, Koechlin M, Sulser F et al. Ion-sliced lithium niobate thin films for active photonic devices. Opt Mater 31, 1054–1058 (2009). doi: 10.1016/j.optmat.2007.12.019 |
[81] | Nakamura K, Shimizu H. Local domain inversion in ferroelectric crystals and its application to piezoelectric devices. In Proceedings of IEEE Ultrasonics Symposium 309–318 (IEEE, 1989); http://doi.org/10.1109/ULTSYM.1989.67000. |
[82] | Rosenman G, Kugel VD, Angert N. Domain inversion in LiNbO3 optical waveguides. Ferroelectrics 157, 111–116 (1994). doi: 10.1080/00150199408229491 |
[83] | Kugel VD, Rosenman G. Polarization reversal in LiNbO3 crystals under asymmetric diffusion conditions. Appl Phys Lett 65, 2398–2400 (1994). doi: 10.1063/1.112687 |
[84] | Thaniyavarn S, Findakly T, Booher D et al. Domain inversion effects in Ti-LiNbO3 integrated optical devices. Proc SPIE 559, 124–128 (1985). doi: 10.1117/12.949596 |
[85] | Rosenman G, Kugel VD, Shur D. Diffusion-induced domain inversion in ferroelectrics. Ferroelectrics 172, 7–18 (1995). doi: 10.1080/00150199508018452 |
[86] | Huang CY, Lin CH, Chen YH et al. Electro-optic Ti: PPLN waveguide as efficient optical wavelength filter and polarization mode converter. Opt Express 15, 2548–2554 (2007). doi: 10.1364/OE.15.002548 |
[87] | Webjörn J, Pruneri V, Russell PSJ et al. Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes. Electron Lett 30, 894–895 (1994). doi: 10.1049/el:19940562 |
[88] | Liang LY, Wang FL, Sang YH et al. Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes. CrystEngComm 21, 941–947 (2019). doi: 10.1039/C8CE01748D |
[89] | Miller GD. Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance (Stanford University , Stanford, 1998). |
[90] | Stivala S, Pasquazi A, Colace L et al. Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects. J Opt Soc Am B 24, 1564–1570 (2007). doi: 10.1364/JOSAB.24.001564 |
[91] | Mizuuchi K, Morikawa A, Sugita T et al. Electric-field poling in Mg-doped LiNbO3. J Appl Phys 96, 6585–6590 (2004). doi: 10.1063/1.1811391 |
[92] | Chang L, Li YF, Volet N et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531–535 (2016). doi: 10.1364/OPTICA.3.000531 |
[93] | Nagy JT, Reano RM. Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films. Opt Mater Express 9, 3146–3155 (2019). doi: 10.1364/OME.9.003146 |
[94] | Chang L, Boes A, Shu HW et al. Second order nonlinear photonic integrated platforms for optical signal processing. IEEE J Sel Top Quantum Electron 27, 5100111 (2021). |
[95] | Chen JY, Tang C, Ma ZH et al. Efficient and highly tunable second-harmonic generation in Z-cut periodically poled lithium niobate nanowaveguides. Opt Lett 45, 3789–3792 (2020). doi: 10.1364/OL.393445 |
[96] | Zhao J, Rüsing M, Roeper M et al. Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. J Appl Phys 127, 193104 (2020). doi: 10.1063/1.5143266 |
[97] | Boes A, Chang L, Nguyen T et al. Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls. J Phys Photonics 3, 012008 (2021). doi: 10.1088/2515-7647/abd23a |
[98] | Rosenman G, Urenski P, Agronin A et al. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Appl Phys Lett 82, 103–105 (2003). doi: 10.1063/1.1534410 |
[99] | Agronin A, Rosenwaks Y, Rosenman G. Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy. Appl Phys Lett 85, 452–454 (2004). doi: 10.1063/1.1772858 |
[100] | Lilienblum M, Ofan A, Hoffmann Á et al. Low-voltage nanodomain writing in He-implanted lithium niobate crystals. Appl Phys Lett 96, 082902 (2010). doi: 10.1063/1.3319839 |
[101] | Ofan A, Lilienblum M, Gaathon O et al. Large-area regular nanodomain patterning in He-irradiated lithium niobate crystals. Nanotechnology 22, 285309 (2011). doi: 10.1088/0957-4484/22/28/285309 |
[102] | Ma JN, Cheng XY, Zheng NC et al. Fabrication of 100-nm-period domain structure in lithium niobate on insulator. Opt Express 31, 37464–37471 (2023). doi: 10.1364/oe.501804 |
[103] | Gainutdinov RV, Volk TR, Zhang HH. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates. Appl Phys Lett 107, 162903 (2015). doi: 10.1063/1.4934186 |
[104] | Shao GH, Bai YH, Cui GX et al. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses. AIP Adv 6, 075011 (2016). doi: 10.1063/1.4959197 |
[105] | Volk T, Gainutdinov R, Zhang HH. Domain patterning in ion-sliced LiNbO3 films by atomic force microscopy. Crystals 7, 137 (2017). doi: 10.3390/cryst7050137 |
[106] | Ma JN, Zheng NC, Chen PC et al. Tip-induced nanoscale domain engineering in x-cut lithium niobate on insulator. Opt Express 32, 14801–14807 (2024). doi: 10.1364/oe.518885 |
[107] | Chezganov DS, Shur VY, Vlasov EO et al. Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals. Appl Phys Lett 110, 082903 (2017). doi: 10.1063/1.4977043 |
[108] | Chezganov DS, Vlasov EO, Neradovskiy MM et al. Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate. Appl Phys Lett 108, 192903 (2016). doi: 10.1063/1.4949360 |
[109] | Ito H, Takyu C, Inaba H. Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes. Electron Lett 27, 1221–1222 (1991). doi: 10.1049/el:19910766 |
[110] | Nutt ACG, Gopalan V, Gupta MC. Domain inversion in LiNbO3 using direct electron-beam writing. Appl Phys Lett 60, 2828–2830 (1992). doi: 10.1063/1.106837 |
[111] | Restoin C, Darraud-Taupiac C, Decossas JL et al. Ferroelectric domain inversion by electron beam on LiNbO3 and Ti: LiNbO3. J Appl Phys 88, 6665–6668 (2000). doi: 10.1063/1.1286231 |
[112] | Restoin C, Darraud-Taupiac C, Decossas JL et al. Electron-beam poling on Ti: LiNbO3. Appl Opt 40, 6056–6061 (2001). doi: 10.1364/AO.40.006056 |
[113] | Shur VY, Chezganov DS, Smirnov MM et al. Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate. Appl Phys Lett 105, 052908 (2014). doi: 10.1063/1.4891842 |
[114] | Chezganov DS, Smirnov MM, Kuznetsov DK et al. Electron beam domain patterning of MgO-doped lithium niobate crystals covered by resist layer. Ferroelectrics 476, 117–126 (2015). doi: 10.1080/00150193.2015.998909 |
[115] | He J, Tang SH, Qin YQ et al. Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography. J Appl Phys 93, 9943–9946 (2003). doi: 10.1063/1.1575918 |
[116] | Volk TR, Kokhanchik LS, Gainutdinov RV et al. Domain formation on the nonpolar lithium niobate surfaces under electron-beam irradiation: a review. J Adv Dielectr 8, 1830001 (2018). doi: 10.1142/S2010135X18300013 |
[117] | Kurimura S, Shimoya I, Uesu Y. Domain inversion by an electron-beam-induced electric field in MgO: LiNbO3, LiNbO3 and LiTaO3. Jpn J Appl Phys 35, L31–L33 (1996). doi: 10.1143/JJAP.35.L31 |
[118] | Mizuuchi K, Yamamoto K. Domain inversion in LiTaO3 using an ion beam. Electron Lett 29, 2064–2066 (1993). doi: 10.1049/el:19931379 |
[119] | Chezganov DS, Vlasov EO, Gimadeeva LV et al. Growth of isolated domains induced by focused ion beam irradiation in congruent lithium niobate. Ferroelectrics 508, 16–25 (2017). doi: 10.1080/00150193.2017.1286214 |
[120] | Chezganov DS, Vlasov EO, Pashnina EA et al. Domain patterning of non-polar cut lithium niobate by focused ion beam. Ferroelectrics 559, 66–76 (2020). doi: 10.1080/00150193.2020.1722007 |
[121] | Li XJ, Terabe K, Hatano H et al. Nano-domain engineering in LiNbO3 by focused ion beam. Jpn J Appl Phy 44, L1550–L1552 (2005). doi: 10.1143/JJAP.44.L1550 |
[122] | Nikolaeva EV, Shur VY, Dolbilov MA et al. Formation of nanoscale domain structures and abnormal switching kinetics in lithium niobate with surface layer modified by implantation of copper ions. Ferroelectrics 374, 73–77 (2008). doi: 10.1080/00150190802427143 |
[123] | Kokhanchik LS, Borodin MV, Shandarov SM et al. Periodic domain structures formed under electron-beam irradiation in LiNbO3 plates and Ti: LiNbO3 planar waveguides of the Y cut. Phys Solid State 52, 1722–1730 (2010). doi: 10.1134/S106378341008024X |
[124] | Krasnokutska I, Tambasco JLJ, Peruzzo A. Submicron domain engineering in periodically poled lithium niobate on insulator. (2021). |
[125] | Ying CYJ, Muir AC, Valdivia CE et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photonics Rev 6, 526–548 (2012). doi: 10.1002/lpor.201100022 |
[126] | Hou PP, Zhi YN, Liu LR. Laser-induced preferential domain nucleation in hafnium-doped congruent lithium niobate crystal. Appl Phys A 99, 105–109 (2010). doi: 10.1007/s00339-009-5520-8 |
[127] | Dierolf V, Sandmann C. Direct-write method for domain inversion patterns in LiNbO3. Appl Phys Lett 84, 3987–3989 (2004). doi: 10.1063/1.1753057 |
[128] | Wang WJ, Kong YF, Liu HD et al. Light-induced domain reversal in doped lithium niobate crystals. J Appl Phys 105, 043105 (2009). doi: 10.1063/1.3079478 |
[129] | Wengler MC, Heinemeyer U, Soergel E et al. Ultraviolet light-assisted domain inversion in magnesium-doped lithium niobate crystals. J Appl Phys 98, 064104 (2005). doi: 10.1063/1.2058184 |
[130] | Valdivia CE, Sones CL, Mailis S et al. Ultrashort-pulse optically-assisted domain engineering in lithium niobate. Ferroelectrics 340, 75–82 (2006). doi: 10.1080/00150190600888983 |
[131] | Sones CL, Wengler MC, Wengler MC et al. Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals. Appl Phys Lett 86, 212901 (2005). doi: 10.1063/1.1929099 |
[132] | Zhi YN, Liu DA, Qu WJ et al. Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal. Appl Phys Lett 90, 042904 (2007). doi: 10.1063/1.2434151 |
[133] | Sones CL, Muir AC, Ying YJ et al. Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling. Appl Phys Lett 92, 072905 (2008). doi: 10.1063/1.2884185 |
[134] | Steigerwald H, Ying YJ, Eason RW et al. Direct writing of ferroelectric domains on the x-and y-faces of lithium niobate using a continuous wave ultraviolet laser. Appl Phys Lett 98, 062902 (2011). doi: 10.1063/1.3553194 |
[135] | Boes A, Steigerwald H, Yudistira D et al. Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals. Appl Phys Lett 105, 092904 (2014). doi: 10.1063/1.4895387 |
[136] | Zisis G, Martinez-Jimenez G, Franz Y et al. Laser-induced ferroelectric domain engineering in LiNbO3 crystals using an amorphous silicon overlayer. J Opt 19, 084010 (2017). doi: 10.1088/2040-8986/aa7726 |
[137] | Muir AC, Sones CL, Sones CL et al. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser. Opt Express 16, 2336–2350 (2008). doi: 10.1364/OE.16.002336 |
[138] | Boes A, Crasto T, Steigerwald H et al. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light. Appl Phys Lett 103, 142904 (2013). doi: 10.1063/1.4823702 |
[139] | Boes A, Sivan V, Ren GH et al. Precise, reproducible nano-domain engineering in lithium niobate crystals. Appl Phys Lett 107, 022901 (2015). doi: 10.1063/1.4926910 |
[140] | Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042 |
[141] | Xu XY, Wang TX, Chen PC et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 609, 496–501 (2022). doi: 10.1038/s41586-022-05042-z |
[142] | Shur VY, Kosobokov MS, Makaev AV et al. Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Mater 219, 117270 (2021). doi: 10.1016/j.actamat.2021.117270 |
[143] | Wang TX, Xu XY, Yang L et al. Fabrication of lithium niobate fork grating by laser-writing-induced selective chemical etching. Nanophotonics 11, 829–834 (2022). doi: 10.1515/nanoph-2021-0446 |
[144] | Li G. Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions (University of Paderborn, Paderborn, 2010). |
[145] | Lin JT, Yao N, Hao ZZ et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett 122, 173903 (2019). doi: 10.1103/PhysRevLett.122.173903 |
[146] | Chen MW, Wang CY, Tian XH et al. Wafer-scale periodic poling of thin-film lithium niobate. Materials 17, 1720 (2024). doi: 10.3390/ma17081720 |
[147] | Luke K, Kharel P, Reimer C et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt Express 28, 24452–24458 (2020). doi: 10.1364/OE.401959 |
[148] | Yan CL, Gu BS, Zhao S et al. Red and green light generation in TPPLNOI ridge optical waveguide with 1550 nm picosecond laser. Opt Commun 529, 129023 (2023). doi: 10.1016/j.optcom.2022.129023 |
[149] | Ye XN, Liu SJ, Chen YP et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt Lett 45, 523–526 (2020). doi: 10.1364/OL.383450 |
[150] | Henry A, Barral D, Zaquine I et al. Correlated twin-photon generation in a silicon nitride loaded thin film PPLN waveguide. Opt Express 31, 7277–7289 (2023). doi: 10.1364/OE.479658 |
[151] | Chen JY, Sua YM, Fan H et al. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum 1, 229–242 (2018). doi: 10.1364/OSAC.1.000229 |
[152] | Lu CY, Zhang YT, Qiu J et al. Highly tunable birefringent phase-matched second-harmonic generation in an angle-cut lithium niobate-on-insulator ridge waveguide. Opt Lett 47, 1081–1084 (2022). doi: 10.1364/OL.449634 |
[153] | Wang L, Li LQ, Zhang XT et al. Type I phase matching in thin film of lithium niobate on insulator. Results Phys 16, 103011 (2020). doi: 10.1016/j.rinp.2020.103011 |
[154] | Okubo S, Onae A, Nakamura K et al. Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica 5, 188–192 (2018). doi: 10.1364/OPTICA.5.000188 |
[155] | Sun Y, Tu HH, Boppart SA. Nonlinear optical imaging by detection with optical parametric amplification (invited paper). J Innov Opt Health Sci 16, 2245001 (2023). doi: 10.1142/S1793545822450018 |
[156] | Denzer W, Hancock G, Hutchinson A et al. Mid-infrared generation and spectroscopy with a PPLN ridge waveguide. Appl Phys B 86, 437–441 (2007). doi: 10.1007/s00340-006-2570-x |
[157] | Baxter GW, He Y, Orr BJ. A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy. Appl Phys B 67, 753–756 (1998). doi: 10.1007/s003400050576 |
[158] | César-Cuello J, Carnoto I, García-Muñoz LE et al. Towards a lithium niobate photonic integrated circuit for quantum sensing applications. Photonics 11, 239 (2024). doi: 10.3390/photonics11030239 |
[159] | Manzoni C, Cerullo G. Design criteria for ultrafast optical parametric amplifiers. J Opt 18, 103501 (2016). doi: 10.1088/2040-8978/18/10/103501 |
[160] | Shimizu S, Kobayashi T, Kazama T et al. PPLN-based optical parametric amplification for wideband WDM transmission. J Light Technol 40, 3374–3384 (2022). doi: 10.1109/JLT.2022.3142749 |
[161] | Zhao J, Ma CX, Rüsing M et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys Rev Lett 124, 163603 (2020). doi: 10.1103/PhysRevLett.124.163603 |
[162] | Boyd RW. Nonlinear Optics (Academic Press, San Diego, 2003). |
[163] | Hickstein DD, Carlson DR, Kowligy A et al. High-harmonic generation in periodically poled waveguides. Optica 4, 1538–1544 (2017). doi: 10.1364/OPTICA.4.001538 |
[164] | Wu TH, Ledezma L, Fredrick C et al. Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. Nat Photonics 18, 218–223 (2024). |
[165] | Rao DSS, Jensen M, Grüner-Nielsen L et al. Shot-noise limited, supercontinuum-based optical coherence tomography. Light Sci Appl 10, 133 (2021). doi: 10.1038/s41377-021-00574-x |
[166] | Canalias C, Pasiskevicius V. Mirrorless optical parametric oscillator. Nat Photonics 1, 459–462 (2007). doi: 10.1038/nphoton.2007.137 |
[167] | Boes A, Chang L, Nguyen T et al. Enhanced nonlinearity in lithium niobate on insulator (LNOI) waveguides through engineering of lateral leakage. In CLEO: QELS_Fundamental Science 2019, FW3B. 4 (Optica Publishing Group, 2019); http://doi.org/10.1364/CLEO_QELS.2019.FW3B.4. |
[168] | Wu Y, Wei JJ, Zeng C et al. Efficient sum-frequency generation of a yellow laser in a thin-film lithium niobate waveguide. Opt Lett 49, 2833–2836 (2024). doi: 10.1364/OL.522924 |
[169] | Umeki T, Tadanaga O, Asobe M. Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide. IEEE J Quantum Electron 46, 1206–1213 (2010). doi: 10.1109/JQE.2010.2045475 |
[170] | Parameswaran KR, Kurz JR, Roussev RV et al. Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide. Opt Lett 27, 43–45 (2002). doi: 10.1364/OL.27.000043 |
[171] | Cho CY, Lai JY, Hsu CS et al. Power scaling of continuous-wave second harmonic generation in a MgO: PPLN ridge waveguide and the application to a compact wavelength conversion module. Opt Lett 46, 2852–2855 (2021). doi: 10.1364/OL.427850 |
[172] | Berry SA, Carpenter LG, Gray AC et al. Zn-indiffused diced ridge waveguides in MgO: PPLN generating 1 watt 780 nm SHG at 70% efficiency. OSA Continuum 2, 3456–3464 (2019). doi: 10.1364/OSAC.2.003456 |
[173] | Choge DK, Chen HX, Guo L et al. Simultaneous second-harmonic, sum-frequency generation and stimulated Raman scattering in MgO: PPLN. Materials 11, 2266 (2018). doi: 10.3390/ma11112266 |
[174] | Choge DK, Chen HX, Guo L et al. Double-pass high-efficiency sum-frequency generation of a broadband orange laser in a single MgO: PPLN crystal. Opt Mater Express 9, 837–844 (2019). doi: 10.1364/OME.9.000837 |
[175] | Kumar SC, Sukeert, Ebrahim-Zadeh M. High-power continuous-wave mid-infrared difference-frequency generation in the presence of thermal effects. J Opt Soc Am B 38, B14–B20 (2021). doi: 10.1364/JOSAB.425672 |
[176] | Mazzotti D, De Natale P, Giusfredi G et al. Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers. Appl Phys B 70, 747–750 (2000). doi: 10.1007/s003400000263 |
[177] | Hirano M, Morimoto A. Optical frequency comb generation using a quasi-velocity-matched Fabry-Perot phase modulator. Opt Rev 15, 224–229 (2008). doi: 10.1007/s10043-008-0035-7 |
[178] | Kim DS, Arisawa M, Morimoto A et al. Femtosecond optical pulse generation using quasi-velocity-matched electrooptic phase modulator. IEEE J Sel Top Quantum Electron 2, 493–499 (1996). doi: 10.1109/2944.571749 |
[179] | Wang Y, Shi JH, Yang JL et al. Design of quasi-velocity-matched LiTaO3 phase modulator. Proc SPIE 4220, 135–138 (2000). doi: 10.1117/12.401694 |
[180] | Guo FZ, Yu CT, Chen L et al. Quasi-velocity-matched electrooptic phase modulator for the synthesis of ultrashort optical pulses. IEEE J Quantum Electron 33, 879–882 (1997). doi: 10.1109/3.572164 |
[181] | Chen XF, Shi JH, Chen YP et al. Electro-optic Solc-type wavelength filter in periodically poled lithium niobate. Opt Lett 28, 2115–2117 (2003). doi: 10.1364/OL.28.002115 |
[182] | Lu YQ, Zhu YY, Ming NB. Electro-optic effect and its applications in periodically poled optical superlattice LiNbO3. In Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Postconference Edition. CLEO ’99. Conference on Lasers and Electro-Optics (IEEE Cat. No. 99CH37013) 448 (IEEE, 1999); http://doi.org/10.1109/CLEO.1999.834429. |
[183] | Ding TT, Zheng YL, Chen XF. On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide. J Lightw Technol 37, 1296–1300 (2019). doi: 10.1109/JLT.2019.2892317 |
[184] | Sohler W, Hu H, Ricken R et al. Integrated optical devices in lithium niobate. Opt Photonics News 19, 24–31 (2008). |
[185] | Morgan D, Paige EGS. Surface Acoustic Wave Filters: with Applications to Electronic Communications and Signal Processing (Academic Press, Amsterdam, 2007). |
[186] | Gronewold TMA. Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges. Anal Chim Acta 603, 119–128 (2007). doi: 10.1016/j.aca.2007.09.056 |
[187] | Länge K, Rapp BE, Rapp M. Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391, 1509–1519 (2008). doi: 10.1007/s00216-008-1911-5 |
[188] | Lee SW, Rhim JW, Park SW et al. A micro rate gyroscope based on the SAW gyroscopic effect. J Micromech Microeng 17, 2272–2279 (2007). doi: 10.1088/0960-1317/17/11/014 |
[189] | Pekarčíková M, Hofmann M, Menzel S et al. Investigation of high power effects on Ti/Al and Ta-Si-N/Cu/Ta-Si-N electrodes for SAW devices. IEEE Trans Ultrason Ferroelectr Freq Control 52, 911–917 (2005). doi: 10.1109/TUFFC.2005.1503977 |
[190] | Lu YQ, Zhu YY, Chen YF et al. Optical properties of an ionic-type phononic crystal. Science 284, 1822–1824 (1999). doi: 10.1126/science.284.5421.1822 |
[191] | Friend J, Yeo LY. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83, 647–704 (2011). doi: 10.1103/RevModPhys.83.647 |
[192] | Boes A, Yudistira D, Rezk A et al. Ultraviolet direct domain writing on 128° YX-cut LiNbO3: for SAW applications. In Proceedings of 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy 272–274 (IEEE, 2013); http://doi.org/10.1109/ISAF.2013.6748659. |
[193] | Chen X, Ali Mohammad M, Conway J et al. High performance lithium niobate surface acoustic wave transducers in the 4–12 GHz super high frequency range. J Vac Sci Technol B 33, 06F401 (2015). doi: 10.1116/1.4935561 |
[194] | Yudistira D, Benchabane S, Janner D et al. Surface acoustic wave generation in Z X-cut LiNbO3 superlattices using coplanar electrodes. Appl Phys Lett 95, 052901 (2009). doi: 10.1063/1.3190518 |
[195] | Gustafsson MV, Aref T, Kockum AF et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014). doi: 10.1126/science.1257219 |
[196] | O’Connell AD, Hofheinz M, Ansmann M et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010). doi: 10.1038/nature08967 |
[197] | Olsson III RH, El-Kady I. Microfabricated phononic crystal devices and applications. Meas Sci Technol 20, 012002 (2009). doi: 10.1088/0957-0233/20/1/012002 |
[198] | Huang CP, Zhu YY. Piezoelectric-induced polariton coupling in a superlattice. Phys Rev Lett 94, 117401 (2005). doi: 10.1103/PhysRevLett.94.117401 |
[199] | Yudistira D, Boes A, Dumas B et al. Phonon-polariton entrapment in homogenous surface phonon cavities. Ann Phys 528, 365–372 (2016). doi: 10.1002/andp.201500348 |
[200] | Barry IE, Ross GW, Smith PGR et al. Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains. Mater Lett 37, 246–254 (1998). doi: 10.1016/S0167-577X(98)00100-1 |
[201] | Yudistira D, Boes A, Graczykowski B et al. Nanoscale pillar hypersonic surface phononic crystals. Phys Rev B 94, 094304 (2016). doi: 10.1103/PhysRevB.94.094304 |
[202] | Ying CYJ, Sones CL, Peacock AC et al. Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping. Opt Express 18, 11508–11513 (2010). doi: 10.1364/OE.18.011508 |
(a) Top view of the relative arrangement of oxygen atoms about the Li and Nb atoms in LN, corresponding to the sequence of the unit cell. (b) Side view illustration of the LN unit cell crystal structure. (c) The relative position of the cations (Li and Nb) in the crystal structure in relation to the oxygen plane is represented by black lines. The dashed lines indicate the center position between two oxygen planes. Figures redrawn from: (a) ref.34, CRC Press ; (b, c) ref.35, Elsevier.
(a, b) Movement of the Li and Nb ions during domain inversion. The Nb ions undergo a small displacement within their oxygen octahedrons, whereas the Li ions undergo a larger displacement through the close-packed oxygen planes into the adjacent, vacant oxygen octahedrons. Figure redrawn from ref.33, Annual Reviews.
(a) Illustration of the domain visualization process using selective chemical etching. (b) Periodically poled bulk LN (Z-cut) viewed under an optical microscope. (c) Image of etched LNOI (X-cut) sample observed with an SEM.
(a) Schematic for contact-mode scanning probe microscopy used for PFM. (b) Illustration of the PFM signal, resulting from the orientation of the spontaneous polarization and the applied external voltage to the conductive cantilever. (c) PFM image of a periodically poled LN crystal.
(a) Schematic of transmission interference SHG microscopy. (b) Illustration of interference process that is used for imaging the domain pattern, redrawn from ref.53, IOP Publishing. (c) Example of an interference SHG microscopy image of a periodically poled LN crystal. Figure reproduced with permission from ref.54, Optical Society of America.
(a) Schematic of transmission non-interference SHG microscopy. (b) Illustration of interference of SH signals at the domain boundary, causing the disappearance of the SH signal. (c) Example of a non-interference SHG microscopy image of a periodically poled LN crystal. Figure reproduced with permission from ref.54, Optical Society of America.
(a) Schematic of Cerenkov second harmonic generation microscopy. (b) Only a collinear (forward) second harmonic signal is generated in a homogeneous sample. (c) a conical Cerenkov signal is generated when ferroelectric domain walls are present. (d) Three-dimensional visualization of a square pattern of inverted domains by Cerenkov second harmonic microscopy58. Figure reproduced with permission from ref.63, Optical Society of America.
(a) Schematic of the electro-optic imaging microscopy setup. (b) Optical setup with cross polarizers to inspect the poled domains. (c) Microscope Image of poled domains analyzed using polarization contract microscopy on an X-cut 600 nm thin film LNOI with an LN substrate. Figure redawn from: (a) ref.64, AIP Publishing; (b) ref.ref.67, Optical Society of America.
Schematic of (a) single crystal and single domain Czochralski growth technique by applying electric field redrawn from ref.3, and (b) off-centered Czochralski growth technique for PPLN.
(a) Evaporation of metallic titanium and spin coating of photoresist, (b) patterning and development of resist, (c) wet etching of titanium, (d) removal of photoresist, (e) titanium indiffusion by heating in a furnace and domain inversion, and (f) etched-surface micrograph of inverted domains. Figure reproduced with permission from ref.72, AIP Publishing.
Illustration of the six stages of domain kinetics during electric field periodic poling. (a) Domain nucleation at the electrode edges. (b) Domain tip propagation toward the opposite face of the crystal. (c) Termination of the domain tips at the opposite side of the crystal. (d) Rapid coalescence under the electrodes. (e) Lateral domain growth. (f) Stabilization of the inverted domains. Illustration redrawn from ref.89.
(a–d) Schematic illustration of the evolution of inverted domain using a single long poling pulse. (e–h) Schematic illustration of the evolution of inverted domains using multi-pulse waveforms with short pulse durations. (i) Schematic of cross section of the device obtained after ion milling to visualize the periodically poled region. (j) Top-view micrograph of the cross section of a poled device after 10 min 48% HF etch at room temperature. The dashed line corresponds to the cross section in which the bright part is the poled area. (k) SEM image of inverted domain. (l) Schematic illustration of poling process in X-cut LNOI. (m) Schematic illustration of poling process in Z-cut LNOI. Figure reproduced with permission from (a–k) ref 92, Optical Society of America.
Schematic illustration of the AFM-tip domain writing process for (a) bulk LN; (c) helium implanted bulk LN; and (e) thin-film LNOI. (b) Electrostatic force microscopy image of inverted domains in Bulk LN. (d) PFM image of inverted domains in He-implanted bulk LN. (f) PFM image of inverted domains in thin-film LNOI. Figure reproduced with permission from: (b) ref.98, (d) ref.100, AIP Publishing; ref.102, Optical Society of America.
Schematic illustration of (a) electron beam and (c) ion beam poling process, and (b, d) PFM image of inverted domain108,120. Figure reproduced with permission from: (b) ref.108, AIP Publishing; (d) ref.120, Taylor & Francis Ltd.
(a) Schematic of a light-assisted poling setup, showing the focusing of the illuminating laser beam on the +Z face of a LN crystal held between liquid electrodes (W) using fused silica (FS) plates, replotted from ref.131 . The white light (WL) is used only for visualization of the poling process via the crossed polarizer and CCD camera. (P = crossed polarizers; L = lens; F = filter to block the laser beam; M = dielectric mirror; HV = high voltage; O = O-ring). (b) SEM image of inverted domains. Figure reproduced with permission from (b) ref.130, Taylor & Francis Ltd.
Illustration of the poling inhibition process. The focused UV light is strongly absorbed at the crystal surface, generating a local heat profile (a), which causes Li diffusion into the colder adjacent crystal (b). The coercive depends on the Li concentration (c). When a poling step is applied (d), the domains prefer to nucleate at the Li enriched region next to the UV-irradiated area (e). The Li deficient region on the other hand is poling inhibited, resulting in a surface domain when the poling step is completed (f). SEM image of poling inhibited domain cross-section after HF-etching (g). Figure reprinted with the permission from (g) ref.135, AIP Publishing.
Illustration of the laser direct writing process on the +Z face (a–c), −Z face (d–f), and X and Y cut crystal (g–i). Domain inversion occurs when the thermoelectric field is higher than the coercive field of the Lithium Niobate (LN) crystal. PFM images of inverted domains on the Z face. In the PFM image −Z domains appear black and +Z domains appear white (j) and Y-cut134, where the direction of irradiation is in chronology (1 to 4) (k). Figure reproduced with permission from: (j) ref.137, Optical Society of America; (k) ref.134, AIP Publishing.
Illustration of the fabrication steps for visible light irradiation of a Cr pattern: (a) Cr pattern on the surface of a LN crystal, (b) generation of the surface domains by laser light irradiation, and (c) Cr pattern removal by Cr etchant, and (d–f) SEM images of domain patterns with period of 300nm. Figure reproduced with permission from (d–f) ref.139, AIP Publishing.
(a) Schematic of direct writing ferroelectric domain patterns in a LN crystal using femtosecond infrared pulses, and (b) 3D profile of inverted domains using Cerenkov second-harmonic microscopy. Figure reproduced from (b) ref.59, AIP Publishing.
(a–d) Illustration of energy level diagram describing second harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), and spontaneous parametric down conversion (SPDC). (e) Illustration of the relative phase matching efficiencies for non-phase matching (NPM), quasi-phase matching (QPM) and perfect phase matching (PPM). The sign of the nonlinear susceptibility χ(2) is inverted after each coherence length lc for QPM. Figure redrawn from: (a–d) ref.162, Elsevier; (e) ref.28.
(a) Illustration of the EO modulator with open-circuited-end microstrip electrode and inversion sections. (b) The modulation index as a function of interaction length in the case of velocity matching, quasi-matching and mismatching. Figure redrawn from: (a) ref.180, (b) ref.178, IEEE.
(a) Schematic of an IDT on a LN substrate. (b) Basic structure of ASL based-on ZX-cut PPLN with coplanar electrodes. (c) Schematic of the integrated AO polarization converter based on ASL on Z-cut PPLN with coplanar uniform electrodes. Figure redrawn from: (a) ref.193, (b) ref.194, AIP Publishing; (c) ref.16, Optical Society of America.
(a) Illustration of a surface phonon cavity with a bandgap structure consisting of regular poling with period a, and with an included defect of width D. (b) Microscope image of the fabricated surface phonon cavity and the IDTs used to generate the SAW. The poled bandgap region is indicated by the larger white dashed rectangle and the region with the defect is indicated by the smaller dark dashed rectangle. (c) Schematic of the surface phonon-polariton phononic crystal formed from domain-inverted hexagonal inclusions. (d) An optical micrograph of the back side of the substrate after HF etching, with a scanning electron microscope image inset showing the hexagonal domain-inverted inclusion. Figure reproduced with permission from: (a, b) ref.199, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (c, d) ref.15, American Physical Society.
(a) SEM image (tilted at 45°) of large aspect ratio surface structures in LN produced by extended etching of a domain pattern for tens of hours. The long sections of the slabs are aligned along the y-axis of the crystal thus producing X-face sidewall surfaces which etch much slower than −Z face. (b) SEM 45˚ angle view image of a fabricated nanopillar phononic crystals in LN. (c) SEM images of the micro-structured LN crystal surface (45° tilted) after deep etching of a 2D lattice of inverted ferroelectric domains. (d) shows the micro-structured LN crystal after thermal treatment. Figure reproduced with permission from: (a) ref.125, John Wiley and Sons; (b) ref. 201, American Physical Society; (c, d) ref.202, Optical Society of America.