Citation: | Zheng CL, Ni PN, Xie YY et al. On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces. Opto-Electron Adv 8, 240159 (2025). doi: 10.29026/oea.2025.240159 |
[1] | Agrawal GP, Dutta NK. Semiconductor Lasers 2nd ed (Springer, New York, 2013). |
[2] | Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[3] | Aieta F, Kats MA, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494 |
[4] | Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017). doi: 10.1364/OPTICA.4.000139 |
[5] | Zhang YB, Liu H, Cheng H et al. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electronic Adv 3, 200002 (2020). doi: 10.29026/oea.2020.200002 |
[6] | Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1 |
[7] | Liu WW, Ma DN, Li ZC et al. Aberration-corrected three-dimensional positioning with a single-shot metalens array. Optica 7, 1706–1713 (2020). doi: 10.1364/OPTICA.406039 |
[8] | Dou KH, Xie X, Pu MB et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020). |
[9] | Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 78, 024401 (2015). doi: 10.1088/0034-4885/78/2/024401 |
[10] | Ren HR, Briere G, Fang XY et al. Metasurface orbital angular momentum holography. Nat Commun 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1 |
[11] | Zhao H, Wang XK, Liu ST et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band. Opto-Electron Adv 6, 220012 (2023). doi: 10.29026/oea.2023.220012 |
[12] | Yang X, Wu B, Chen PP et al. Diamond based optical metasurfaces for broadband wavefront shaping in harsh environment. Laser Photonics Rev 18, 2400007 (2024). doi: 10.1002/lpor.202400007 |
[13] | Xie X, Pu MB, Jin JJ et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902 |
[14] | Pu MB, Li X, Ma XL et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[15] | Guo YH, Pu MB, Zhang F et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photonics Insights 1, R03 (2022). doi: 10.3788/PI.2022.R03 |
[16] | Song QH, Odeh M, Zúñiga-Pérez J et al. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021). doi: 10.1126/science.abj3179 |
[17] | Blanchard R, Mansuripur TS, Gökden B et al. High-power low-divergence tapered quantum cascade lasers with plasmonic collimators. Appl Phys Lett 102, 191114 (2013). doi: 10.1063/1.4806985 |
[18] | Tetienne JP, Blanchard R, Yu N et al. Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators. New J Phys 13, 053057 (2011). doi: 10.1088/1367-2630/13/5/053057 |
[19] | Xie YY, Ni PN, Wang QH et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat Nanotechnol 15, 125–130 (2020). doi: 10.1038/s41565-019-0611-y |
[20] | Ni PN, Fu P, Chen PP et al. Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces. Nat Commun 13, 7795 (2022). doi: 10.1038/s41467-022-34977-0 |
[21] | Yu NF, Fan J, Wang QJ et al. Small-divergence semiconductor lasers by plasmonic collimation. Nat Photonics 2, 564–570 (2008). doi: 10.1038/nphoton.2008.152 |
[22] | Liang GZ, Dupont E, Fathololoumi S et al. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers. Sci Rep 4, 7083 (2014). doi: 10.1038/srep07083 |
[23] | Yu NF, Wang QJ, Pflügl C et al. Semiconductor lasers with integrated plasmonic polarizers. Appl Phys Lett 94, 151101 (2009). doi: 10.1063/1.3093476 |
[24] | Wang QH, Ni PN, Xie YY et al. On-chip generation of structured light based on metasurface optoelectronic integration. Laser Photonics Rev 15, 2000385 (2021). doi: 10.1002/lpor.202000385 |
[25] | Fu P, Ni PN, Wang QH et al. Multichannel generations of orbital angular momentum modes with on-demand characteristics on a chip. Adv Opt Mater 9, 2101308 (2021). doi: 10.1002/adom.202101308 |
[26] | Fu P, Ni PN, Wu B et al. Metasurface enabled on-chip generation and manipulation of vector beams from vertical cavity surface-emitting lasers. Adv Mat 35, 2204286 (2023). doi: 10.1002/adma.202204286 |
[27] | Juodėnas M, Strandberg E, Grabowski A et al. High-angle deflection of metagrating-integrated laser emission for high-contrast microscopy. Light Sci Appl 12, 251 (2023). doi: 10.1038/s41377-023-01286-0 |
[28] | Wen DD, Meng JJ, Cadusch JJ et al. VCSELs with on-facet metasurfaces for polarization state generation and detection. Adv Opt Mater 9, 2001780 (2021). doi: 10.1002/adom.202001780 |
[29] | Huang MCY, Zhou Y, Chang-Hasnain CJ. A nanoelectromechanical tunable laser. Nat Photonics 2, 180–184 (2008). doi: 10.1038/nphoton.2008.3 |
[30] | Qiao PF, Li K, Cook KT et al. MEMS-tunable VCSELs using 2D high-contrast gratings. Opt Lett 42, 823–826 (2017). doi: 10.1364/OL.42.000823 |
[31] | Rao Y, Yang WJ, Chase C et al. Long-wavelength VCSEL using high-contrast grating. IEEE J Sel Top Quantum Electron 19, 1701311 (2013). doi: 10.1109/JSTQE.2013.2246780 |
[32] | Li K, Rao Y, Chase C et al. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica 5, 10–13 (2018). doi: 10.1364/OPTICA.5.000010 |
[33] | Wang M, Xu FY, Lin Y et al. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode. Nanoscale 9, 9104–9111 (2017). doi: 10.1039/C7NR00539C |
[34] | Park Y, Kim J, Cho KS et al. Metasurface electrode light emitting diodes with planar light control. Sci Rep 7, 14753 (2017). doi: 10.1038/s41598-017-15254-3 |
[35] | Khaidarov E, Liu ZT, Paniagua-Domínguez R et al. Control of LED emission with functional dielectric metasurfaces. Laser Photonics Rev 14, 1900235 (2020). doi: 10.1002/lpor.201900235 |
[36] | Li KX, Zhang XY, Ni PN et al. Directional emissions from perovskite nanocrystals thin film enabled by metasurface integration through one step spin-coating process. Nano Res 16, 7646–7653 (2023). doi: 10.1007/s12274-023-5439-y |
[37] | Liu S, Vaskin A, Addamane S et al. Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation. Nano Lett 18, 6906–6914 (2018). doi: 10.1021/acs.nanolett.8b02808 |
[38] | Iyer PP, DeCrescent RA, Mohtashami Y et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat Photonics 14, 543–548 (2020). doi: 10.1038/s41566-020-0641-x |
[39] | Koepfli SM, Baumann M, Koyaz Y et al. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science 380, 1169–1174 (2023). doi: 10.1126/science.adg8017 |
[40] | Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1, 2876–2890 (2006). doi: 10.1038/nprot.2006.202 |
[41] | Togan E, Chu Y, Trifonov AS et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010). doi: 10.1038/nature09256 |
[42] | Neshev DN, Miroshnichenko AE. Enabling smart vision with metasurfaces. Nat Photonics 17, 26–35 (2023). |
[43] | Flöry N, Ma P, Salamin Y et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat Nanotechnol 15, 118–124 (2020). doi: 10.1038/s41565-019-0602-z |
[44] | Ni ZY, Ma LL, Du SC et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano 11, 9854–9862 (2017). doi: 10.1021/acsnano.7b03569 |
[45] | Echtermeyer TJ, Britnell L, Jasnos PK et al. Strong plasmonic enhancement of photovoltage in graphene. Nat Commun 2, 458 (2011). doi: 10.1038/ncomms1464 |
[46] | Ni PN, De Luna Bugallo A, Yang X et al. Hybrid MoS2-gap-mode metasurface photodetectors. J Phys D: Appl Phys 52, 374001 (2019). doi: 10.1088/1361-6463/ab2aba |
[47] | Fang JR, Wang D, DeVault CT et al. Enhanced graphene photodetector with fractal metasurface. Nano Lett 17, 57–62 (2017). doi: 10.1021/acs.nanolett.6b03202 |
[48] | Lin KT, Chen HL, Lai YS et al. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nat Commun 5, 3288 (2014). doi: 10.1038/ncomms4288 |
[49] | Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14, 3510–3514 (2014). doi: 10.1021/nl501090w |
[50] | Zhou ZX, Ye MJ, Yu MW et al. Germanium metasurfaces with lattice kerker effect in near-infrared photodetectors. ACS Nano 16, 5994–6001 (2022). doi: 10.1021/acsnano.1c11326 |
[51] | Li W, Coppens ZJ, Besteiro LV et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun 6, 8379 (2015). doi: 10.1038/ncomms9379 |
[52] | Panchenko E, Cadusch JJ, James TD et al. Plasmonic metasurface-enabled differential photodetectors for broadband optical polarization characterization. ACS Photonics 3, 1833–1839 (2016). doi: 10.1021/acsphotonics.6b00342 |
[53] | Li LF, Wang JZ, Kang L et al. Monolithic full-stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene–silicon photodetector. ACS Nano 14, 16634–16642 (2020). doi: 10.1021/acsnano.0c00724 |
[54] | Wilson NC, Shin E, Bangle RE et al. Ultrathin pyroelectric photodetector with integrated polarization-sensing metasurface. Nano Lett 23, 8547–8552 (2023). doi: 10.1021/acs.nanolett.3c02341 |
[55] | Zuo JW, Bai J, Choi S et al. Chip-integrated metasurface full-Stokes polarimetric imaging sensor. Light Sci Appl 12, 218 (2023). doi: 10.1038/s41377-023-01260-w |
[56] | Zaidi A, Rubin NA, Meretska ML et al. Metasurface-enabled single-shot and complete Mueller matrix imaging. Nat Photonics 18, 704–712 (2024). doi: 10.1038/s41566-024-01426-x |
[57] | Yang ZY, Wang ZK, Wang YX et al. Generalized hartmann-shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat Commun 9, 4607 (2018). doi: 10.1038/s41467-018-07056-6 |
[58] | Wen DD, Yue FY, Kumar S et al. Metasurface for characterization of the polarization state of light. Opt Express 23, 10272–10281 (2015). doi: 10.1364/OE.23.010272 |
[59] | Zhang YX, Pu MB, Jin JJ et al. Crosstalk-free achromatic full stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058 |
[60] | Zheng CL, Li H, Liu JY et al. Full-stokes metasurface polarimetry requiring only a single measurement. Photonics Res 12, 514–521 (2024). doi: 10.1364/PRJ.512204 |
[61] | Arbabi E, Kamali SM, Arbabi A et al. Full-stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics 5, 3132–3140 (2018). doi: 10.1021/acsphotonics.8b00362 |
[62] | Zheng CL, Liu JY, Li H et al. Terahertz metasurface polarization detection employing vortex pattern recognition. Photonics Res 11, 2256–2263 (2023). doi: 10.1364/PRJ.506746 |
[63] | Zhang C, Hu JP, Dong YG et al. High efficiency all-dielectric pixelated metasurface for near-infrared full-stokes polarization detection. Photonics Res 9, 583–589 (2021). doi: 10.1364/PRJ.415342 |
[64] | Li H, Zheng CL, Duan SX et al. Polarization detection of terahertz waves using all-silicon metasurfaces with tightly focusing behavior. Laser Photonics Rev 17, 2300428 (2023). doi: 10.1002/lpor.202300428 |
[65] | Chen C, Xiao XJ, Ye X et al. Neural network assisted high-spatial-resolution polarimetry with non-interleaved chiral metasurfaces. Light Sci Appl 12, 288 (2023). doi: 10.1038/s41377-023-01337-6 |
[66] | Liu Y, Cheng R, Liao L et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat Commun 2, 579 (2011). doi: 10.1038/ncomms1589 |
[67] | Meng JJ, Cadusch JJ, Crozier KB. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm. Nano Lett 20, 320–328 (2020). doi: 10.1021/acs.nanolett.9b03862 |
[68] | Wang RX, Ansari MA, Ahmed H et al. Compact multi-foci metalens spectrometer. Light Sci Appl 12, 103 (2023). doi: 10.1038/s41377-023-01148-9 |
[69] | Cai GY, Li YH, Zhang Y et al. Compact angle-resolved metasurface spectrometer. Nat Mater 23, 71–78 (2024). doi: 10.1038/s41563-023-01710-1 |
[70] | Wen S, Xue XY, Wang S et al. Metasurface array for single-shot spectroscopic ellipsometry. Light Sci Appl 13, 88 (2024). doi: 10.1038/s41377-024-01396-3 |
[71] | Genevet P, Yu NF, Aieta F et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 100, 013101 (2012). doi: 10.1063/1.3673334 |
[72] | Devlin RC, Ambrosio A, Rubin NA et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017). doi: 10.1126/science.aao5392 |
[73] | Zang XF, Zhu YM, Mao CX et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv Opt Mater 7, 1801328 (2019). doi: 10.1002/adom.201801328 |
[74] | Jiang ZH, Kang L, Yue TW et al. A single noninterleaved metasurface for high-capacity and flexible mode multiplexing of higher-order poincaré sphere beams. Adv Mat 32, 1903983 (2020). doi: 10.1002/adma.201903983 |
[75] | Zheng CL, Wang GC, Li J et al. All-dielectric metasurface for manipulating the superpositions of orbital angular momentum via spin-decoupling. Adv Opt Mater 9, 2002007 (2021). doi: 10.1002/adom.202002007 |
[76] | Li H, Duan SX, Zheng CL et al. Longitudinal manipulation of scalar to vector vortex beams evolution empowered by all-silicon metasurfaces. Adv Opt Mater 11, 2301368 (2023). doi: 10.1002/adom.202301368 |
[77] | Genevet P, Lin J, Kats MA et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat Commun 3, 1278 (2012). doi: 10.1038/ncomms2293 |
[78] | Chen J, Chen X, Li T et al. On-chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev 12, 1700331 (2018). doi: 10.1002/lpor.201700331 |
[79] | Feng F, Si GY, Min CJ et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci Appl 9, 95 (2020). doi: 10.1038/s41377-020-0330-z |
[80] | Ji ZR, Liu WJ, Krylyuk S et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020). doi: 10.1126/science.aba9192 |
[81] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[82] | Li XY, Chen C, Guo YH et al. Monolithic spiral metalens for ultrahigh-capacity and single-shot sorting of full angular momentum state. Adv Funct Mater 34, 2311286 (2024). doi: 10.1002/adfm.202311286 |
[83] | Zhang RZ, Guo YH, Li XY et al. Angular superoscillatory metalens empowers single-shot measurement of OAM modes with finer intervals. Adv Opt Mater 12, 2300009 (2024). doi: 10.1002/adom.202300009 |
[84] | Wang F, Shen YR. General properties of local plasmons in metal nanostructures. Phys Rev Lett 97, 206806 (2006). doi: 10.1103/PhysRevLett.97.206806 |
[85] | Mousavi SH, Kholmanov I, Alici KB et al. Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett 13, 1111–1117 (2013). doi: 10.1021/nl304476b |
[86] | Dabidian N, Kholmanov I, Khanikaev AB et al. Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces. ACS Photonics 2, 216–227 (2015). doi: 10.1021/ph5003279 |
[87] | Shi SF, Zeng B, Han HL et al. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. Nano Lett 15, 372–377 (2015). doi: 10.1021/nl503670d |
[88] | Zeng BB, Huang ZQ, Singh A et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci Appl 7, 51 (2018). doi: 10.1038/s41377-018-0055-4 |
[89] | Yao Y, Shankar R, Kats MA et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 14, 6526–6532 (2014). doi: 10.1021/nl503104n |
[90] | Tasolamprou AC, Koulouklidis AD, Daskalaki C et al. Experimental demonstration of ultrafast THz modulation in a graphene-based thin film absorber through negative photoinduced conductivity. ACS Photonics 6, 720–727 (2019). doi: 10.1021/acsphotonics.8b01595 |
[91] | Nie AQ, He XY, Cao WH. Carbon-based ultrabroadband tunable terahertz metasurface absorber. Adv Photonics Nexus 3, 016007 (2024). |
[92] | Yan SQ, Zuo Y, Xiao SS et al. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron Adv 5, 210159 (2022). doi: 10.29026/oea.2022.210159 |
[93] | Cheng H, Chen SQ, Yu P et al. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces. Adv Opt Mater 3, 1744–1749 (2015). doi: 10.1002/adom.201500285 |
[94] | Li ZB, Yao K, Xia FN et al. Graphene plasmonic metasurfaces to steer infrared light. Sci Rep 5, 12423 (2015). doi: 10.1038/srep12423 |
[95] | Kim TT, Kim H, Kenney M et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces. Adv Opt Mater 6, 1700507 (2018). doi: 10.1002/adom.201700507 |
[96] | Smirnova DA, Miroshnichenko AE, Kivshar YS et al. Tunable nonlinear graphene metasurfaces. Phys Rev B 92, 161406 (2015). doi: 10.1103/PhysRevB.92.161406 |
[97] | Ren Q, You JW, Panoiu NC. Large enhancement of the effective second-order nonlinearity in graphene metasurfaces. Phys Rev B 99, 205404 (2019). doi: 10.1103/PhysRevB.99.205404 |
[98] | Yao Y, Kats MA, Genevet P et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13, 1257–1264 (2013). doi: 10.1021/nl3047943 |
[99] | Song LZ, Squires A, Van Der Laan T et al. THz graphene-integrated metasurface for electrically reconfigurable polarization conversion. Nanophotonics 13, 2349–2359 (2024). doi: 10.1515/nanoph-2023-0916 |
[100] | Miao ZQ, Wu Q, Li X et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 5, 041027 (2015). |
[101] | Lin HT, Chang CY, Cheng PJ et al. Circular dichroism control of tungsten diselenide (WSe2) atomic layers with plasmonic metamolecules. ACS Appl Mater Interfaces 10, 15996–16004 (2018). doi: 10.1021/acsami.8b01472 |
[102] | Ni PN, De Luna Bugallo A, Arellano Arreola VM et al. Gate-tunable emission of exciton–plasmon polaritons in hybrid MoS2-gap-mode metasurfaces. ACS Photonics 6, 1594–1601 (2019). doi: 10.1021/acsphotonics.9b00433 |
[103] | Cihan AF, Curto AG, Raza S et al. Silicon mie resonators for highly directional light emission from monolayer MoS2. Nat Photonics 12, 284–290 (2018). doi: 10.1038/s41566-018-0155-y |
[104] | Chen HT, Nanz S, Abass A et al. Enhanced directional emission from monolayer WSe2 integrated onto a multiresonant silicon-based photonic structure. ACS Photonics 4, 3031–3038 (2017). doi: 10.1021/acsphotonics.7b00550 |
[105] | Bucher T, Vaskin A, Mupparapu R et al. Tailoring photoluminescence from MoS2 monolayers by mie-resonant metasurfaces. ACS Photonics 6, 1002–1009 (2019). doi: 10.1021/acsphotonics.8b01771 |
[106] | Yi F, Ren ML, Reed JC et al. Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett 16, 1631–1636 (2016). doi: 10.1021/acs.nanolett.5b04448 |
[107] | Chen HT, Corboliou V, Solntsev AS et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci Appl 6, e17060 (2017). doi: 10.1038/lsa.2017.60 |
[108] | Shi JW, Liang WY, Raja SS et al. Plasmonic enhancement and manipulation of optical nonlinearity in monolayer tungsten disulfide. Laser Photonics Rev 12, 1800188 (2018). doi: 10.1002/lpor.201800188 |
[109] | Bernhardt N, Koshelev K, White SJU et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett 20, 5309–5314 (2020). doi: 10.1021/acs.nanolett.0c01603 |
[110] | Spreyer F, Zhao RZ, Huang LL et al. Second harmonic imaging of plasmonic pancharatnam-berry phase metasurfaces coupled to monolayers of WS2. Nanophotonics 9, 351–360 (2020). doi: 10.1515/nanoph-2019-0378 |
[111] | Hong XM, Hu GW, Zhao WC et al. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides. Research 2020, 9085782 (2020). |
[112] | Folland TG, Fali A, White ST et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat Commun 9, 4371 (2018). doi: 10.1038/s41467-018-06858-y |
[113] | Buhara E, Ghobadi A, Ozbay E. Multi-spectral infrared camouflage through excitation of plasmon-phonon polaritons in a visible-transparent hBN-ITO nanoantenna emitter. Opt Lett 46, 4996–4999 (2021). doi: 10.1364/OL.437933 |
[114] | Huang X, Cai YQ, Feng XW et al. Black phosphorus carbide as a tunable anisotropic plasmonic metasurface. ACS Photonics 5, 3116–3123 (2018). doi: 10.1021/acsphotonics.8b00353 |
[115] | Lien MR, Wang N, Wu JB et al. Resonant grating-enhanced black phosphorus mid-wave infrared photodetector. Nano Lett 22, 8704–8710 (2022). doi: 10.1021/acs.nanolett.2c03469 |
[116] | Yadav SNS, Chen PL, Liu CH et al. Plasmonic metasurface integrated black phosphorus-based mid-infrared photodetector with high responsivity and speed. Adv Mater Interfaces 10, 2202403 (2023). doi: 10.1002/admi.202202403 |
[117] | Lien MR, Wang N, Wenger T et al. An all-silicon metalens integrated with a mid-wave infrared black phosphorus photodiode. Adv Opt Mater 12, 2301952 (2024). doi: 10.1002/adom.202301952 |
[118] | Yang F, Shalaginov MY, Lin HI et al. Wide field-of-view metalens: a tutorial. Adv Photonics 5, 033001 (2023). |
[119] | Li Y, Huang XJ, Liu SX et al. Metasurfaces for near-eye display applications. Opto-Electron Sci 2, 230025 (2023). doi: 10.29026/oes.2023.230025 |
[120] | Fu R, Chen KX, Li ZL et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011 |
[121] | Cheng XY, Li CX, Fang B et al. Metasurface-based wireless communication technology and its applications. J Appl Phys 135, 120702 (2024). doi: 10.1063/5.0198211 |
[122] | Krasikov S, Tranter A, Bogdanov A et al. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147 |
[123] | Wang N, Yan W, Qu YR et al. Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX 2, 22 (2021). doi: 10.1186/s43074-021-00044-y |
[124] | Ji WY, Chang J, Xu HX et al. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light Sci Appl 12, 169 (2023). doi: 10.1038/s41377-023-01218-y |
[125] | Ma W, Liu ZC, Kudyshev ZA et al. Deep learning for the design of photonic structures. Nat Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y |
[126] | Li ZY, Pestourie R, Lin Z et al. Empowering metasurfaces with inverse design: principles and applications. ACS Photonics 9, 2178–2192 (2022). doi: 10.1021/acsphotonics.1c01850 |
[127] | Yang WH, Zhou JX, Tsai DP et al. Advanced manufacturing of dielectric meta-devices. Photonics Insights 3, R04 (2024). doi: 10.3788/PI.2024.R04 |
[128] | Leng BR, Zhang Y, Tsai DP et al. Meta-device: advanced manufacturing. Light Adv Manuf 5, 5 (2024). doi: 10.37188/lam.2024.001 |
[129] | Li NX, Xu ZJ, Dong Y et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics 9, 3071–3087 (2020). doi: 10.1515/nanoph-2020-0063 |
[130] | Mikheeva E, Kyrou C, Bentata F et al. Space and time modulations of light with metasurfaces: recent progress and future prospects. ACS Photonics 9, 1458–1482 (2022). doi: 10.1021/acsphotonics.1c01833 |
[131] | Yang JY, Gurung S, Bej S et al. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep Prog Phys 85, 036101 (2022). doi: 10.1088/1361-6633/ac2aaf |
Integration of metasurface with edge emitting laser. (a) Scanning electron microscope (SEM) image the mid infrared QCL patterned with the slit-grating groves. (b) Its measured two-dimensional (2D) far-field intensity distribution. (c) The experimental and calculated results of the intensity profiles along the vertical line indicated by the central arrow in b. (d) SEM image of a THz QCL integrated with metasurface for collimated emission, the inset shows the schematic of the distributed Bragg reflector (DBR) structure. (e) The schematic and SEM image (f) of a QCL integrated with a plasmonic polarizer on its facet. (g) The measured emission power as a function of the linear polarization direction angle, confirming the generation of a 45° linearly polarized light.21-23 Figure reproduced with permission from: (a–c) ref.21, Springer Nature; (d) ref.22, Springer Nature; (e–g) ref.23, AIP Publishing.
Integrating metasurface at the back side of surface VCSEL. (a) Schematic of the metasurface integrated VCSEL, where the metasurface was directly fabricated on the substrate of a back-side emitting VCSEL. (b) The measured laser intensity distribution along its propagation direction with and without metasurface integration, which shows that the VCSEL has been well collimated by the integrated metasurface. (c) The measured holographic images produced by the metasurface integrated VCSELs at different injection currents. (d) The optical image and the schematic of the VCSEL for the generation of multi-channel OAM beams with spatial varying topological charges. (e) The schematic of the VCSEL integrated with metasurface for off-axis emissions at high angles that can be used for high-contrast DF and TIR microscopy.19,24,25,27 Figure reproduced with permission from: (a, b) ref.19, Springer Nature; (c) ref.24, (d) ref.25, John Wiley and Sons; (e) ref.27, Springer Nature.
Integrating metasurface at the front side of surface VCSEL. (a) Schematic of the VCSEL integrated with metasurface at its front emitting side. (b) The simulated conversion efficiency of silicon nanopillar based meta-atom as a function of its width. (c) The setups to measure the angular distribution of the emission power (left) and the polarization state. (d) Schematic of the high-contrast grating (HCG)-VCSEL in which the top-surface beam was manipulated by the HCG designs. (e) The HCG-VCSEL arrays that emit single-mode laser with various far-field patterns.28,32 Figure reproduced with permission from: (a–c) ref.John Wiley and Sons28; (d, e) ref.32, Optica Publishing Group.
Integration metasurface with semiconductor LEDs. (a) Schematic of the QDs LED with metasurface-integrated electrode. (b) The emission direction of the metasurface integrated LED can be changed by changing the direction of the polarizer. (c) Integration of dielectric metasurface with resonant cavity LED (RCLED) for beam deflection. (d) Comparison of the emissions patterns from the uncovered LED, the RCLED, and the RCLED integrated with metesurface. (e) Integration metasurface with perovskite emitter for collimated emission. (f) The light emission intensity distribution of the emitter with and without metasurface as a functional of the propagation direction. (g) Comparison of the photoluminescence (PL) spectra of the sample with and without metasurface at Z=1.3 mm, showing that sample S3 integrate with metasurfacce has the best collimation performance34−36. Figure reproduced with permission from: (a, b) ref.34, Springer Nature; (c, d) ref.35, John Wiley and Sons; (e, g) ref.36, Springer Nature
Directly fabricating metasurface into the LED layer. (a) SEM image of a symmetry-broken metasurface fabricated from III−V semiconductor QDs layer. (b) Measured optical reflectance and photoluminescence spectra for the symmetric metasurface sample, which shows the intensity enhancement for the symmetric design. (c–e) Measured back-focal plane images of emission from the symmetry-broken sample, showing the capability of reshaping the emission patterns. (f) Schematic and SEM images of the InGaN LEDs patterned into nanopillar arrays. (g) p-polarized PL as a function of normalized in-plane momentum for the eight different metasurfaces.37,38 Figure reproduced with permission from: (a–e) ref.37, American Chemical Society; (f, g) ref.38, Springer Nature.
Metasurface-enhanced photoresponse. (a) The schematic of hybrid MoS2 gap plasmon metasurface photodetectors. (b) SEM of fractal metasurface graphene photodetector, and measured enhancement of photovoltage generation and simulated absorption spectrum associated to the fractal metasurface. (c) Experimentally measured and simulated absorption spectra of the broadband metamaterial perfect absorbers detector. (d) Measured responsivity of the Ge nanoantenna arrays and the plane Ge film at different wavelengths46,47,49,50. Figure reproduced with permission from: (a) ref.46, IOP Publishing; (b) ref.47, (c) ref.49, (d) ref.50, American Chemical Society.
Metasurface-enabled polarimetry. (a) Schematic of the CP light detector consisting of a chiral metamaterial integrated with a semiconductor. (b) Schematic diagram of the plasmonic polarimeter. (c) Schematic to show the polarization of the refracted light after a polarized light beam passing through the metasurface. (d) Scheme of the generalized Hartmann–Shack array. (e) The schematic of the broadband achromatic imaging polarimeter. (f) Schematic of the multi-focus metalens for polarization detection. (g) Schematic illustration of the non-interleaved chiral metasurface for polarimetry.51,53,57−60,65. Figure reproduced with permission from: (a) ref.51, Springer Nature; (b) ref.53, American Chemical Society; (c) ref.58, Optica Publishing Group; (d) ref.57, Springer Nature; (f) ref.60, Chinese Laser Press; (g) ref.65, Springer Nature.
Metasurface-enabled spectrum detection. (a) Bright field optical microscope image of the silicon nanowire array photodetector, and reconstruction results for narrowband spectra. (b) A schematic diagram of the metasurface spectrometer based on wavelength dependent multi-foci metalens. (c) Photograph of the metasurface array-based spectroscopic ellipsometer67,68,70. Figure reproduced with permission from: (a) ref.67, American Chemical Society; (b) ref.68, Springer Nature; (c) ref.70, Springer Nature.
Metasurface-enabled OAM detection. (a) Numerical simulations of the generated SPP intensity distribution at normal incidence with a Gaussian beam or vortex beams of different topological charges. (b) Schematics of the on-chip OAM detection process. (c) Schematic of the plasmonic spin-Hall nanograting and calculated vertical displacement between the original and scattered beam spots on the output coupling grating. (d) Schematic of the photocurrent measurement based on WTe2 photodetector77−80. Figure reproduced with permission from: (a) ref.77, Springer Nature; (b) ref.78, John Wiley and Sons; (c) ref.79, Springer Nature; (d) ref.80, AAAS.
Graphene-integrated metasurface for modulation of the optical response. (a) Raman map of the graphene transferred onto a Fano-resonant metasurface, and the simulated reflectivity spectrum from the metasurface without and with graphene. (b) The schematic of a Fano-resonant metasurface integrated with graphene. Spectral shifting is achieved by back-gating of the graphene. (c) Schematic of the field-effect transistor structure, and the measured drain-source current across the graphene at different drain-source biases. (d) Schematic representation of the experiment setup for measurement as well as the hybrid device configuration, and terahertz power transmission modulation as a function of graphene conductivity85−88. Figure reproduced with permission from: (a) ref. 85, (b) ref.86, American chemical Society; (c) ref.88, Springer Nature; (d) ref.87, American Chemical Society.
Graphene-integrated metasurface for dynamically tunable absorption. (a) Schematic of the optical modulator based on a tunable metasurface absorber, and the reflection spectra of metasurface absorbers for different gate voltages. (b) Schematic representation of the graphene absorber structure, and absorption spectra when the pump is on or off. The inset presents optical pump induced terahertz relative reflectivity change. (c) Fabricated graphene metasurfaces for electrically tunable anomalous refraction.89,90,95. Figure reproduced with permission from: (a) ref.89, American Chemical Society; (b) ref.90, under a Creative Commons Attribution 4.0 International License; (c) ref.95, John Wiley and Sons.
TMDs-integrated metasurfaces for manipulating PL. (a) The circular dichroism spectra of extinction of the achiral and chiral metamolecules arrays. (b) The SEM image of the fabricated hybrid MoS2 gap-mode metasurface and PL spectra under different applied voltages. (c) Spatial PL mappings of 1L-MoS2 on silicon nanocylinder metasurfaces for different samples of varying diameters101, 102, 105. Figure reproduced with permission from: (a) ref.101, (b) ref.102, (c) ref.105, American chemical Society.
TMDs-integrated metasurfaces for nonlinear photonics. (a) Schematic diagram of the TMDs–plasmonic hybrid metasurface. (b) Optical microscopy images of the Si film and metasurface squares after the transfer of monolayer WS2 flakes, and PL spectra of the WS2 flakes. (c) Schematic illustration of the hybrid metasurface consisting of plasmonic Au nanorods and monolayer WS2. (d) Schematic illustration of holographic imaging of the SHG beam108-111. Figure reproduced with permission from: (a) ref.108, John Wiley and Sons; (b) ref.109, American Chemical Society. (c) ref.110, (d) ref.111, under a Creative Commons Attribution International License.
Schematic of refractive planar optics and reconfigurable resonators using hBN. (a) A tunable polariton metasurface of hBN and VO2. (b) A simulation of a refractive polariton lens. Figure reproduced with permission from ref.112, Springer Nature.
BP-integrated metasurfaces. (a) Gate-induced modulation of transmission through 80 nm wide BP carbide nanoribbon. (b) Polarization-resolved photodetector responsivity. (c) Schematic of the vertically stacked photodetector, and photocurrent with applied bias voltage at different illumination powers. (d) Conceptual diagram of a metalens-integrated BP photodiode114−117. Figure reproduced with permission from: (a) ref.14, (b) ref.115, American Chemical Society; (c) ref.116, (d) ref.117, John Wiley and Sons.