Ding YQ, Huang XJ, Ma YZY et al. High-efficiency RGB achromatic liquid crystal diffractive optical elements. Opto-Electron Adv 8, 240181 (2025). doi: 10.29026/oea.2025.240181
Citation: Ding YQ, Huang XJ, Ma YZY et al. High-efficiency RGB achromatic liquid crystal diffractive optical elements. Opto-Electron Adv 8, 240181 (2025). doi: 10.29026/oea.2025.240181

Article Open Access

High-efficiency RGB achromatic liquid crystal diffractive optical elements

More Information
  • Liquid crystal Pacharatnam-Berry phase optical elements (PBOEs) have found promising applications in augmented reality and virtual reality because of their slim formfactor, lightweight, and high optical efficiency. However, chromatic aberration remains a serious longstanding problem for diffractive optics, hindering their broader adoption. To overcome the chromatic aberrations for red, green and blue (RGB) light sources, in this paper, we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk, which plays a vital role to eliminate the chromatic aberration. The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses (PBLs) aligns well with our simulation results. Furthermore, in a feasibility demonstration experiment using a laser projector, our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL. Additionally, polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios. This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes. Overall, our approach enables high optical efficiency, low fabrication complexity, and high degree of design freedom to accommodate any liquid crystal material and RGB light sources, holding immense potential for widespread applications of achromatic PBOEs.
  • 加载中
  • [1] Xiong JH, Hsiang EL, He ZQ et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [2] Kress BC. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (Bellingham: SPIE, 2020).

    Google Scholar

    [3] Ding YQ, Yang Q, Li YNQ et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023). doi: 10.1186/s43593-023-00057-z

    CrossRef Google Scholar

    [4] Yang ZY, Luo ZY, Ding YQ et al. Advances and challenges in microdisplays and imaging optics for virtual reality and mixed reality. Device 2, 100398 (2024). doi: 10.1016/j.device.2024.100398

    CrossRef Google Scholar

    [5] Li Y, Huang X, Liu SX et al. Metasurfaces for near-eye display applications. Opto-Electron Sci 2, 230025 (2023). doi: 10.29026/oes.2023.230025

    CrossRef Google Scholar

    [6] Chen P, Wei BY, Hu W et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv Mater 32, 1903665 (2020). doi: 10.1002/adma.201903665

    CrossRef Google Scholar

    [7] Yin K, Hsiang EL, Zou JY et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sci Appl 11, 161 (2022). doi: 10.1038/s41377-022-00851-3

    CrossRef Google Scholar

    [8] Zhan T, Zou JY, Xiong JH et al. Practical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lenses. Adv Opt Mater 8, 1901360 (2020). doi: 10.1002/adom.201901360

    CrossRef Google Scholar

    [9] Wang P, Mohammad N, Menon R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci Rep 6, 21545 (2016). doi: 10.1038/srep21545

    CrossRef Google Scholar

    [10] Evdokimova VV, Podlipnov VV, Ivliev NA et al. Hybrid refractive-diffractive lens with reduced chromatic and geometric aberrations and learned image reconstruction. Sensors 23, 415 (2023).

    Google Scholar

    [11] Mo ZC, Zhao YN, Wang JG et al. Intensity-tunable achromatic cascade liquid crystal Pancharatnam-Berry lens. Commun Phys 7, 113 (2024). doi: 10.1038/s42005-024-01601-0

    CrossRef Google Scholar

    [12] Millán MS, Otón J, Pérez-Cabré E. Dynamic compensation of chromatic aberration in a programmable diffractive lens. Opt Express 14, 9103–9112 (2006). doi: 10.1364/OE.14.009103

    CrossRef Google Scholar

    [13] Brown DC. Decentering distortion of lenses. Photogramm Eng 32, 444–462 (1996).

    Google Scholar

    [14] Lu L, Lam WST, McEldowney SC et al. Apochromatic pancharatnam berry phase (PBP) liquid crystal structures for head-mounted displays. US10705401B1 (2020-07-07).

    Google Scholar

    [15] Li LS, Shi SJ, Kim J et al. Color-selective geometric-phase lenses for focusing and imaging based on liquid crystal polymer films. Opt Express 30, 2487–2502 (2022). doi: 10.1364/OE.444578

    CrossRef Google Scholar

    [16] Zhang DW, Xu CT, Chen QM et al. Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration. PhotoniX 5, 17 (2024). doi: 10.1186/s43074-024-00132-9

    CrossRef Google Scholar

    [17] Luo ZY, Li YNQ, Semmen J et al. Achromatic diffractive liquid-crystal optics for virtual reality displays. Light Sci Appl 12, 230 (2023). doi: 10.1038/s41377-023-01254-8

    CrossRef Google Scholar

    [18] Huang YG, Lu L, Diorio N et al. 60–3: Invited Paper: liquid crystal optics for AR/VR/MR near eye displays. SID Symp Dig Tech Papers 54, 857–860 (2023). doi: 10.1002/sdtp.16699

    CrossRef Google Scholar

    [19] Moon S, Lee CK, Nam SW et al. Augmented reality near-eye display using Pancharatnam-Berry phase lenses. Sci Rep 9, 6616 (2019). doi: 10.1038/s41598-019-42979-0

    CrossRef Google Scholar

    [20] Wu ST. Birefringence dispersions of liquid crystals. Phys Rev A 33, 1270–1274 (1986). doi: 10.1103/PhysRevA.33.1270

    CrossRef Google Scholar

    [21] Evans JW. Solc birefringent filter. J Opt Soc Am 48, 142–145 (1958). doi: 10.1364/JOSA.48.000142

    CrossRef Google Scholar

    [22] Li LS, Shi SJ, Escuti MJ. Improved saturation and wide-viewing angle color filters based on multi-twist retarders. Opt Express 29, 4124–4138 (2021). doi: 10.1364/OE.416961

    CrossRef Google Scholar

    [23] Oh C, Escuti MJ. Achromatic diffraction from polarization gratings with high efficiency. Opt Lett 33, 2287–2289 (2008). doi: 10.1364/OL.33.002287

    CrossRef Google Scholar

    [24] Momosaki R, Ashikawa K, Sakamoto M et al. Incident angle dependence-reduced polarization grating performance by using optically biaxial polymer liquid crystal. Opt Lett 44, 5929–5932 (2019). doi: 10.1364/OL.44.005929

    CrossRef Google Scholar

    [25] Zou JY, Zhan T, Xiong JH et al. Broadband wide-view Pancharatnam–Berry phase deflector. Opt Express 28, 4921–4927 (2020). doi: 10.1364/OE.385540

    CrossRef Google Scholar

    [26] Chen W, Yu Y, Mu QQ et al. Super-broadband geometric phase devices based on circular polarization converter with mirror symmetry. Appl Phys Lett 119, 101103 (2021). doi: 10.1063/5.0060647

    CrossRef Google Scholar

    [27] Komanduri RK, Lawler KF, Escuti MJ. Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers. Opt Express 21, 404–420 (2013). doi: 10.1364/OE.21.000404

    CrossRef Google Scholar

    [28] Gao K, McGinty C, Payson H et al. High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design. Opt Express 25, 6283–6293 (2017). doi: 10.1364/OE.25.006283

    CrossRef Google Scholar

    [29] Pancharatnam S. Generalized theory of interference, and its applications. Proc Indian Acad Sci A 44, 247–262 (1956).

    Google Scholar

    [30] Berry MV. Quantal phase factors accompanying adiabatic changes. Proc Roy Soc A: Math Phys Sci 392, 45–57 (1984).

    Google Scholar

    [31] Xiong JH, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x

    CrossRef Google Scholar

    [32] Kim J, Li YM, Miskiewicz MN et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica 2, 958–964 (2015). doi: 10.1364/OPTICA.2.000958

    CrossRef Google Scholar

    [33] Xiang X, Escuti MJ. Numerical modeling of polarization gratings by rigorous coupled wave analysis. Proc SPIE 9769, 976918 (2016).

    Google Scholar

    [34] Ding YQ, Li YNQ, Yang Q et al. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays. J Soc Inf Disp 31, 380–386 (2023). doi: 10.1002/jsid.1206

    CrossRef Google Scholar

    [35] Wei R, Liu HT, Weng YS et al. Realizing the imaging simulation of reflective polarization volume gratings. Opt Express 30, 6355–6364 (2022). doi: 10.1364/OE.450142

    CrossRef Google Scholar

    [36] Xi FL, Bos P. Intuitive understanding of the connection between Pancharatnam–Berry optical beam deflectors and polarization volume holograms. Appl Opt 62, 1845–1852 (2023). doi: 10.1364/AO.478269

    CrossRef Google Scholar

    [37] Gao K, Cheng HH, Bhowmik AK et al. Thin-film Pancharatnam lens with low f-number and high quality. Opt Express 23, 26086–26094 (2015). doi: 10.1364/OE.23.026086

    CrossRef Google Scholar

    [38] Yang X, Lin Y, Wu TZ et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123

    CrossRef Google Scholar

    [39] Xiong JH, Zhong HZ, Cheng DW, et al. Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing. PhotoniX 4, 35 (2023). doi: 10.1186/s43074-023-00111-6

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint