Citation: | Ding YQ, Huang XJ, Ma YZY et al. High-efficiency RGB achromatic liquid crystal diffractive optical elements. Opto-Electron Adv 8, 240181 (2025). doi: 10.29026/oea.2025.240181 |
[1] | Xiong JH, Hsiang EL, He ZQ et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8 |
[2] | Kress BC. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (Bellingham: SPIE, 2020). |
[3] | Ding YQ, Yang Q, Li YNQ et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023). doi: 10.1186/s43593-023-00057-z |
[4] | Yang ZY, Luo ZY, Ding YQ et al. Advances and challenges in microdisplays and imaging optics for virtual reality and mixed reality. Device 2, 100398 (2024). doi: 10.1016/j.device.2024.100398 |
[5] | Li Y, Huang X, Liu SX et al. Metasurfaces for near-eye display applications. Opto-Electron Sci 2, 230025 (2023). doi: 10.29026/oes.2023.230025 |
[6] | Chen P, Wei BY, Hu W et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv Mater 32, 1903665 (2020). doi: 10.1002/adma.201903665 |
[7] | Yin K, Hsiang EL, Zou JY et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sci Appl 11, 161 (2022). doi: 10.1038/s41377-022-00851-3 |
[8] | Zhan T, Zou JY, Xiong JH et al. Practical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lenses. Adv Opt Mater 8, 1901360 (2020). doi: 10.1002/adom.201901360 |
[9] | Wang P, Mohammad N, Menon R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci Rep 6, 21545 (2016). doi: 10.1038/srep21545 |
[10] | Evdokimova VV, Podlipnov VV, Ivliev NA et al. Hybrid refractive-diffractive lens with reduced chromatic and geometric aberrations and learned image reconstruction. Sensors 23, 415 (2023). |
[11] | Mo ZC, Zhao YN, Wang JG et al. Intensity-tunable achromatic cascade liquid crystal Pancharatnam-Berry lens. Commun Phys 7, 113 (2024). doi: 10.1038/s42005-024-01601-0 |
[12] | Millán MS, Otón J, Pérez-Cabré E. Dynamic compensation of chromatic aberration in a programmable diffractive lens. Opt Express 14, 9103–9112 (2006). doi: 10.1364/OE.14.009103 |
[13] | Brown DC. Decentering distortion of lenses. Photogramm Eng 32, 444–462 (1996). |
[14] | Lu L, Lam WST, McEldowney SC et al. Apochromatic pancharatnam berry phase (PBP) liquid crystal structures for head-mounted displays. US10705401B1 (2020-07-07). |
[15] | Li LS, Shi SJ, Kim J et al. Color-selective geometric-phase lenses for focusing and imaging based on liquid crystal polymer films. Opt Express 30, 2487–2502 (2022). doi: 10.1364/OE.444578 |
[16] | Zhang DW, Xu CT, Chen QM et al. Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration. PhotoniX 5, 17 (2024). doi: 10.1186/s43074-024-00132-9 |
[17] | Luo ZY, Li YNQ, Semmen J et al. Achromatic diffractive liquid-crystal optics for virtual reality displays. Light Sci Appl 12, 230 (2023). doi: 10.1038/s41377-023-01254-8 |
[18] | Huang YG, Lu L, Diorio N et al. 60–3: Invited Paper: liquid crystal optics for AR/VR/MR near eye displays. SID Symp Dig Tech Papers 54, 857–860 (2023). doi: 10.1002/sdtp.16699 |
[19] | Moon S, Lee CK, Nam SW et al. Augmented reality near-eye display using Pancharatnam-Berry phase lenses. Sci Rep 9, 6616 (2019). doi: 10.1038/s41598-019-42979-0 |
[20] | Wu ST. Birefringence dispersions of liquid crystals. Phys Rev A 33, 1270–1274 (1986). doi: 10.1103/PhysRevA.33.1270 |
[21] | Evans JW. Solc birefringent filter. J Opt Soc Am 48, 142–145 (1958). doi: 10.1364/JOSA.48.000142 |
[22] | Li LS, Shi SJ, Escuti MJ. Improved saturation and wide-viewing angle color filters based on multi-twist retarders. Opt Express 29, 4124–4138 (2021). doi: 10.1364/OE.416961 |
[23] | Oh C, Escuti MJ. Achromatic diffraction from polarization gratings with high efficiency. Opt Lett 33, 2287–2289 (2008). doi: 10.1364/OL.33.002287 |
[24] | Momosaki R, Ashikawa K, Sakamoto M et al. Incident angle dependence-reduced polarization grating performance by using optically biaxial polymer liquid crystal. Opt Lett 44, 5929–5932 (2019). doi: 10.1364/OL.44.005929 |
[25] | Zou JY, Zhan T, Xiong JH et al. Broadband wide-view Pancharatnam–Berry phase deflector. Opt Express 28, 4921–4927 (2020). doi: 10.1364/OE.385540 |
[26] | Chen W, Yu Y, Mu QQ et al. Super-broadband geometric phase devices based on circular polarization converter with mirror symmetry. Appl Phys Lett 119, 101103 (2021). doi: 10.1063/5.0060647 |
[27] | Komanduri RK, Lawler KF, Escuti MJ. Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers. Opt Express 21, 404–420 (2013). doi: 10.1364/OE.21.000404 |
[28] | Gao K, McGinty C, Payson H et al. High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design. Opt Express 25, 6283–6293 (2017). doi: 10.1364/OE.25.006283 |
[29] | Pancharatnam S. Generalized theory of interference, and its applications. Proc Indian Acad Sci A 44, 247–262 (1956). |
[30] | Berry MV. Quantal phase factors accompanying adiabatic changes. Proc Roy Soc A: Math Phys Sci 392, 45–57 (1984). |
[31] | Xiong JH, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x |
[32] | Kim J, Li YM, Miskiewicz MN et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica 2, 958–964 (2015). doi: 10.1364/OPTICA.2.000958 |
[33] | Xiang X, Escuti MJ. Numerical modeling of polarization gratings by rigorous coupled wave analysis. Proc SPIE 9769, 976918 (2016). |
[34] | Ding YQ, Li YNQ, Yang Q et al. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays. J Soc Inf Disp 31, 380–386 (2023). doi: 10.1002/jsid.1206 |
[35] | Wei R, Liu HT, Weng YS et al. Realizing the imaging simulation of reflective polarization volume gratings. Opt Express 30, 6355–6364 (2022). doi: 10.1364/OE.450142 |
[36] | Xi FL, Bos P. Intuitive understanding of the connection between Pancharatnam–Berry optical beam deflectors and polarization volume holograms. Appl Opt 62, 1845–1852 (2023). doi: 10.1364/AO.478269 |
[37] | Gao K, Cheng HH, Bhowmik AK et al. Thin-film Pancharatnam lens with low f-number and high quality. Opt Express 23, 26086–26094 (2015). doi: 10.1364/OE.23.026086 |
[38] | Yang X, Lin Y, Wu TZ et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123 |
[39] | Xiong JH, Zhong HZ, Cheng DW, et al. Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing. PhotoniX 4, 35 (2023). doi: 10.1186/s43074-023-00111-6 |
Working principles of PBOEs. (a) Planar LC structure of a general PBOE. (b) Chromatic aberration in a broadband PBL.
Working principles of the proposed achromatic PBL systems. Optical response of the incident RGB lights to (a) a red PBL, (b) a green PBL, (c) a blue PBL, and (d) a stacked RGB achromatic PBL. (e) LC structure for a multi-twist PBOE.
Spectral response of designed narrowband PBLs. Simulation and experimental spectrum of (a) red PBL, (b) green PBL, and (c) blue PBL.
Experimental methods of PBOEs. (a) MZI for recording the phase profile. (b) Fabrication process of PBOEs. (c) Fabricated narrowband RGB PBLs samples. The diameter of each RGB sample is about 21.5 mm. (d) RGB PBLs on a common substrate with buffer layers. (e) Setup for characterizing the spectral response of PBOEs. (f) Measured spectral response of the first-layer LC in the red PBL, which consists of 5 layers in total.
Achromatic imaging experiments with a laser projector. (a) Optical setup for the imaging process with a laser projector. Image on the projection screen with (b) a broadband PBL, (c) a red PBL, (d) a green PBL, (e) a blue PBL, and (f) the stacked achromatic PBLs.
Spectral response of the designed narrowband PBLs with high contrast ratio. Spectra of (a) the red PBL, (b) the green PBL, and (c) the blue PBL with RCWA simulations. Simulated angular response of (d) the red PBL, (e) the green PBL, and (f) the blue PBL. The employed RGB wavelengths are R=633 nm, G=527 nm, and B=464.5 nm.
Polarization raytracing of an achromatic PBD using three narrowband PBDs with high contrast ratios. (a) Spectrum of an RGB laser projector. (b) Image in an achromatic PBD system with the laser projector. (c) Image with a broadband PBD system using a laser projector. (d) Spectrum of the RGB LED light source. (e) Image with a nearly achromatic PBD system using the LED light source. (f) Image with a broadband PBD system using the LED light source. (g) Spectrum of the RGB QD LEDs. (h) Image with a nearly achromatic PBD system using the RGB QD LEDs. (i) Image with a broadband PBD system using the RGB QD LEDs.