Yang QX, Yu MH, Chen ZX et al. A novel approach towards robust construction of physical colors on lithium niobate crystal. Opto-Electron Adv 8, 240193 (2025). doi: 10.29026/oea.2025.240193
Citation: Yang QX, Yu MH, Chen ZX et al. A novel approach towards robust construction of physical colors on lithium niobate crystal. Opto-Electron Adv 8, 240193 (2025). doi: 10.29026/oea.2025.240193

Article Open Access

A novel approach towards robust construction of physical colors on lithium niobate crystal

More Information
  • Controlling the construction of physical colors on the surfaces of transparent dielectric crystals is crucial for surface coloration and anti-counterfeiting applications. In this study, we present a novel approach to creating stable physical colors on the surface of lithium niobate crystals by combining gold ion implantation with laser direct writing technologies. The interaction between the laser, the implanted gold nanoparticles, and the crystal lattice induces permanent, localized modifications on the crystal surface. By fine-tuning the laser direct writing parameters, we reshaped the gold nanoparticles into spheres of varying sizes on the crystal surface, resulting in the display of red, green, blue, and pale-yellow colors. We investigated the influence of the implanted Au nanoparticles—particularly their localized surface plasmon resonances—on the modifications of the lithium niobate crystal lattice during the laser writing process using confocal Raman spectroscopy and high-resolution transmission electron microscopy. Our findings reveal that the embedded Au nanoparticles play a pivotal role in altering the conventional light-matter interaction between the crystal lattice and the laser, thereby facilitating the generation of surface colors. This work opens new avenues for the development of vibrant surface colors on transparent dielectric crystals.
  • 加载中
  • [1] Liu K, Lin ZY, Han B et al. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators. Opto-Electron Adv 7, 230033 (2024). doi: 10.29026/oea.2024.230033

    CrossRef Google Scholar

    [2] Jia JY, Ban Y, Liu K et al. Reconfigurable full color display using anisotropic black phosphorus. Adv Opt Mater 9, 2100499 (2021). doi: 10.1002/adom.202100499

    CrossRef Google Scholar

    [3] Cao T, Zhang XY, Dong W et al. Tuneable thermal emission using chalcogenide metasurface. Adv Opt Mater 6, 1800169 (2018). doi: 10.1002/adom.201800169

    CrossRef Google Scholar

    [4] Ban Y, Jia JY, Zhan Y et al. A black phosphorus-based Fabry–Pérot cavity and its application for reversible color switching. Adv Photonics Res 3, 2200137 (2022). doi: 10.1002/adpr.202200137

    CrossRef Google Scholar

    [5] Lu TW, Lin Y, Zhang TQ et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications. Opto-Electron Adv 7, 230210 (2024). doi: 10.29026/oea.2024.230210

    CrossRef Google Scholar

    [6] Li ZP, Li SN, Ma T. Using photonic glasses as colored covers for solar energy harvesting. Adv Opt Mater 11, 2202370 (2023). doi: 10.1002/adom.202202370

    CrossRef Google Scholar

    [7] Soman A, Antony A. Colored solar cells with spectrally selective photonic crystal reflectors for application in building integrated photovoltaics. Sol Energy 181, 1–8 (2019). doi: 10.1016/j.solener.2019.01.058

    CrossRef Google Scholar

    [8] Li A, Yang DP, Cao C et al. Mechano-chromic photonic crystals with substrate-independent brilliant colors for visual sensing and anti-counterfeiting applications. Adv Mater Interfaces 9, 2200051 (2022). doi: 10.1002/admi.202200051

    CrossRef Google Scholar

    [9] Sun Y, Le XX, Zhou SY et al. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv Mater 34, 2201262 (2022). doi: 10.1002/adma.202201262

    CrossRef Google Scholar

    [10] Li HT, Zhu MJ, Tian F et al. Polychrome photonic crystal stickers with thermochromic switchable colors for anti-counterfeiting and information encryption. Chem Eng J 426, 130683 (2021). doi: 10.1016/j.cej.2021.130683

    CrossRef Google Scholar

    [11] Dong SN, Zheng QQ, Tang MQ et al. Ionic microgel colloidal crystals: responsive chromism in dual physical and chemical colors for high-end information security and encryption. ACS Appl Mater Interfaces 15, 33985–33997 (2023). doi: 10.1021/acsami.3c03742

    CrossRef Google Scholar

    [12] Sun K, Tan DZ, Fang XY et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307–310 (2022). doi: 10.1126/science.abj2691

    CrossRef Google Scholar

    [13] Geng J, Xu LY, Yan W et al. High-speed laser writing of structural colors for full-color inkless printing. Nat Commun 14, 565 (2023). doi: 10.1038/s41467-023-36275-9

    CrossRef Google Scholar

    [14] Roberts AS, Novikov SM, Yang YQ et al. Laser writing of bright colors on near-percolation plasmonic reflector arrays. ACS Nano 13, 71–77 (2019). doi: 10.1021/acsnano.8b07541

    CrossRef Google Scholar

    [15] Fraggelakis F, Tsibidis GD, Stratakis E. Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics. Opto-Electron Adv 5, 210052 (2022). doi: 10.29026/oea.2022.210052

    CrossRef Google Scholar

    [16] Zhang YC, Jiang QL, Long MQ et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci 1, 220005 (2022). doi: 10.29026/oes.2022.220005

    CrossRef Google Scholar

    [17] Jiang QL, Chen L, Liu JK et al. Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing. Opto-Electron Sci 2, 220002 (2023). doi: 10.29026/oes.2023.220002

    CrossRef Google Scholar

    [18] Guay JM, Calà Lesina A, Côté G et al. Laser-induced plasmonic colours on metals. Nat Commun 8, 16095 (2017). doi: 10.1038/ncomms16095

    CrossRef Google Scholar

    [19] Liu ZM, Vitrant G, Lefkir Y et al. Laser induced mechanisms controlling the size distribution of metallic nanoparticles. Phys Chem Chem Phys 18, 24600–24609 (2016). doi: 10.1039/C6CP03415B

    CrossRef Google Scholar

    [20] Zare I, Yaraki MT, Speranza G et al. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 51, 2601–2680 (2022). doi: 10.1039/D1CS01111A

    CrossRef Google Scholar

    [21] Kim HJ, Hossen MM, Hillier AC et al. Interfacial and bulk assembly of anisotropic gold nanostructures: Implications for photonics and plasmonics. ACS Appl Nano Mater 3, 8216–8223 (2020). doi: 10.1021/acsanm.0c01643

    CrossRef Google Scholar

    [22] Zhou WJ, Shi JZ, Chen RY et al. Aggregation of gold nanoparticles for controlling emission polarization: Implications for applications in photonics. ACS Appl Nano Mater 7, 15025–15034 (2024). doi: 10.1021/acsanm.4c01558

    CrossRef Google Scholar

    [23] Guglielmelli A, Pierini F, Tabiryan N et al. Thermoplasmonics with gold nanoparticles: a new weapon in modern optics and biomedicine. Adv Photonics Res 2, 2000198 (2021). doi: 10.1002/adpr.202000198

    CrossRef Google Scholar

    [24] Yang QX, Li XJ, Liu HL et al. Obvious phase transition status induced by He+-ions implantation in KTN crystal. Acta Mater 221, 117376 (2021). doi: 10.1016/j.actamat.2021.117376

    CrossRef Google Scholar

    [25] Wei X, Liu PD, Ma SJ et al. Improvement on corrosion resistance and biocompability of ZK60 magnesium alloy by carboxyl ion implantation. Corros Sci 173, 108729 (2020). doi: 10.1016/j.corsci.2020.108729

    CrossRef Google Scholar

    [26] Das A, Basak D. Efficacy of ion implantation in zinc oxide for optoelectronic applications: a review. ACS Appl Electron Mater 3, 3693–3714 (2021). doi: 10.1021/acsaelm.1c00393

    CrossRef Google Scholar

    [27] Athanasiou CE, Zhang HL, Ramirez C et al. High toughness carbon-nanotube-reinforced ceramics via ion-beam engineering of interfaces. Carbon 163, 169–177 (2020). doi: 10.1016/j.carbon.2020.02.075

    CrossRef Google Scholar

    [28] Devarani Devi K, Sharma A, Ojha S et al. Effect of isothermal annealing on the bimetallic gold-silver nanoparticles synthesized by sequential implantation in quartz matrices and their surface Plasmon resonance properties. Mater Today Commun 40, 109488 (2024). doi: 10.1016/j.mtcomm.2024.109488

    CrossRef Google Scholar

    [29] Yamada T, Fukuda K, Semboshi S et al. Control of optical absorption of silica glass by Ag ion implantation and subsequent heavy ion irradiation. Nanotechnology 31, 455706 (2020). doi: 10.1088/1361-6528/abaadf

    CrossRef Google Scholar

    [30] Wu B, Zhu H, Zhang B et al. Plasmon guided assembly of nanoparticles in solids. Mater Today Nano 21, 100299 (2023). doi: 10.1016/j.mtnano.2022.100299

    CrossRef Google Scholar

    [31] Zhu H, Chu LR, Liu WJ et al. Ultrafast laser‐induced plasmonic modulation of optical properties of dielectrics at high resolution. Adv Opt Mater 11, 2300929 (2023). doi: 10.1002/adom.202300929

    CrossRef Google Scholar

    [32] Dahan KA, Li Y, Xu J et al. Recent progress of gold nanostructures and their applications. Phys Chem Chem Phys 25, 18545–18576 (2023). doi: 10.1039/D3CP01549A

    CrossRef Google Scholar

    [33] Ionut Bercea A, Champeaux C, Boulle A et al. Adaptive gold/vanadium dioxide periodic arrays for infrared optical modulation. Appl Surf Sci 585, 152592 (2022). doi: 10.1016/j.apsusc.2022.152592

    CrossRef Google Scholar

    [34] Chauhan M, Kumar Singh V. Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Opt Fiber Technol 64, 102580 (2021). doi: 10.1016/j.yofte.2021.102580

    CrossRef Google Scholar

    [35] Chu LR, Zhu H, Sun XL et al. Gold-nanoparticles induced transition in YVO4 crystal: from saturable to reverse saturable absorption. Opt Mater 135, 113342 (2023). doi: 10.1016/j.optmat.2022.113342

    CrossRef Google Scholar

    [36] Li SS, Fang YN, Wang JF. Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures. Opto-Electron Sci 3, 240011 (2024). doi: 10.29026/oes.2024.240011

    CrossRef Google Scholar

    [37] Tan DZ, Zhang B, Qiu JR. Ultrafast laser direct writing in glass: Thermal accumulation engineering and applications. Laser Photonics Rev 15, 2000455 (2021). doi: 10.1002/lpor.202000455

    CrossRef Google Scholar

    [38] Lai SQ, Liu SB, Li ZL et al. Applications of lasers: a promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays. Opto-Electron Sci 2, 230028 (2023). doi: 10.29026/oes.2023.230028

    CrossRef Google Scholar

    [39] Berhe AM, As’ham K, Al-Ani I et al. Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers. Opto-Electron Adv 7, 230181 (2024). doi: 10.29026/oea.2024.230181

    CrossRef Google Scholar

    [40] Chen LW, Hong MH. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron Sci 1, 210007 (2022). doi: 10.29026/oes.2022.210007

    CrossRef Google Scholar

    [41] Chen LW, Jiang XF, Guo ZM et al. Tuning optical nonlinearity of laser-ablation-synthesized silicon nanoparticles via doping concentration. J Nanomater 2014, 652829 (2014). doi: 10.1155/2014/652829

    CrossRef Google Scholar

    [42] Fontana MD, Bourson P. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices. Appl Phys Rev 2, 040602 (2015). doi: 10.1063/1.4934203

    CrossRef Google Scholar

    [43] Zanatta AR. Raman spectroscopy of lithium niobate (LiNbO3) − sample temperature and laser spot size effects. Results Phys 47, 106380 (2023). doi: 10.1016/j.rinp.2023.106380

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint