Citation: | Yang QX, Yu MH, Chen ZX et al. A novel approach towards robust construction of physical colors on lithium niobate crystal. Opto-Electron Adv 8, 240193 (2025). doi: 10.29026/oea.2025.240193 |
[1] | Liu K, Lin ZY, Han B et al. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators. Opto-Electron Adv 7, 230033 (2024). doi: 10.29026/oea.2024.230033 |
[2] | Jia JY, Ban Y, Liu K et al. Reconfigurable full color display using anisotropic black phosphorus. Adv Opt Mater 9, 2100499 (2021). doi: 10.1002/adom.202100499 |
[3] | Cao T, Zhang XY, Dong W et al. Tuneable thermal emission using chalcogenide metasurface. Adv Opt Mater 6, 1800169 (2018). doi: 10.1002/adom.201800169 |
[4] | Ban Y, Jia JY, Zhan Y et al. A black phosphorus-based Fabry–Pérot cavity and its application for reversible color switching. Adv Photonics Res 3, 2200137 (2022). doi: 10.1002/adpr.202200137 |
[5] | Lu TW, Lin Y, Zhang TQ et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications. Opto-Electron Adv 7, 230210 (2024). doi: 10.29026/oea.2024.230210 |
[6] | Li ZP, Li SN, Ma T. Using photonic glasses as colored covers for solar energy harvesting. Adv Opt Mater 11, 2202370 (2023). doi: 10.1002/adom.202202370 |
[7] | Soman A, Antony A. Colored solar cells with spectrally selective photonic crystal reflectors for application in building integrated photovoltaics. Sol Energy 181, 1–8 (2019). doi: 10.1016/j.solener.2019.01.058 |
[8] | Li A, Yang DP, Cao C et al. Mechano-chromic photonic crystals with substrate-independent brilliant colors for visual sensing and anti-counterfeiting applications. Adv Mater Interfaces 9, 2200051 (2022). doi: 10.1002/admi.202200051 |
[9] | Sun Y, Le XX, Zhou SY et al. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv Mater 34, 2201262 (2022). doi: 10.1002/adma.202201262 |
[10] | Li HT, Zhu MJ, Tian F et al. Polychrome photonic crystal stickers with thermochromic switchable colors for anti-counterfeiting and information encryption. Chem Eng J 426, 130683 (2021). doi: 10.1016/j.cej.2021.130683 |
[11] | Dong SN, Zheng QQ, Tang MQ et al. Ionic microgel colloidal crystals: responsive chromism in dual physical and chemical colors for high-end information security and encryption. ACS Appl Mater Interfaces 15, 33985–33997 (2023). doi: 10.1021/acsami.3c03742 |
[12] | Sun K, Tan DZ, Fang XY et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307–310 (2022). doi: 10.1126/science.abj2691 |
[13] | Geng J, Xu LY, Yan W et al. High-speed laser writing of structural colors for full-color inkless printing. Nat Commun 14, 565 (2023). doi: 10.1038/s41467-023-36275-9 |
[14] | Roberts AS, Novikov SM, Yang YQ et al. Laser writing of bright colors on near-percolation plasmonic reflector arrays. ACS Nano 13, 71–77 (2019). doi: 10.1021/acsnano.8b07541 |
[15] | Fraggelakis F, Tsibidis GD, Stratakis E. Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics. Opto-Electron Adv 5, 210052 (2022). doi: 10.29026/oea.2022.210052 |
[16] | Zhang YC, Jiang QL, Long MQ et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci 1, 220005 (2022). doi: 10.29026/oes.2022.220005 |
[17] | Jiang QL, Chen L, Liu JK et al. Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing. Opto-Electron Sci 2, 220002 (2023). doi: 10.29026/oes.2023.220002 |
[18] | Guay JM, Calà Lesina A, Côté G et al. Laser-induced plasmonic colours on metals. Nat Commun 8, 16095 (2017). doi: 10.1038/ncomms16095 |
[19] | Liu ZM, Vitrant G, Lefkir Y et al. Laser induced mechanisms controlling the size distribution of metallic nanoparticles. Phys Chem Chem Phys 18, 24600–24609 (2016). doi: 10.1039/C6CP03415B |
[20] | Zare I, Yaraki MT, Speranza G et al. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 51, 2601–2680 (2022). doi: 10.1039/D1CS01111A |
[21] | Kim HJ, Hossen MM, Hillier AC et al. Interfacial and bulk assembly of anisotropic gold nanostructures: Implications for photonics and plasmonics. ACS Appl Nano Mater 3, 8216–8223 (2020). doi: 10.1021/acsanm.0c01643 |
[22] | Zhou WJ, Shi JZ, Chen RY et al. Aggregation of gold nanoparticles for controlling emission polarization: Implications for applications in photonics. ACS Appl Nano Mater 7, 15025–15034 (2024). doi: 10.1021/acsanm.4c01558 |
[23] | Guglielmelli A, Pierini F, Tabiryan N et al. Thermoplasmonics with gold nanoparticles: a new weapon in modern optics and biomedicine. Adv Photonics Res 2, 2000198 (2021). doi: 10.1002/adpr.202000198 |
[24] | Yang QX, Li XJ, Liu HL et al. Obvious phase transition status induced by He+-ions implantation in KTN crystal. Acta Mater 221, 117376 (2021). doi: 10.1016/j.actamat.2021.117376 |
[25] | Wei X, Liu PD, Ma SJ et al. Improvement on corrosion resistance and biocompability of ZK60 magnesium alloy by carboxyl ion implantation. Corros Sci 173, 108729 (2020). doi: 10.1016/j.corsci.2020.108729 |
[26] | Das A, Basak D. Efficacy of ion implantation in zinc oxide for optoelectronic applications: a review. ACS Appl Electron Mater 3, 3693–3714 (2021). doi: 10.1021/acsaelm.1c00393 |
[27] | Athanasiou CE, Zhang HL, Ramirez C et al. High toughness carbon-nanotube-reinforced ceramics via ion-beam engineering of interfaces. Carbon 163, 169–177 (2020). doi: 10.1016/j.carbon.2020.02.075 |
[28] | Devarani Devi K, Sharma A, Ojha S et al. Effect of isothermal annealing on the bimetallic gold-silver nanoparticles synthesized by sequential implantation in quartz matrices and their surface Plasmon resonance properties. Mater Today Commun 40, 109488 (2024). doi: 10.1016/j.mtcomm.2024.109488 |
[29] | Yamada T, Fukuda K, Semboshi S et al. Control of optical absorption of silica glass by Ag ion implantation and subsequent heavy ion irradiation. Nanotechnology 31, 455706 (2020). doi: 10.1088/1361-6528/abaadf |
[30] | Wu B, Zhu H, Zhang B et al. Plasmon guided assembly of nanoparticles in solids. Mater Today Nano 21, 100299 (2023). doi: 10.1016/j.mtnano.2022.100299 |
[31] | Zhu H, Chu LR, Liu WJ et al. Ultrafast laser‐induced plasmonic modulation of optical properties of dielectrics at high resolution. Adv Opt Mater 11, 2300929 (2023). doi: 10.1002/adom.202300929 |
[32] | Dahan KA, Li Y, Xu J et al. Recent progress of gold nanostructures and their applications. Phys Chem Chem Phys 25, 18545–18576 (2023). doi: 10.1039/D3CP01549A |
[33] | Ionut Bercea A, Champeaux C, Boulle A et al. Adaptive gold/vanadium dioxide periodic arrays for infrared optical modulation. Appl Surf Sci 585, 152592 (2022). doi: 10.1016/j.apsusc.2022.152592 |
[34] | Chauhan M, Kumar Singh V. Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Opt Fiber Technol 64, 102580 (2021). doi: 10.1016/j.yofte.2021.102580 |
[35] | Chu LR, Zhu H, Sun XL et al. Gold-nanoparticles induced transition in YVO4 crystal: from saturable to reverse saturable absorption. Opt Mater 135, 113342 (2023). doi: 10.1016/j.optmat.2022.113342 |
[36] | Li SS, Fang YN, Wang JF. Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures. Opto-Electron Sci 3, 240011 (2024). doi: 10.29026/oes.2024.240011 |
[37] | Tan DZ, Zhang B, Qiu JR. Ultrafast laser direct writing in glass: Thermal accumulation engineering and applications. Laser Photonics Rev 15, 2000455 (2021). doi: 10.1002/lpor.202000455 |
[38] | Lai SQ, Liu SB, Li ZL et al. Applications of lasers: a promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays. Opto-Electron Sci 2, 230028 (2023). doi: 10.29026/oes.2023.230028 |
[39] | Berhe AM, As’ham K, Al-Ani I et al. Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers. Opto-Electron Adv 7, 230181 (2024). doi: 10.29026/oea.2024.230181 |
[40] | Chen LW, Hong MH. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron Sci 1, 210007 (2022). doi: 10.29026/oes.2022.210007 |
[41] | Chen LW, Jiang XF, Guo ZM et al. Tuning optical nonlinearity of laser-ablation-synthesized silicon nanoparticles via doping concentration. J Nanomater 2014, 652829 (2014). doi: 10.1155/2014/652829 |
[42] | Fontana MD, Bourson P. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices. Appl Phys Rev 2, 040602 (2015). doi: 10.1063/1.4934203 |
[43] | Zanatta AR. Raman spectroscopy of lithium niobate (LiNbO3) − sample temperature and laser spot size effects. Results Phys 47, 106380 (2023). doi: 10.1016/j.rinp.2023.106380 |
(a) Schematic diagrams of ion implantation and laser-induced nanoparticle assembly. (b) The ion distribution of Au+-ions calculated by SRIM.
The (a) reflection and (b) transmission microscope images of the Au nanoparticles assembly regions with different laser processing energies. (c, d) Corresponding relative microscope spectra. Utilized laser powers for Regions. R, B, G, Y are 17, 29, 53 and 68 mW, respectively.
The reflection microscope images of (a, b) “NKU” and (c) crosshatching patterned Au nanoparticles assembly regions. Utilized laser powers: (a) patterns “N”, “K”, “U” are 17, 53 and 68 mW, respectively; (b) patterns “N”, “K”, “U” are 68, 53 and 17 mW, respectively; (c) horizontal stripes from top to bottom are 6, 12, 15, 19 and 60 mW, respectively; vertical stripes from left to right are 17, 29, 53, 68 and 80 mW.
(a–c) Surface SEM images and (d, e) corresponding cross-sectional HRTEM images of the Au nanoparticles assembly regions. Utilized laser powers: (a, d) 17 mW; (b, e) 29 mW; (c, f) 53 mW, respectively.
(a) Numerical calculations of the relative reflection spectra using the nanoparticle morphology parameters in Table 1. (b) The electric field intensity distribution under LSPR situation (resonance wavelength 573 nm, nanoparticle diameter 3.7 nm, nanoparticle interval 17 nm).
Raman spectroscopy analysis. (a) Raman spectra of the bulk material, ion-implanted surface and laser-processed regions. (b) Two-dimensional Raman mapping images of the pattern in Fig. 3(b) with the imaging channels of E(TO7) peak FWHM and intensity. Utilized laser powers for patterns “N”, “K”, “U” are 68, 53 and 17 mW, respectively. (c–f) E(TO5)-A1(LO2) double-peak Raman fitting curves of the bulk material, ion-implanted surface and laser-processed regions. Utilized laser powers for Regions. B and Y are 29 and 68 mW, respectively. (g) E(TO7) peak FWHM and (h) E(TO5)-A1(LO2) double-peak relative intensity differences of the bulk material, ion-implanted surface and laser-processed regions.