Citation: | Zhang YC, Jiang QL, Long MQ, Han RZ, Cao KQ et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci 1, 220005 (2022). doi: 10.29026/oes.2022.220005 |
[1] | Fork RL, Greene BI, Shank CV. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl Phys Lett 38, 671–672 (1981). doi: 10.1063/1.92500 |
[2] | Chichkov BN, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63, 109–115 (1996). doi: 10.1007/BF01567637 |
[3] | Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 3, e149 (2014). doi: 10.1038/lsa.2014.30 |
[4] | Buividas R, Mikutis M, Juodkazis S. Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog Quant Electron 38, 119–156 (2014). doi: 10.1016/j.pquantelec.2014.03.002 |
[5] | Yang QX, Liu HL, He S, Tian QY, Xu B et al. Circular cladding waveguides in Pr:YAG fabricated by femtosecond laser inscription: Raman, luminescence properties and guiding performance. Opto-Electron Adv 4, 200005 (2021). doi: 10.29026/oea.2021.200005 |
[6] | Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021). |
[7] | Zhang YC, Jiang QL, Cao KQ, Chen TQ, Cheng K et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photonics Res 9, 839–847 (2021). doi: 10.1364/PRJ.418937 |
[8] | Jia TQ, Chen HX, Huang M, Zhao FL, Qiu JR et al. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys Rev B 72, 125429 (2005). doi: 10.1103/PhysRevB.72.125429 |
[9] | Wang JC, Guo CL. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Appl Phys Lett 87, 251914 (2005). doi: 10.1063/1.2146067 |
[10] | Wang L, Chen QD, Cao XW, Buividas R, Wang XW et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light Sci Appl 6, e17112 (2017). doi: 10.1038/lsa.2017.112 |
[11] | Miyaji G, Miyazaki K, Zhang KF, Yoshifuji T, Fujita J. Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water. Opt Express 20, 14848–14856 (2012). doi: 10.1364/OE.20.014848 |
[12] | Xie HB, Zhao B, Cheng JL, Chamoli SK, Zou TT et al. Super-regular femtosecond laser nanolithography based on dual-interface plasmons coupling. Nanophotonics 10, 3831–3842 (2021). doi: 10.1515/nanoph-2021-0329 |
[13] | Gnilitskyi I, Derrien TJY, Levy Y, Bulgakova NM, Mocek T et al. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci Rep 7, 8485 (2017). doi: 10.1038/s41598-017-08788-z |
[14] | Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation. Opto-Electron Sci 1, 210003 (2022). |
[15] | Birnbaum M. Semiconductor surface damage produced by ruby lasers. J Appl Phys 36, 3688–3689 (1965). doi: 10.1063/1.1703071 |
[16] | Sipe JE, Young JF, Preston JS, Van Driel HM. Laser-induced periodic surface structure. I. Theory. Phys Rev B 27, 1141–1154 (1983). doi: 10.1103/PhysRevB.27.1141 |
[17] | Shimotsuma Y, Kazansky PG, Qiu JR, Hirao K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys Rev Lett 91, 247405 (2003). doi: 10.1103/PhysRevLett.91.247405 |
[18] | Bonse J, Munz M, Sturm H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J Appl Phys 97, 013538 (2005). doi: 10.1063/1.1827919 |
[19] | Miyaji G, Miyazaki K. Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses. Appl Phys Lett 89, 191902 (2006). doi: 10.1063/1.2374858 |
[20] | Bhardwaj VR, Simova E, Rajeev PP, Hnatovsky C, Taylor RS et al. Optically produced arrays of planar nanostructures inside fused silica. Phys Rev Lett 96, 057404 (2006). doi: 10.1103/PhysRevLett.96.057404 |
[21] | Huang M, Zhao FL, Cheng Y, Xu NS, Xu ZZ. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009). doi: 10.1021/nn900654v |
[22] | Höhm S, Rosenfeld A, Krüger J, Bonse J. Femtosecond laser-induced periodic surface structures on silica. J Appl Phys 112, 014901 (2012). doi: 10.1063/1.4730902 |
[23] | Bonse J, Krüger J, Höhm S, Rosenfeld A. Femtosecond laser-induced periodic surface structures. J Laser Appl 24, 042006 (2012). doi: 10.2351/1.4712658 |
[24] | Reif J, Varlamova O, Uhlig S, Varlamov S, Bestehorn M. On the physics of self-organized nanostructure formation upon femtosecond laser ablation. Appl Phys A 117, 179–184 (2014). doi: 10.1007/s00339-014-8339-x |
[25] | Cheng K, Liu JK, Cao KQ, Chen L, Zhang YC et al. Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film. Phys Rev B 98, 184106 (2018). doi: 10.1103/PhysRevB.98.184106 |
[26] | Rudenko A, Mauclair C, Garrelie F, Stoian R, Colombier JP. Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves. Nanophotonics 8, 459–465 (2019). doi: 10.1515/nanoph-2018-0206 |
[27] | Lin ZY, Liu HG, Ji LF, Lin WX, Hong MH. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett 20, 4947–4952 (2020). doi: 10.1021/acs.nanolett.0c01013 |
[28] | Tsibidis GD, Fotakis C, Stratakis E. From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys Rev B 92, 041405(R) (2015). |
[29] | Vorobyev AY, Guo CL. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7, 385–407 (2013). doi: 10.1002/lpor.201200017 |
[30] | Fraggelakis F, Mincuzzi G, Lopez J, Manek-Hönninger I, Kling R. Controlling 2D laser nano structuring over large area with double femtosecond pulses. Appl Surf Sci 470, 677–686 (2019). doi: 10.1016/j.apsusc.2018.11.106 |
[31] | Zhang DS, Li XZ, Fu Y, Yao QH, Li ZG et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electron Adv 5, 210066 (2022). |
[32] | Parker AR. 515 million years of structural colour. J Opt A Pure Appl Opt 2, R15–R28 (2000). doi: 10.1088/1464-4258/2/6/201 |
[33] | Wu C, Crouch CH, Zhao L, Carey JE, Younkin R et al. Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett 78, 1850–1852 (2001). doi: 10.1063/1.1358846 |
[34] | Bricchi E, Klappauf BG, Kazansky PG. Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt Lett 29, 119–121 (2004). doi: 10.1364/OL.29.000119 |
[35] | Vorobyev AY, Guo CL. Colorizing metals with femtosecond laser pulses. Appl Phys Lett 92, 041914 (2008). doi: 10.1063/1.2834902 |
[36] | Shimotsuma Y, Sakakura M, Kazansky PG, Beresna M, Qiu JR et al. Ultrafast manipulation of self-assembled form birefringence in glass. Adv Mater 22, 4039–4043 (2010). doi: 10.1002/adma.201000921 |
[37] | Xiong PX, Jia TQ, Jia X, Feng DH, Zhang SA et al. Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams. New J Phys 13, 023044 (2011). doi: 10.1088/1367-2630/13/2/023044 |
[38] | Gu M, Li XP, Cao YY. Optical storage arrays: a perspective for future big data storage. Light Sci Appl 3, e177 (2014). doi: 10.1038/lsa.2014.58 |
[39] | Crouch CH, Carey JE, Shen M, Mazur E, Génin FY. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl Phys A 79, 1635–1641 (2004). doi: 10.1007/s00339-004-2676-0 |
[40] | Solodar A, Cerkauskaite A, Drevinskas R, Kazansky PG, Abdulhalim I. Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes. Appl Phys Lett 113, 081603 (2018). doi: 10.1063/1.5040692 |
[41] | Lopez-Santos C, Puerto D, Siegel J, Macias-Montero M, Florian C et al. Anisotropic resistivity surfaces produced in ITO films by laser-induced nanoscale self-organization. Adv Opt Mater 9, 2001086 (2021). doi: 10.1002/adom.202001086 |
[42] | Garrelie F, Colombier JP, Pigeon F, Tonchev S, Faure N et al. Evidence of surface plasmon resonance in ultrafast laser-induced ripples. Opt Express 19, 9035–9043 (2011). doi: 10.1364/OE.19.009035 |
[43] | Tsibidis GD, Skoulas E, Papadopoulos A, Stratakis E. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers. Phys Rev B 94, 081305(R) (2016). |
[44] | Emmony DC, Howson RP, Willis LJ. Laser mirror damage in germanium at 10.6 μm. Appl Phys Lett 23, 598–600 (1973). doi: 10.1063/1.1654761 |
[45] | Csete M, Marti O, Bor Z. Laser-induced periodic surface structures on different poly-carbonate films. Appl Phys A 73, 521–526 (2001). doi: 10.1007/s003390100973 |
[46] | Austin DR, Kafka KRP, Lai YH, Wang Z, Zhang KK et al. High spatial frequency laser induced periodic surface structure formation in germanium by mid-IR femtosecond pulses. J Appl Phys 120, 143103 (2016). doi: 10.1063/1.4964737 |
[47] | Bonse J, Höhm S, Kirner SV, Rosenfeld A, Krüger J. Laser-induced periodic surface structures-a scientific evergreen. IEEE J Sel Top Quantum Electron 23, 9000615 (2017). |
[48] | Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys 106, 104910 (2009). doi: 10.1063/1.3261734 |
[49] | Zhou K, Jia X, Jia TQ, Cheng K, Cao KQ et al. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging. J Appl Phys 121, 104301 (2017). doi: 10.1063/1.4978375 |
[50] | Gurevich EL, Gurevich SV. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl Surf Sci 302, 118–123 (2014). doi: 10.1016/j.apsusc.2013.10.141 |
[51] | Liu JK, Jia TQ, Zhao HW, Huang YQ. Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water. J Phys D Appl Phys 49, 435105 (2016). doi: 10.1088/0022-3727/49/43/435105 |
[52] | Liu JK, Jia X, Wu WS, Cheng K, Feng DH et al. Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse. Opt Express 26, 6302–6315 (2018). doi: 10.1364/OE.26.006302 |
[53] | Fuentes-Edfuf Y, Sánchez-Gil JA, Florian C, Giannini V, Solis J et al. Surface plasmon polaritons on rough metal surfaces: role in the formation of laser-induced periodic surface structures. ACS Omega 4, 6939–6946 (2019). doi: 10.1021/acsomega.9b00546 |
[54] | Kafka KRP, Austin DR, Li H, Yi AY, Cheng J et al. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove. Opt Express 23, 19432–19441 (2015). doi: 10.1364/OE.23.019432 |
[55] | Jia X, Jia TQ, Peng NN, Feng DH, Zhang SA et al. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging. J Appl Phys 115, 143102 (2014). doi: 10.1063/1.4870445 |
[56] | Cheng K, Cao KQ, Zhang YC, Han RZ, Feng DH et al. Ultrafast dynamics of subwavelength periodic ripples induced by single femtosecond pulse: from noble to common metals. J Phys D Appl Phys 53, 285102 (2020). doi: 10.1088/1361-6463/ab82d9 |
[57] | Cao KQ, Chen L, Wu HC, Liu JK, Cheng K et al. Large-area commercial-grating-quality subwavelength periodic ripples on silicon efficiently fabricated by gentle ablation with femtosecond laser interference via two cylindrical lenses. Opt Laser Technol 131, 106441 (2020). doi: 10.1016/j.optlastec.2020.106441 |
[58] | Derrien TJY, Itina TE, Torres R, Sarnet T, Sentis M. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J Appl Phys 114, 083104 (2013). doi: 10.1063/1.4818433 |
[59] | Tsibidis GD, Barberoglou M, Loukakos PA, Stratakis E, Fotakis C. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Phys Rev B 86, 115316 (2012). doi: 10.1103/PhysRevB.86.115316 |
[60] | Barberoglou M, Tsibidis GD, Gray D, Magoulakis E, Fotakis C et al. The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation. Appl Phys A 113, 273–283 (2013). doi: 10.1007/s00339-013-7893-y |
[61] | Tsibidis GD, Stratakis E, Loukakos PA, Fotakis C. Controlled ultrashort-pulse laser-induced ripple formation on semiconductors. Appl Phys A 114, 57–68 (2014). doi: 10.1007/s00339-013-8113-5 |
[62] | Miyaji G, Hagiya M, Miyazaki K. Excitation of surface plasmon polaritons on silicon with an intense femtosecond laser pulse. Phys Rev B 96, 045122 (2017). doi: 10.1103/PhysRevB.96.045122 |
[63] | Wortmann D, Gottmann J, Brandt N, Horn-Solle H. Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching. Opt Express 16, 1517–1522 (2008). doi: 10.1364/OE.16.001517 |
[64] | Gottmann J, Wortmann D, Hörstmann-Jungemann M. Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching. Appl Surf Sci 255, 5641–5646 (2009). doi: 10.1016/j.apsusc.2008.10.097 |
[65] | Richter S, Miese C, Döring S, Zimmermann F, Withford MJ et al. Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE™. Opt Mater Express 3, 1161–1166 (2013). doi: 10.1364/OME.3.001161 |
[66] | Hnatovsky C, Taylor RS, Rajeev PP, Simova E, Bhardwaj VR et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl Phys Lett 87, 014104 (2005). doi: 10.1063/1.1991991 |
[67] | Corbari C, Champion A, Gecevičius M, Beresna M, Bellouard Y et al. Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass. Opt Express 21, 3946–3958 (2013). doi: 10.1364/OE.21.003946 |
[68] | Taylor RS, Hnatovsky C, Simova E, Rajeev PP, Rayner DM et al. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass. Opt Lett 32, 2888–2890 (2007). doi: 10.1364/OL.32.002888 |
[69] | Juodkazis S, Nishimura K, Okuno H, Tabuchi Y, Matsuo S et al. Three-dimensional laser microfabrication of metals, semiconductors, and dielectrics. Proc SPIE 6732, 67320B (2007). doi: 10.1117/12.751889 |
[70] | Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev 2, 26–46 (2008). doi: 10.1002/lpor.200710031 |
[71] | Liao Y, Pan WJ, Cui Y, Qiao LL, Bellouard Y et al. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Opt Lett 40, 3623–3626 (2015). doi: 10.1364/OL.40.003623 |
[72] | Liao Y, Ni JL, Qiao LL, Huang M, Bellouard Y et al. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica 2, 329–334 (2015). doi: 10.1364/OPTICA.2.000329 |
[73] | Nayak BK, Gupta MC. Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin. Opt Lasers Eng 48, 966–973 (2010). doi: 10.1016/j.optlaseng.2010.05.009 |
[74] | Volkov SN, Kaplan AE, Miyazaki K. Evanescent field at nanocorrugated dielectric surface. Appl Phys Lett 94, 041104 (2009). doi: 10.1063/1.3075055 |
[75] | Dong YY, Molian P. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser. Appl Phys Lett 84, 10–12 (2004). doi: 10.1063/1.1637948 |
[76] | Huang M, Zhao FL, Cheng Y, Xu NS, Xu ZZ. Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond. Phys Rev B 79, 125436 (2009). doi: 10.1103/PhysRevB.79.125436 |
[77] | Jia TQ, Zhao FL, Huang M, Chen HX, Qiu JR et al. Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams. Appl Phys Lett 88, 111117 (2006). doi: 10.1063/1.2186067 |
[78] | Le Harzic R, Dörr D, Sauer D, Stracke F, Zimmermann H. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl Phys Lett 98, 211905 (2011). doi: 10.1063/1.3593493 |
[79] | Hou SS, Huo YY, Xiong PX, Zhang Y, Zhang SA et al. Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses. J Phys D Appl Phys 44, 505401 (2011). doi: 10.1088/0022-3727/44/50/505401 |
[80] | Huang M, Cheng Y, Zhao FL, Xu ZZ. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale. Ann Phys 525, 74–86 (2013). doi: 10.1002/andp.201200136 |
[81] | Wang L, Xu BB, Cao XW, Li QK, Tian WJ et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica 4, 637–642 (2017). doi: 10.1364/OPTICA.4.000637 |
[82] | Miyazaki K, Miyaji G. Nanograting formation through surface plasmon fields induced by femtosecond laser pulses. J Appl Phys 114, 153108 (2013). doi: 10.1063/1.4826078 |
[83] | Makin VS, Makin RS, Vorobyev AY, Guo CL. Dissipative nanostructures and Feigenbaum's universality in the "Metal-high-power ultrashort-pulsed polarized radiation" nonequilibrium nonlinear dynamical system. Tech Phys Lett 34, 387–390 (2008). doi: 10.1134/S1063785008050088 |
[84] | Fuentes-Edfuf Y, Sánchez-Gil JA, Garcia-Pardo M, Serna R, Tsibidis GD et al. Tuning the period of femtosecond laser induced surface structures in steel: from angled incidence to quill writing. Appl Surf Sci 493, 948–955 (2019). doi: 10.1016/j.apsusc.2019.07.106 |
[85] | Zhang H, Colombier JP, Li C, Faure N, Cheng GH et al. Coherence in ultrafast laser-induced periodic surface structures. Phys Rev B 92, 174109 (2015). doi: 10.1103/PhysRevB.92.174109 |
[86] | Rahmani M, Lei DY, Giannini V, Lukiyanchuk B, Ranjbar M et al. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett 12, 2101–2106 (2012). doi: 10.1021/nl3003683 |
[87] | Okamuro K, Hashida M, Miyasaka Y, Ikuta Y, Tokita S et al. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys Rev B 82, 165417 (2010). doi: 10.1103/PhysRevB.82.165417 |
[88] | Jia TQ, Chen HX, Huang M, Zhao FL, Li XX et al. Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals. Phys Rev B 73, 054105 (2006). doi: 10.1103/PhysRevB.73.054105 |
[89] | Zhou K, Jia X, Xi HX, Liu JK, Feng DH et al. Periodic surface structures on Ni-Fe film induced by a single femtosecond laser pulse with diffraction rings. Chin Opt Lett 15, 022201 (2017). doi: 10.3788/COL201715.022201 |
[90] | Hashida M, Miyasaka Y, Ikuta Y, Tokita S, Sakabe S. Crystal structures on a copper thin film with a surface of periodic self-organized nanostructures induced by femtosecond laser pulses. Phys Rev B 83, 235413 (2011). doi: 10.1103/PhysRevB.83.235413 |
[91] | Bashir S, Rafique MS, Nathala CS, Ajami AA, Husinsky W. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol. Phys B 513, 48–57 (2017). doi: 10.1016/j.physb.2017.03.008 |
[92] | Sakabe S, Hashida M, Tokita S, Namba S, Okamuro K. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys Rev B 79, 033409 (2009). |
[93] | Winter J, Rapp S, Schmidt M, Huber HP. Ultrafast laser processing of copper: a comparative study of experimental and simulated transient optical properties. Appl Surf Sci 417, 2–15 (2017). doi: 10.1016/j.apsusc.2017.02.070 |
[94] | Chan WL, Averback RS, Cahill DG. Nonlinear energy absorption of femtosecond laser pulses in noble metals. Appl Phys A 97, 287–294 (2009). doi: 10.1007/s00339-009-5383-z |
[95] | Murphy RD, Torralva B, Adams DP, Yalisove SM. Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate. Appl Phys Lett 102, 211101 (2013). doi: 10.1063/1.4807830 |
[96] | Murphy RD, Torralva B, Adams DP, Yalisove SM. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features. Appl Phys Lett 104, 231117 (2014). doi: 10.1063/1.4882998 |
[97] | Yang M, Wu Q, Chen ZD, Zhang B, Tang BQ et al. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse. Opt Lett 39, 343–346 (2014). doi: 10.1364/OL.39.000343 |
[98] | Das SK, Messaoudi H, Debroy A, McGlynn E, Grunwald R. Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials. Opt Mater Express 3, 1705–1715 (2013). doi: 10.1364/OME.3.001705 |
[99] | Liu JK, Zhao H, Cheng K, Ju JQ, Feng DH et al. Ultrafast dynamics of the thin surface plasma layer and the periodic ripples formation on GaP crystal irradiated by a single femtosecond laser pulse. Opt Express 27, 37859–37876 (2019). doi: 10.1364/OE.27.037859 |
[100] | Murphy RD, Torralva B, Adams DP, Yalisove SM. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si. Appl Phys Lett 103, 141104 (2013). doi: 10.1063/1.4823588 |
[101] | Garcia-Lechuga M, Puerto D, Fuentes-Edfuf Y, Solis J, Siegel J. Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures. ACS Photonics 3, 1961–1967 (2016). doi: 10.1021/acsphotonics.6b00514 |
[102] | Jiang L, Wang AD, Li B, Cui TH, Lu YF. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci Appl 7, 17134 (2018). doi: 10.1038/lsa.2017.134 |
[103] | Guay JM, Lesina AC, Baxter J, Killaire G, Ramunno L et al. Topography tuning for plasmonic color enhancement via picosecond laser bursts. Adv Opt Mater 6, 1800189 (2018). doi: 10.1002/adom.201800189 |
[104] | Giannuzzi G, Gaudiuso C, Di Franco C, Scamarcio G, Lugarà PM et al. Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays. Opt Lasers Eng 114, 15–21 (2019). doi: 10.1016/j.optlaseng.2018.10.006 |
[105] | Han WN, Jiang L, Li XW, Wang QS, Li H et al. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay. Opt Express 22, 15820–15828 (2014). doi: 10.1364/OE.22.015820 |
[106] | Zhao Z, Zhao B, Lei YH, Yang JJ, Guo CL. Laser-induced regular nanostructure chains within microgrooves of Fe-based metallic glass. Appl Surf Sci 529, 147156 (2020). doi: 10.1016/j.apsusc.2020.147156 |
[107] | Shi XS, Jiang L, Li X, Wang SM, Yuan YP et al. Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures. Opt Lett 38, 3743–3746 (2013). doi: 10.1364/OL.38.003743 |
[108] | Hasegawa S, Hayasaki Y. Holographic femtosecond laser manipulation for advanced material processing. Adv Opt Technol 5, 39–54 (2016). doi: 10.5937/savteh1601039M |
[109] | Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase fresnel lenses. Opt Lett 31, 1705–1707 (2006). doi: 10.1364/OL.31.001705 |
[110] | Hasegawa S, Hayasaki Y. Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on a liquid crystal spatial light modulator. Opt Rev 14, 208–213 (2007). doi: 10.1007/s10043-007-0208-9 |
[111] | Li BH, Jiang L, Li XW, Lin ZM, Huang LL et al. Flexible gray-scale surface patterning through spatiotemporal-interference-based femtosecond laser shaping. Adv Opt Mater 6, 1801021 (2018). doi: 10.1002/adom.201801021 |
[112] | Lin YH, Shi H, Jia TQ. Distortion and light intensity correction for spatiotemporal-interference-based spatial shaping. Laser Optoelectron Prog 58, 0314002 (2021). doi: 10.3788/LOP202158.0314002 |
[113] | Shi H, Lin YH, Jia TQ, Cao KQ, Zhang YC et al. Efficient processing of super-hydrophobic biomimetic structures on stainless steel surfaces by spatiotemporal interference of two femtosecond laser beams based on spatial light modulator. Acta Photon Sin 50, 0650110 (2021). |
[114] | Huang J, Jiang L, Li XW, Wei QS, Wang ZP et al. Cylindrically focused nonablative femtosecond laser processing of long-range uniform periodic surface structures with tunable diffraction efficiency. Adv Opt Mater 7, 1900706 (2019). doi: 10.1002/adom.201900706 |
[115] | Zou TT, Zhao B, Xin W, Wang Y, Wang B et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci Appl 9, 69 (2020). doi: 10.1038/s41377-020-0311-2 |
[116] | Dostovalov A, Bronnikov K, Korolkov V, Babin S, Mitsai E et al. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale 12, 13431–13441 (2020). doi: 10.1039/D0NR02182B |
[117] | Cao KQ, Chen L, Cheng K, Sun ZR, Jia TQ. Regular uniform large-area subwavelength nanogratings fabricated by the interference of two femtosecond laser beams via cylindrical lens. Chin Opt Lett 18, 093201 (2020). doi: 10.3788/COL202018.093201 |
[118] | Chen L, Cao KQ, Li YL, Liu JK, Zhang SA et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens. Opto-Electron Adv 4, 200036 (2021). doi: 10.29026/oea.2021.200036 |
[119] | Allegre OJ, Jin Y, Perrie W, Ouyang J, Fearon E et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt Express 21, 21198–21207 (2013). doi: 10.1364/OE.21.021198 |
[120] | Allegre OJ, Perrie W, Edwardson SP, Dearden G, Watkins KG. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses. J Opt 14, 085601 (2012). doi: 10.1088/2040-8978/14/8/085601 |
[121] | Jin Y, Allegre OJ, Perrie W, Abrams K, Ouyang J et al. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt Express 21, 25333–25343 (2013). doi: 10.1364/OE.21.025333 |
[122] | Ouyang J, Perrie W, Allegre OJ, Heil T, Jin Y et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt Express 23, 12562–12572 (2015). doi: 10.1364/OE.23.012562 |
[123] | Beresna M, Gecevičius M, Kazansky PG, Gertus T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett 98, 201101 (2011). doi: 10.1063/1.3590716 |
[124] | Anoop KK, Rubano A, Fittipaldi R, Wang X, Paparo D et al. Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate. Appl Phys Lett 104, 241604 (2014). |
[125] | Hnatovsky C, Shvedov V, Krolikowski W, Rode A. Revealing local field structure of focused ultrashort pulses. Phys Rev Lett 106, 123901 (2011). doi: 10.1103/PhysRevLett.106.123901 |
[126] | Lou K, Qian SX, Wang XL, Li YN, Gu B et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon. Opt Express 20, 120–127 (2012). doi: 10.1364/OE.20.000120 |
[127] | Tsibidis GD, Skoulas E, Stratakis E. Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt Lett 40, 5172–5175 (2015). doi: 10.1364/OL.40.005172 |
[128] | Nivas JJJ, Allahyari E, Cardano F, Rubano A, Fittipaldi R et al. Vector vortex beams generated by q-plates as a versatile route to direct fs laser surface structuring. Appl Surf Sci 471, 1028–1033 (2019). doi: 10.1016/j.apsusc.2018.12.091 |
[129] | Nivas JJJ, He ST, Rubano A, Vecchione A, Paparo D et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci Rep 5, 17929 (2015). doi: 10.1038/srep17929 |
[130] | Jia TQ, Baba M, Suzuki M, Ganeev RA, Kuroda H et al. Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses. Opt Express 16, 1874–1878 (2008). doi: 10.1364/OE.16.001874 |
[131] | Jia X, Jia TQ, Ding LE, Xiong PX, Deng L et al. Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams. Opt Lett 34, 788–790 (2009). doi: 10.1364/OL.34.000788 |
[132] | Peng NN, Huo YY, Zhou K, Jia X, Pan J et al. The development of femtosecond laser-induced periodic nanostructures and their optical properties. Acta Phys Sin 62, 094201 (2013). doi: 10.7498/aps.62.094201 |
[133] | Jia X, Jia TQ, Zhang SA, Sun ZR, Qiu JR et al. Manipulation of cross-linked micro/nanopatterns on ZnO by adjusting the femtosecond-laser polarizations of four-beam interference. Appl Phys A 114, 1333–1338 (2014). doi: 10.1007/s00339-013-7975-x |
[134] | Bonse J, Höhm S, Rosenfeld A, Krüger J. Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti: sapphire femtosecond laser pulses in air. Appl Phys A 110, 547–551 (2013). doi: 10.1007/s00339-012-7140-y |
[135] | Liao Y, Cheng Y, Liu CN, Song JX, He F et al. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab Chip 13, 1626–1631 (2013). doi: 10.1039/c3lc41171k |
[136] | Liu JK, Jia TQ, Zhou K, Feng DH, Zhang SA et al. Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser. Opt Express 22, 32361–32370 (2014). doi: 10.1364/OE.22.032361 |
[137] | Huang M, Xu ZZ. Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons. Laser Photonics Rev 8, 633–652 (2014). doi: 10.1002/lpor.201300212 |
[138] | Miyaji G, Miyazaki K. Fabrication of 50-nm period gratings on GaN in air through plasmonic near-field ablation induced by ultraviolet femtosecond laser pulses. Opt Express 24, 4648–4653 (2016). doi: 10.1364/OE.24.004648 |
[139] | Li ZZ, Wang L, Fan H, Yu YH, Chen QD et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci Appl 9, 41 (2020). doi: 10.1038/s41377-020-0275-2 |
[140] | Dusser B, Sagan Z, Soder H, Faure N, Colombier JP et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18, 2913–2924 (2010). doi: 10.1364/OE.18.002913 |
[141] | Li GQ, Li JW, Yang L, Li XH, Hu YL et al. Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci 276, 203–209 (2013). doi: 10.1016/j.apsusc.2013.03.067 |
[142] | Vorobyev AY, Guo CL. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. J Appl Phys 103, 043513 (2008). doi: 10.1063/1.2842403 |
[143] | Gräf S, Kunz C, Undisz A, Wonneberger R, Rettenmayr M et al. Mechano-responsive colour change of laser-induced periodic surface structures. Appl Surf Sci 471, 645–651 (2019). doi: 10.1016/j.apsusc.2018.12.051 |
[144] | Long JY, Fan PX, Zhong ML, Zhang HJ, Xie YD et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci 311, 461–467 (2014). doi: 10.1016/j.apsusc.2014.05.090 |
[145] | Yao JW, Zhang CY, Liu HY, Dai QF, Wu LJ et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci 258, 7625–7632 (2012). doi: 10.1016/j.apsusc.2012.04.105 |
[146] | Li GQ, Li JW, Hu YL, Zhang CC, Li XH et al. Femtosecond laser color marking stainless steel surface with different wavelengths. Appl Phys A 118, 1189–1196 (2015). doi: 10.1007/s00339-014-8868-3 |
[147] | Liu W, Jiang L, Han WN, Hu J, Li XW et al. Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double-pulse trains. Opt Express 27, 9782–9793 (2019). doi: 10.1364/OE.27.009782 |
[148] | Huang J, Jiang L, Li XW, Wang AD, Wang Z et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification. Nanophotonics 8, 869–878 (2019). doi: 10.1515/nanoph-2019-0056 |
[149] | Zhang CY, Yao JW, Liu HY, Dai QF, Wu LJ et al. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses. Opt Lett 37, 1106–1108 (2012). doi: 10.1364/OL.37.001106 |
[150] | Hwang JS, Park JE, Kim GW, Lee H, Yang MY. Fabrication of printable nanograting using solution-based laser-induced periodic surface structure process. Appl Surf Sci 547, 149178 (2021). doi: 10.1016/j.apsusc.2021.149178 |
[151] | Gnilitskyi I, Gruzdev V, Bulgakova NM, Mocek T, Orazi L. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses. Appl Phys Lett 109, 143101 (2016). doi: 10.1063/1.4963784 |
[152] | Bricchi E, Kazansky PG. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass. Appl Phys Lett 88, 111119 (2006). doi: 10.1063/1.2185587 |
[153] | Lei YH, Sakakura M, Wang L, Yu YH, Wang HJ et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica 8, 1365–1371 (2021). doi: 10.1364/OPTICA.433765 |
[154] | Zhang JY, Gecevičius M, Beresna M, Kazansky PG. Seemingly unlimited lifetime data storage in nanostructured glass. Phys Rev Lett 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901 |
[155] | Wang HJ, Lei YH, Wang L, Sakakura M, Yu YH et al. 100-layer error-free 5D optical data storage by ultrafast laser nanostructuring in glass. Laser Photonics Rev 16, 2100563 (2022). |
[156] | Beresna M, Gecevičius M, Kazansky PG. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt Mater Express 1, 783–795 (2011). doi: 10.1364/OME.1.000783 |
[157] | Drevinskas R, Kazansky PG. High-performance geometric phase elements in silica glass. APL Photonics 2, 066104 (2017). doi: 10.1063/1.4984066 |
[158] | Brasselet E, Royon A, Canioni L. Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass. Appl Phys Lett 100, 181901 (2012). doi: 10.1063/1.4705414 |
[159] | Fernandes LA, Grenier JR, Herman PR, Aitchison JS, Marques PVS. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica. Opt Express 19, 11992–11999 (2011). doi: 10.1364/OE.19.011992 |
[160] | Beresna M, Kazansky PG. Polarization diffraction grating produced by femtosecond laser nanostructuring in glass. Opt Lett 35, 1662–1664 (2010). doi: 10.1364/OL.35.001662 |
[161] | Drevinskas R, Beresna M, Gecevičius M, Khenkin M, Kazanskii AG et al. Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon. Appl Phys Lett 106, 171106 (2015). doi: 10.1063/1.4919538 |
[162] | Drevinskas R, Beresna M, Zhang JY, Kazanskii AG, Kazansky PG. Ultrafast laser-induced metasurfaces for geometric phase manipulation. Adv Opt Mater 5, 1600575 (2017). doi: 10.1002/adom.201600575 |
[163] | Song J, Dai Y, Tao WJ, Gong M, Ma GH et al. Surface birefringence of self-assembly periodic nanostructures induced on 6H-SiC surface by femtosecond laser. Appl Surf Sci 363, 664–669 (2016). doi: 10.1016/j.apsusc.2015.12.096 |
[164] | Cerkauskaite A, Drevinskas R, Solodar A, Abdulhalim I, Kazansky PG. Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring. ACS Photonics 4, 2944–2951 (2017). doi: 10.1021/acsphotonics.7b01082 |
[165] | Zhang FZ, Chen L, Zhang YC, Jiang QL, Feng DH et al. High-performance birefringence of periodic nanostructures in FTO thin film fabricated by IR-UV femtosecond laser. Front Phys 10, 861389 (2022). doi: 10.3389/fphy.2022.861389 |
[166] | Chen L, Cao KQ, Liu JK, Jia TQ, Li YY et al. Surface birefringence of regular periodic surface structures produced on glass coated with an indium tin oxide film using a low-fluence femtosecond laser through a cylindrical lens. Opt Express 28, 30094–30106 (2020). doi: 10.1364/OE.402037 |
[167] | Li H, Zhang CY, Li XF, Xiang J, Tie SL et al. Enhanced upconversion luminescence from ZnO/Zn hybrid nanostructures induced on a Zn foil by femtosecond laser ablation. Opt Express 23, 30118–30126 (2015). doi: 10.1364/OE.23.030118 |
[168] | Vorobyev AY, Guo CL. Femtosecond laser blackening of platinum. J Appl Phys 104, 053516 (2008). doi: 10.1063/1.2975989 |
[169] | Vorobyev AY, Guo CL. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals. Appl Phys A 86, 321–324 (2007). doi: 10.1007/s00339-006-3800-0 |
[170] | Vorobyev AY, Topkov AN, Gurin OV, Svich VA, Guo CL. Enhanced absorption of metals over ultrabroad electromagnetic spectrum. Appl Phys Lett 95, 121106 (2009). doi: 10.1063/1.3227668 |
[171] | Vorobyev AY, Guo CL. Direct creation of black silicon using femtosecond laser pulses. Appl Surf Sci 257, 7291–7294 (2011). doi: 10.1016/j.apsusc.2011.03.106 |
[172] | Yang J, Luo FF, Kao TS, Li X, Ho GW et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci Appl 3, e185 (2014). doi: 10.1038/lsa.2014.66 |
[173] | Wang PQ, Liu Z, Xu KC, Blackwood DJ, Hong MH et al. Periodic upright nanopyramids for light management applications in ultrathin crystalline silicon solar cells. IEEE J Photovolt 7, 493–501 (2017). doi: 10.1109/JPHOTOV.2016.2641298 |
[174] | Zhao QZ, Ciobanu F, Malzer S, Wang LJ. Enhancement of optical absorption and photocurrent of 6H-SiC by laser surface nanostructuring. Appl Phys Lett 91, 121107 (2007). doi: 10.1063/1.2786863 |
[175] | Pan J, Jia TQ, Huo YY, Jia X, Feng DH et al. Great enhancement of near band-edge emission of ZnSe two-dimensional complex nanostructures fabricated by the interference of three femtosecond laser beams. J Appl Phys 114, 093102 (2013). doi: 10.1063/1.4820462 |
[176] | Jia X, Jia TQ, Zhang Y, Xiong PX, Feng DH et al. Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams. Opt Express 18, 14401–14408 (2010). doi: 10.1364/OE.18.014401 |
[177] | Liu P, Wang WJ, Pan AF, Xiang Y, Wang DP. Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser. Opt Laser Technol 106, 259–264 (2018). doi: 10.1016/j.optlastec.2018.04.019 |
[178] | Cubero Á, Martinez E, Angurel LA, De La Fuente GF, Navarro R et al. Surface superconductivity changes of niobium sheets by femtosecond laser-induced periodic nanostructures. Nanomaterials 10, 2525 (2020). doi: 10.3390/nano10122525 |
[179] | Cubero A, Martínez E, Angurel LA, De La Fuente GF, Navarro R et al. Effects of laser-induced periodic surface structures on the superconducting properties of Niobium. Appl Surf Sci 508, 145140 (2020). doi: 10.1016/j.apsusc.2019.145140 |
[180] | Zuo P, Jiang L, Li X, Tian MY, Xu CY et al. Maskless micro/nanopatterning and bipolar electrical rectification of MoS2 flakes through femtosecond laser direct writing. ACS Appl Mater Interfaces 11, 39334–39341 (2019). doi: 10.1021/acsami.9b13059 |
[181] | Nivas JJJ, Valadan M, Salvatore M, Fittipaldi R, Himmerlich M et al. Secondary electron yield reduction by femtosecond pulse laser-induced periodic surface structuring. Surf Interfaces 25, 101179 (2021). doi: 10.1016/j.surfin.2021.101179 |
[182] | Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 20, 4049–4054 (2008). doi: 10.1002/adma.200800651 |
[183] | Parker AR, Lawrence CR. Water capture by a desert beetle. Nature 414, 33–34 (2001). doi: 10.1038/35102108 |
[184] | Chen F, Zhang DS, Yang Q, Yong JL, Du GQ et al. Bioinspired wetting surface via laser microfabrication. ACS Appl Mater Interfaces 5, 6777–6792 (2013). doi: 10.1021/am401677z |
[185] | Yong JL, Yang Q, Chen F, Zhang DS, Farooq U et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J Mater Chem A 2, 5499–5507 (2014). doi: 10.1039/C3TA14711H |
[186] | Zouaghi S, Six T, Bellayer S, Moradi S, Hatzikiriakos SG et al. Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing. ACS Appl Mater Interfaces 9, 26565–26573 (2017). doi: 10.1021/acsami.7b06709 |
[187] | Wu D, Wang JN, Wu SZ, Chen QD, Zhao S et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding. Adv Funct Mater 21, 2927–2932 (2011). doi: 10.1002/adfm.201002733 |
[188] | Yong JL, Chen F, Li MJ, Yang Q, Fang Y et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. J Mater Chem A 5, 25249–25257 (2017). doi: 10.1039/C7TA07528F |
[189] | Yong JL, Chen F, Yang Q, Fang Y, Huo JL et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability. Chem Commun 51, 9813–9816 (2015). doi: 10.1039/C5CC02939B |
[190] | Moradi S, Kamal S, Englezos P, Hatzikiriakos SG. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity. Nanotechnology 24, 415302 (2013). doi: 10.1088/0957-4484/24/41/415302 |
[191] | Lin Y, Han JP, Cai MY, Liu WJ, Luo X et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J Mater Chem A 6, 9049–9056 (2018). doi: 10.1039/C8TA01965G |
[192] | Moradi S, Hadjesfandiari N, Toosi SF, Kizhakkedathu JN, Hatzikiriakos SG. Effect of extreme wettability on platelet adhesion on metallic implants: from superhydrophilicity to superhydrophobicity. ACS Appl Mater Interfaces 8, 17631–17641 (2016). doi: 10.1021/acsami.6b03644 |
[193] | Bonse J, Koter R, Hartelt M, Spaltmann D, Pentzien S et al. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications. Appl Phys A 117, 103–110 (2014). doi: 10.1007/s00339-014-8229-2 |
[194] | Bonse J, Koter R, Hartelt M, Spaltmann D, Pentzien S et al. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel. Appl Surf Sci 336, 21–27 (2015). doi: 10.1016/j.apsusc.2014.08.111 |
[195] | Wang Z, Zhao QZ, Wang CW. Reduction of friction of metals using laser-induced periodic surface nanostructures. Micromachines 6, 1606–1616 (2015). doi: 10.3390/mi6111444 |
[196] | Bonse J, Kirner SV, Koter R, Pentzien S, Spaltmann D et al. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications. Appl Surf Sci 418, 572–579 (2017). doi: 10.1016/j.apsusc.2016.10.132 |
[197] | Wang Z, Zhao QZ. Friction reduction of steel by laser-induced periodic surface nanostructures with atomic layer deposited TiO2 coating. Surf Coat Technol 344, 269–275 (2018). doi: 10.1016/j.surfcoat.2018.03.036 |
[198] | Kunz C, Bonse J, Spaltmann D, Neumann C, Turchanin A et al. Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures. Appl Surf Sci 499, 143917 (2020). doi: 10.1016/j.apsusc.2019.143917 |
[199] | Xing YQ, Wu Z, Yang JJ, Wang XS, Liu L. LIPSS combined with ALD MoS2 nano-coatings for enhancing surface friction and hydrophobic performances. Surf Coat Technol 385, 125396 (2020). doi: 10.1016/j.surfcoat.2020.125396 |
[200] | Lu DL, Liu ZW. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun 3, 1205 (2012). doi: 10.1038/ncomms2176 |
[201] | Hell SW, Sahl SJ, Bates M, Zhuang XW, Heintzmann R et al. The 2015 super-resolution microscopy roadmap. J Phys D Appl Phys 48, 443001 (2015). doi: 10.1088/0022-3727/48/44/443001 |
[202] | Liu YL, Chen YH, Wang F, Cai YJ, Liang CH et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv 4, 210027 (2021). |
[203] | Weiner AM. Ultrafast optical pulse shaping: a tutorial review. Opt Commun 284, 3669–3692 (2011). doi: 10.1016/j.optcom.2011.03.084 |
[204] | Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM et al. Laser phase and frequency stabilization using an optical resonator. Appl Phys B 31, 97–105 (1983). |
Scanning electron microscopy (SEM) images of (a) LSFLs on silicon8, and (b) HSFLs on ZnSe induced by 800 nm femtosecond laser. Figure reproduced with permission from: (a) ref.8, Optica Publishing Group, under the Optica Open Access Publishing Agreement; (b) ref.9, American Physical Society.
(a) The schematic of light irradiated on a rough surface at an incident angle θ, where ki is the wave-vector component parallel to the surface, and l is the thickness of selvedge region. (b) The efficacy factor η as a function of the normalized LIPS wave vector for silica at different excited state. (c) The efficacy factor η along the positive ky-axis for silica at different excitation levels, with circles marking ky-positions where LIPS formation could be expected. Figure reproduced with permission from: (a) ref.16, American Physical Society; (b, c) ref.22, AIP Publishing.
(a) Schematic illustration of SPPs. (b) Dispersion curves of SPPs and light in air. (c) SPP excitation on ZnO surface in the excited state launched by a groove. (d) The SEM image of the nanostructures on the ZnO surface irradiated by 800 nm femtosecond laser, where the LSFLs originated from the nanogroove or the ablation edge, as shown as the red arrows. Figure reproduced with permission from: (b) ref.49, AIP Publishing; (c, d) ref.21, American Chemical Society.
(a) SEM image of HSFLs inside fused silica induced by 800 nm femtosecond laser pulses. (b) Nanoplasma growth into plane governed by local field distribution, where Epol and Eeq are the local fields on the polar axis and in the equatorial plane, respectively4, 20. Figure reproduced with permission from: (a) ref.20, American Physical Society.
OM images of silicon surface irradiated by a single 800 nm femtosecond pulse of 0.18 J/cm2. The double arrows in (a) show the laser polarization direction. Figure reproduced with permission from ref.52, Optica Publishing Group, under the Optica Open Access Publishing Agreement.
Evolution of LSFLs formed on Au film irradiated by a single 800 nm laser pulse with a fluence of 1.96 J/cm2. The laser polarization, E, is perpendicular to the prefabricated nanogroove. Figure reproduced with permission from ref.25, American Physical Society.
LSFL periods as a function of laser fluence F. The black squares and error bars show the experimental data, and the red curve shows the theoretical values. Figure reproduced with permission from ref.25, American Physical Society.
(a–b) SEM pictures of LSFLs induced by the shaped pulse trains with an interval of 16.2 ps. (c) The cross section of LSFLs. (d) The 2D fast Fourier transform of (b). (e) Spectra of the 2D Fourier transform along the x-axis. Figure reproduced with permission from ref.8, Optica Publishing Group, under the Optica Open Access Publishing Agreement.
SEM images of composite LIPSs prepared by three-beam interference. The insets show the polarization combinations of the three laser beams. Figure reproduced with permission from ref.37, under a Creative Commons Attribution 4.0 International License.
(a) SEM images of nanosquares , and (b) the cross section of nanogratings . (c) Curvature and separation control of nanogrooves fabricated by 800 nm femtosecond laser with polarization control. (d) SEM and AFM images of curved single nanogroove on silicon surface induced by 800 nm femtosecond laser with orthogonally polarized dual beams. Figure reproduced with permission from: (a, b) ref.136, under Optica Open Access Publishing Agreement; (c) ref.139, under a Creative Commons Attribution 4.0 International License; (d) ref.27, American Chemical Society.
Structural colors of “Chinese knot” pattern made up of LSFLs fabricated by a shaped pulse of 16.2 ps on Si surface under different diffraction angles. The inset shows an SEM image of regular LSFLs. Figure reproduced with permission from ref.8, Optica Publishing Group, under the Optica Open Access Publishing Agreement.
(a-c) Imaging of anisotropic nanostructures and 5D optical data storage in fused silica153, 155. (a) Image of the slow axis azimuth of voxels, where the pseudo-color represents the slow axis azimuth. (b) SEM image of the nanolamella-like structure after polishing and KOH etching. (c) The enlarged area in the dashed square in (b). (d) The birefringent images of data voxels of different layers in a 100-layer 5D optical data storage in fused silica after removing the background. Insets are enlargements of small region (10 μm × 10 μm). (e) Polar diagram of the measured retardance and azimuth of all voxels in (d). Figure reproduced with permission from: (a-c) ref.153, Optica Publishing Group, under the Optica Open Access Publishing Agreement; (d, e) ref.155, under a Creative Commons Attribution License.
(a) SEM image of composite nanostructures on ZnSe crystal. (b) The photoluminescence (PL) spectra of the plane surface and composite nanostructures irradiated by 1200 nm femtosecond laser. Insets (i) and (ii) show PL images of the nanostructures and plane surface, respectively. Figure reproduced with permission from ref.175, AIP Publishing.
(a–b) Schematic illustrations of the laser-induced structure in the ITO thin film on the substrate, and the resistivity measured longitudinally (IL) or transversely (IT) along the LIPS direction. (c) Microscopic configuration of the four-point probe measurement with the probes longitudinal (Micro-L) or transverse (Micro-T) aligned with the LIPSs. (d) and (e) are the I-V curves of the anisotropic resistivity surface and the unidirectional resistivity surface measured by the Micro-L or Micro-T method, respectively. Figure reproduced with permission from ref.41, under a Creative Commons Attribution License.