Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006
Citation: Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006

Review Open Access

Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives

More Information
  • Transition metal dichalcogenides (TMDs) and perovskites are among the most attractive and widely investigated semiconductors in the recent decade. They are promising materials for various applications, such as photodetection, solar energy harvesting, light emission, and many others. Combining these materials to form heterostructures can enrich the already fascinating properties and bring up new phenomena and opportunities. Work in this field is growing rapidly in both fundamental studies and device applications. Here, we review the recent findings in the perovskite-TMD heterostructures and give our perspectives on the future development of this promising field. The fundamental properties of the perovskites, TMDs, and their heterostructures are discussed first, followed by a summary of the synthesis methods of the perovskites and TMDs and the approaches to obtain high-quality interfaces. Particular attention is paid to the TMD-perovskite heterostructures that have been applied in solar cells and photodetectors with notable performance improvement. Finally through our analysis, we propose an outline on further fundamental studies and the promising applications of perovskite-TMD heterostructures.
  • 加载中
  • [1] Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N et al. Solar cell efficiency tables (version 56). Prog Photovoltaics Res Appl 28, 629–638 (2020). doi: 10.1002/pip.3303

    CrossRef Google Scholar

    [2] Niemann RG, Kontos AG, Palles D, Kamitsos EI, Kaltzoglou A et al. Halogen effects on ordering and bonding of CH3NH3+ in CH3NH3PbX3 (X = Cl, Br, I) hybrid perovskites: a vibrational spectroscopic study. J Phys Chem C 120, 2509–2519 (2016). doi: 10.1021/acs.jpcc.5b11256

    CrossRef Google Scholar

    [3] Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019). doi: 10.1038/s41586-019-1036-3

    CrossRef Google Scholar

    [4] Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016). doi: 10.1126/science.aah5557

    CrossRef Google Scholar

    [5] Jiang Q, Zhao Y, Zhang XW, Yang XL, Chen Y et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics 13, 460–466 (2019). doi: 10.1038/s41566-019-0398-2

    CrossRef Google Scholar

    [6] Chen Q, De Marco N, Yang Y, Song TB, Chen CC et al. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015). doi: 10.1016/j.nantod.2015.04.009

    CrossRef Google Scholar

    [7] Serpetzoglou E, Konidakis I, Kourmoulakis G, Demeridou I, Chatzimanolis K et al. Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite. Opto-Electron Sci 1, 210005 (2022). doi: 10.29026/oes.2022.210005

    CrossRef Google Scholar

    [8] Marshall KP, Walker M, Walton RI, Hatton RA. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat Energy 1, 16178 (2016). doi: 10.1038/nenergy.2016.178

    CrossRef Google Scholar

    [9] Saparov B, Mitzi DB. Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev 116, 4558–4596 (2016). doi: 10.1021/acs.chemrev.5b00715

    CrossRef Google Scholar

    [10] Zhao YX, Zhu K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev 45, 655–689 (2016). doi: 10.1039/C4CS00458B

    CrossRef Google Scholar

    [11] Tsai H, Asadpour R, Blancon JC, Stoumpos CC, Durand O et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360, 67–70 (2018). doi: 10.1126/science.aap8671

    CrossRef Google Scholar

    [12] Yang S, Chen SS, Mosconi E, Fang YJ, Xiao X et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019). doi: 10.1126/science.aax3294

    CrossRef Google Scholar

    [13] Tress W, Domanski K, Carlsen B, Agarwalla A, Alharbi EA et al. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat Energy 4, 568–574 (2019). doi: 10.1038/s41560-019-0400-8

    CrossRef Google Scholar

    [14] Birowosuto MD, Cortecchia D, Drozdowski W, Brylew K, Lachmanski W et al. X-ray scintillation in lead halide perovskite crystals. Sci Rep 6, 37254 (2016). doi: 10.1038/srep37254

    CrossRef Google Scholar

    [15] Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics 9, 444–449 (2015). doi: 10.1038/nphoton.2015.82

    CrossRef Google Scholar

    [16] Yang ZQ, Deng YH, Zhang XW, Wang S, Chen HZ et al. High-performance single-crystalline perovskite thin-film photodetector. Adv Mater 30, 1704333 (2018). doi: 10.1002/adma.201704333

    CrossRef Google Scholar

    [17] Li XM, Yu DJ, Chen J, Wang Y, Cao F et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano 11, 2015–2023 (2017). doi: 10.1021/acsnano.6b08194

    CrossRef Google Scholar

    [18] Hu X, Zhang XD, Liang L, Bao J, Li S et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater 24, 7373–7380 (2014). doi: 10.1002/adfm.201402020

    CrossRef Google Scholar

    [19] Lan CY, Dong RT, Zhou ZY, Shu L, Li DP et al. Large-scale synthesis of freestanding layer-structured PbI2 and MAPbI3 nanosheets for high-performance photodetection. Adv Mater 29, 1702759 (2017). doi: 10.1002/adma.201702759

    CrossRef Google Scholar

    [20] Wangyang PH, Gong CH, Rao GF, Hu K, Wang XP et al. Recent advances in halide perovskite photodetectors based on different dimensional materials. Adv Opt Mater 6, 1701302 (2018). doi: 10.1002/adom.201701302

    CrossRef Google Scholar

    [21] Ji L, Hsu HY, Lee JC, Bard AJ, Yu ET. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Lett 18, 994–1000 (2018). doi: 10.1021/acs.nanolett.7b04445

    CrossRef Google Scholar

    [22] Tan ZJ, Wu Y, Hong H, Yin JB, Zhang JC et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J Am Chem Soc 138, 16612–16615 (2016). doi: 10.1021/jacs.6b11683

    CrossRef Google Scholar

    [23] Lin YH, Pattanasattayavong P, Anthopoulos TD. Metal‐halide perovskite transistors for printed electronics: challenges and opportunities. Adv Mater 29, 1702838 (2017). doi: 10.1002/adma.201702838

    CrossRef Google Scholar

    [24] Pan WC, Wu HD, Luo JJ, Deng ZZ, Ge C et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics 11, 726–732 (2017). doi: 10.1038/s41566-017-0012-4

    CrossRef Google Scholar

    [25] Wei HT, Huang JS. Halide lead perovskites for ionizing radiation detection. Nat Commun 10, 1066 (2019). doi: 10.1038/s41467-019-08981-w

    CrossRef Google Scholar

    [26] Pedesseau L, Sapori D, Traore B, Robles R, Fang HH et al. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016). doi: 10.1021/acsnano.6b05944

    CrossRef Google Scholar

    [27] Ramirez D, Suto Y, Rosero-Navarro NC, Miura A, Tadanaga K et al. Structural and electrochemical evaluation of three- and two-dimensional organohalide perovskites and their influence on the reversibility of lithium intercalation. Inorg Chem 57, 4181–4188 (2018). doi: 10.1021/acs.inorgchem.8b00397

    CrossRef Google Scholar

    [28] Smith MD, Connor BA, Karunadasa HI. Tuning the luminescence of layered halide perovskites. Chem Rev 119, 3104–3139 (2019). doi: 10.1021/acs.chemrev.8b00477

    CrossRef Google Scholar

    [29] Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv 4, 200019 (2021). doi: 10.29026/oea.2021.200019

    CrossRef Google Scholar

    [30] Lai ML, Tay TYS, Sadhanala A, Dutton SE, Li GR et al. Tunable near-infrared luminescence in Tin halide perovskite devices. J Phys Chem Lett 7, 2653–2658 (2016). doi: 10.1021/acs.jpclett.6b01047

    CrossRef Google Scholar

    [31] Wong AB, Lai ML, Eaton SW, Yu Y, Lin E et al. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett 15, 5519–5524 (2015). doi: 10.1021/acs.nanolett.5b02082

    CrossRef Google Scholar

    [32] Leyden MR, Meng LQ, Jiang Y, Ono LK, Qiu LB et al. Methylammonium lead bromide perovskite light-emitting diodes by chemical vapor deposition. J Phys Chem Lett 8, 3193–3198 (2017). doi: 10.1021/acs.jpclett.7b01093

    CrossRef Google Scholar

    [33] Yuan S, Wang ZK, Zhuo MP, Tian QS, Jin Y et al. Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes. ACS Nano 12, 9541–9548 (2018). doi: 10.1021/acsnano.8b05185

    CrossRef Google Scholar

    [34] Cho H, Kim YH, Wolf C, Lee HD, Lee TW. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv Mater 30, 1704587 (2018). doi: 10.1002/adma.201704587

    CrossRef Google Scholar

    [35] Raghavan CM, Chen TP, Li SS, Chen WL, Lo CY et al. Low-threshold lasing from 2D homologous organic–inorganic hybrid ruddlesden–popper perovskite single crystals. Nano Lett 18, 3221–3228 (2018). doi: 10.1021/acs.nanolett.8b00990

    CrossRef Google Scholar

    [36] Wei Q, Li XJ, Liang C, Zhang ZP, Guo J et al. Recent progress in metal halide perovskite micro‐ and nanolasers. Adv Opt Mater 7, 1900080 (2019). doi: 10.1002/adom.201900080

    CrossRef Google Scholar

    [37] Wang KY, Xing GC, Song QH, Xiao SM. Micro‐ and nanostructured lead halide perovskites: from materials to integrations and devices. Adv Mater 33, 2000306 (2021). doi: 10.1002/adma.202000306

    CrossRef Google Scholar

    [38] Qin CJ, Sandanayaka ASD, Zhao CY, Matsushima T, Zhang DZ et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020). doi: 10.1038/s41586-020-2621-1

    CrossRef Google Scholar

    [39] Xing GC, Mathews N, Lim SS, Yantara N, Liu XF et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13, 476–480 (2014). doi: 10.1038/nmat3911

    CrossRef Google Scholar

    [40] El-Ballouli AO, Bakr OM, Mohammed OF. Structurally tunable two-dimensional layered perovskites: from confinement and enhanced charge transport to prolonged hot carrier cooling dynamics. J Phys Chem Lett 11, 5705–5718 (2020). doi: 10.1021/acs.jpclett.0c00359

    CrossRef Google Scholar

    [41] Quan LN, Yuan MJ, Comin R, Voznyy O, Beauregard EM et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc 138, 2649–2655 (2016). doi: 10.1021/jacs.5b11740

    CrossRef Google Scholar

    [42] Jung MH. Photovoltaic effect of 2D homologous perovskites. Electrochim Acta 240, 98–107 (2017). doi: 10.1016/j.electacta.2017.04.067

    CrossRef Google Scholar

    [43] Tsai H, Nie WY, Blancon JC, Stoumpos CC, Asadpour R et al. High-efficiency two-dimensional ruddlesden–popper perovskite solar cells. Nature 536, 312–316 (2016). doi: 10.1038/nature18306

    CrossRef Google Scholar

    [44] Blancon JC, Tsai H, Nie W, Stoumpos CC, Pedesseau L et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017). doi: 10.1126/science.aal4211

    CrossRef Google Scholar

    [45] Stoumpos CC, Soe CMM, Tsai H, Nie WY, Blancon JC et al. High members of the 2D ruddlesden-popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2, 427–440 (2017). doi: 10.1016/j.chempr.2017.02.004

    CrossRef Google Scholar

    [46] Gan XY, Wang O, Liu KY, Du XJ, Guo LL et al. 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells. Sol Energy Mater Sol Cells 162, 93–102 (2017). doi: 10.1016/j.solmat.2016.12.047

    CrossRef Google Scholar

    [47] Wei Y, Audebert P, Galmiche L, Lauret JS, Deleporte E. Photostability of 2D organic-inorganic hybrid perovskites. Materials 7, 4789–4802 (2014). doi: 10.3390/ma7064789

    CrossRef Google Scholar

    [48] Wang NN, Cheng L, Ge R, Zhang ST, Miao YF et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics 10, 699–704 (2016). doi: 10.1038/nphoton.2016.185

    CrossRef Google Scholar

    [49] Yuan MJ, Quan LN, Comin R, Walters G, Sabatini R et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol 11, 872–877 (2016). doi: 10.1038/nnano.2016.110

    CrossRef Google Scholar

    [50] Li D, Liao PZ, Shai XX, Huang WC, Liu SS et al. Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Adv 6, 89356–89366 (2016). doi: 10.1039/C6RA19801E

    CrossRef Google Scholar

    [51] Wang ZP, Lin QQ, Chmiel FP, Sakai N, Herz LM et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat Energy 2, 17135 (2017). doi: 10.1038/nenergy.2017.135

    CrossRef Google Scholar

    [52] Long MS, Wang P, Fang HH, Hu WD. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater 29, 1803807 (2019). doi: 10.1002/adfm.201803807

    CrossRef Google Scholar

    [53] Huo NJ, Konstantatos G. Recent progress and future prospects of 2D-based photodetectors. Adv Mater 30, 1801164 (2018). doi: 10.1002/adma.201801164

    CrossRef Google Scholar

    [54] Wang FK, Zhang Y, Gao Y, Luo P, Su JW et al. 2D metal chalcogenides for IR photodetection. Small 15, 1901347 (2019). doi: 10.1002/smll.201901347

    CrossRef Google Scholar

    [55] Xie C, Mak C, Tao XM, Yan F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater 27, 1603886 (2017). doi: 10.1002/adfm.201603886

    CrossRef Google Scholar

    [56] Mitta SB, Choi MS, Nipane A, Ali F, Kim C et al. Electrical characterization of 2D materials-based field-effect transistors. 2D Mater 8, 012002 (2021). doi: 10.1088/2053-1583/abc187

    CrossRef Google Scholar

    [57] Shang JZ, Cong CX, Wu LS, Huang W, Yu T. Light sources and photodetectors enabled by 2D semiconductors. Small Methods 2, 1800019 (2018). doi: 10.1002/smtd.201800019

    CrossRef Google Scholar

    [58] Lien DH, Amani M, Desai SB, Ahn GH, Han K et al. Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat Commun 9, 1229 (2018). doi: 10.1038/s41467-018-03218-8

    CrossRef Google Scholar

    [59] Ross JS, Klement P, Jones AM, Ghimire NJ, Yan JQ et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotechnol 9, 268–272 (2014). doi: 10.1038/nnano.2014.26

    CrossRef Google Scholar

    [60] Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney AP, Gholinia A et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater 14, 301–306 (2015). doi: 10.1038/nmat4205

    CrossRef Google Scholar

    [61] Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282

    CrossRef Google Scholar

    [62] Wu SF, Buckley S, Schaibley JR, Feng LF, Yan JQ et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015). doi: 10.1038/nature14290

    CrossRef Google Scholar

    [63] Ye Y, Wong ZJ, Lu XF, Ni XJ, Zhu HY et al. Monolayer excitonic laser. Nat Photonics 9, 733–737 (2015). doi: 10.1038/nphoton.2015.197

    CrossRef Google Scholar

    [64] Liu ML, Wu HB, Liu XM, Wang YR, Lei M et al. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron Adv 4, 200029 (2021). doi: 10.29026/oea.2021.200029

    CrossRef Google Scholar

    [65] Li YZ, Zhang JX, Huang DD, Sun H, Fan F et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotechnol 12, 987–992 (2017). doi: 10.1038/nnano.2017.128

    CrossRef Google Scholar

    [66] Liu YD, Fang HL, Rasmita A, Zhou Y, Li JT et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci Adv 5, eaav4506 (2019). doi: 10.1126/sciadv.aav4506

    CrossRef Google Scholar

    [67] Shang JZ, Cong CX, Wang ZL, Peimyoo N, Wu LS et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat Commun 8, 543 (2017). doi: 10.1038/s41467-017-00743-w

    CrossRef Google Scholar

    [68] Bernardi M, Palummo M, Grossman JC. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13, 3664–3670 (2013). doi: 10.1021/nl401544y

    CrossRef Google Scholar

    [69] Sumesh CK. Towards efficient photon management in nanostructured solar cells: role of 2D layered transition metal dichalcogenide semiconductors. Sol Energy Mater Sol Cells 192, 16–23 (2019). doi: 10.1016/j.solmat.2018.12.016

    CrossRef Google Scholar

    [70] Lin YB, Adilbekova B, Firdaus Y, Yengel E, Faber H et al. 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT: PSS. Adv Mater 31, 1902965 (2019). doi: 10.1002/adma.201902965

    CrossRef Google Scholar

    [71] Rivera P, Yu HY, Seyler KL, Wilson NP, Yao W et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat Nanotechnol 13, 1004–1015 (2018). doi: 10.1038/s41565-018-0193-0

    CrossRef Google Scholar

    [72] Flöry N, Ma P, Salamin Y, Emboras A, Taniguchi T et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat Nanotechnol 15, 118–124 (2020). doi: 10.1038/s41565-019-0602-z

    CrossRef Google Scholar

    [73] Zhang L, Wu FC, Hou SC, Zhang Z, Chou YH et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021). doi: 10.1038/s41586-021-03228-5

    CrossRef Google Scholar

    [74] Jiang CY, Xu WG, Rasmita A, Huang ZM, Li K et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat Commun 9, 753 (2018). doi: 10.1038/s41467-018-03174-3

    CrossRef Google Scholar

    [75] Shimazaki Y, Schwartz I, Watanabe K, Taniguchi T, Kroner M et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020). doi: 10.1038/s41586-020-2191-2

    CrossRef Google Scholar

    [76] Tran K, Moody G, Wu FC, Lu XB, Choi J et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019). doi: 10.1038/s41586-019-0975-z

    CrossRef Google Scholar

    [77] Jin CH, Regan EC, Yan AM, Utama MIB, Wang DQ et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019). doi: 10.1038/s41586-019-0976-y

    CrossRef Google Scholar

    [78] Brotons-Gisbert M, Baek H, Molina-Sánchez A, Campbell A, Scerri E et al. Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat Mater 19, 630–636 (2020). doi: 10.1038/s41563-020-0687-7

    CrossRef Google Scholar

    [79] Alexeev EM, Ruiz-Tijerina DA, Danovich M, Hamer MJ, Terry DJ et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019). doi: 10.1038/s41586-019-0986-9

    CrossRef Google Scholar

    [80] Li WJ, Lu X, Dubey S, Devenica L, Srivastava A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat Mater 19, 624–629 (2020). doi: 10.1038/s41563-020-0661-4

    CrossRef Google Scholar

    [81] Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5, 263–275 (2013). doi: 10.1038/nchem.1589

    CrossRef Google Scholar

    [82] Eda G, Maier SA. Two-dimensional crystals: managing light for optoelectronics. ACS Nano 7, 5660–5665 (2013). doi: 10.1021/nn403159y

    CrossRef Google Scholar

    [83] Singh R, Singh P, Balasubramanian G. Effect of heterostructure engineering on electronic structure and transport properties of two-dimensional halide perovskites. Comput Mater Sci 200, 110823 (2021). doi: 10.1016/j.commatsci.2021.110823

    CrossRef Google Scholar

    [84] Ricciardulli AG, Yang S, Smet JH, Saliba M. Emerging perovskite monolayers. Nat Mater 20, 1325–1336 (2021). doi: 10.1038/s41563-021-01029-9

    CrossRef Google Scholar

    [85] Chen YY, Liu ZY, Li JZ, Cheng X, Ma JQ et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 14, 10258–10264 (2020). doi: 10.1021/acsnano.0c03624

    CrossRef Google Scholar

    [86] Nayak PK, Horbatenko Y, Ahn S, Kim G, Lee JU et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals Heterostructures. ACS Nano 11, 4041–4050 (2017). doi: 10.1021/acsnano.7b00640

    CrossRef Google Scholar

    [87] Lo SS, Mirkovic T, Chuang CH, Burda C, Scholes GD. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Adv Mater 23, 180–197 (2011). doi: 10.1002/adma.201002290

    CrossRef Google Scholar

    [88] Liu HY, Tan YS, Cao MH, Hu HC, Wu LZ et al. Fabricating CsPbX3-based type I and type II heterostructures by tuning the halide composition of janus CsPbX3/ZrO2 nanocrystals. ACS Nano 13, 5366–5374 (2019). doi: 10.1021/acsnano.9b00001

    CrossRef Google Scholar

    [89] Fang QY, Shang QY, Zhao LY, Wang R, Zhang ZP et al. Ultrafast charge transfer in perovskite nanowire/2D transition metal dichalcogenide heterostructures. J Phys Chem Lett 9, 1655–1662 (2018). doi: 10.1021/acs.jpclett.8b00260

    CrossRef Google Scholar

    [90] Wang Y, Fullon R, Acerce M, Petoukhoff CE, Yang J et al. Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv Mater 29, 1603995 (2017). doi: 10.1002/adma.201603995

    CrossRef Google Scholar

    [91] Wang LM, Zou XM, Lin J, Jiang JY, Liu Y et al. Perovskite/black phosphorus/MoS2 photogate reversed photodiodes with ultrahigh light on/off ratio and fast response. ACS Nano 13, 4804–4813 (2019). doi: 10.1021/acsnano.9b01713

    CrossRef Google Scholar

    [92] Wu HL, Kang Z, Zhang ZH, Zhang Z, Si HN et al. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der waals heterostructures. Adv Funct Mater 28, 1802015 (2018). doi: 10.1002/adfm.201802015

    CrossRef Google Scholar

    [93] Yang A, Blancon JC, Jiang W, Zhang H, Wong J et al. Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures. Nano Lett 19, 4852–4860 (2019). doi: 10.1021/acs.nanolett.8b05105

    CrossRef Google Scholar

    [94] Wang XD, Huang YH, Liao JF, Jiang Y, Zhou L et al. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J Am Chem Soc 141, 13434–13441 (2019). doi: 10.1021/jacs.9b04482

    CrossRef Google Scholar

    [95] Zhang Q, Linardy E, Wang XY, Eda G. Excitonic energy transfer in heterostructures of quasi-2D perovskite and monolayer WS2. ACS Nano 14, 11482–11489 (2020). doi: 10.1021/acsnano.0c03893

    CrossRef Google Scholar

    [96] Wang HZ, Ma JQ, Li DH. Two-dimensional hybrid perovskite-based van der waals heterostructures. J Phys Chem Lett 12, 8178–8187 (2021). doi: 10.1021/acs.jpclett.1c02290

    CrossRef Google Scholar

    [97] Shi EZ, Gao Y, Finkenauer BP, Akriti, Coffey AH et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem Soc Rev 47, 6046–6072 (2018). doi: 10.1039/C7CS00886D

    CrossRef Google Scholar

    [98] Xie C, Liu CK, Loi HL, Yan F. Perovskite‐based phototransistors and hybrid photodetectors. Adv Funct Mater 30, 1903907 (2020). doi: 10.1002/adfm.201903907

    CrossRef Google Scholar

    [99] Omprakash P, Viswesh P, Devadas BP. Review—a review of 2D perovskites and carbon-based nanomaterials for applications in solar cells and photodetectors. ECS J Solid State Sci Technol 10, 031009 (2021). doi: 10.1149/2162-8777/abefaf

    CrossRef Google Scholar

    [100] Ghosh J, Giri PK. Recent advances in perovskite/2D materials based hybrid photodetectors. J Phys Mater 4, 032008 (2021). doi: 10.1088/2515-7639/abf544

    CrossRef Google Scholar

    [101] Bellani S, Bartolotta A, Agresti A, Calogero G, Grancini G et al. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 50, 11870–11965 (2021). doi: 10.1039/D1CS00106J

    CrossRef Google Scholar

    [102] Rogdakis K, Karakostas N, Kymakis E. Up-scalable emerging energy conversion technologies enabled by 2D materials: from miniature power harvesters towards grid-connected energy systems. Energy Environ Sci 14, 3352–3392 (2021). doi: 10.1039/D0EE04013D

    CrossRef Google Scholar

    [103] Pant A, Mutlu Z, Wickramaratne D, Cai H, Lake RK et al. Fundamentals of lateral and vertical heterojunctions of atomically thin materials. Nanoscale 8, 3870–3887 (2016). doi: 10.1039/C5NR08982D

    CrossRef Google Scholar

    [104] Unger EL, Kegelmann L, Suchan K, Sörell D, Korte L et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A 5, 11401–11409 (2017). doi: 10.1039/C7TA00404D

    CrossRef Google Scholar

    [105] Jiang Y, Chen SL, Zheng WH, Zheng BY, Pan AL. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci Appl 10, 72 (2021). doi: 10.1038/s41377-021-00500-1

    CrossRef Google Scholar

    [106] Tartakovskii A. Excitons in 2D heterostructures. Nat Rev Phys 2, 8–9 (2020). doi: 10.1038/s42254-019-0136-1

    CrossRef Google Scholar

    [107] Mueller T, Malic E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater Appl 2, 29 (2018). doi: 10.1038/s41699-018-0074-2

    CrossRef Google Scholar

    [108] Rasmussen FA, Thygesen KS. Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J Phys Chem C 119, 13169–13183 (2015). doi: 10.1021/acs.jpcc.5b02950

    CrossRef Google Scholar

    [109] Chaves A, Azadani JG, Alsalman H, Da Costa DR, Frisenda R et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl 4, 29 (2020). doi: 10.1038/s41699-020-00162-4

    CrossRef Google Scholar

    [110] Hong XP, Kim J, Shi SF, Zhang Y, Jin CH et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 9, 682–686 (2014). doi: 10.1038/nnano.2014.167

    CrossRef Google Scholar

    [111] Ceballos F, Bellus MZ, Chiu HY, Zhao H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der waals heterostructure. ACS Nano 8, 12717–12724 (2014). doi: 10.1021/nn505736z

    CrossRef Google Scholar

    [112] Jin CH, Ma EY, Karni O, Regan EC, Wang F et al. Ultrafast dynamics in van der waals heterostructures. Nat Nanotechnol 13, 994–1003 (2018). doi: 10.1038/s41565-018-0298-5

    CrossRef Google Scholar

    [113] Mak KF, Shan J. Opportunities and challenges of interlayer exciton control and manipulation. Nat Nanotechnol 13, 974–976 (2018). doi: 10.1038/s41565-018-0301-1

    CrossRef Google Scholar

    [114] Excitation that lasts. Nat Nanotechnol 13, 973 (2018).

    Google Scholar

    [115] Liu Y, Weiss NO, Duan XD, Cheng HC, Huang Y et al. Van der waals heterostructures and devices. Nat Rev Mater 1, 16042 (2016). doi: 10.1038/natrevmats.2016.42

    CrossRef Google Scholar

    [116] Liu YD, Elbanna A, Gao WB, Pan JS, Shen ZX et al. Interlayer excitons in transition metal dichalcogenide semiconductors for 2D optoelectronics. Adv Mater 34, 2107138 (2022). doi: 10.1002/adma.202107138

    CrossRef Google Scholar

    [117] Lukman S, Ding L, Xu L, Tao Y, Riis-Jensen AC et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat Nanotechnol 15, 675–682 (2020). doi: 10.1038/s41565-020-0717-2

    CrossRef Google Scholar

    [118] Karni O, Barré E, Lau SC, Gillen R, Ma EY et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys Rev Lett 123, 247402 (2019). doi: 10.1103/PhysRevLett.123.247402

    CrossRef Google Scholar

    [119] Wang ZF, Rhodes DA, Watanabe K, Taniguchi T, Hone JC et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019). doi: 10.1038/s41586-019-1591-7

    CrossRef Google Scholar

    [120] Kim J, Jin CH, Cai H, Zhao T, Lee P et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci Adv 3, e1700518 (2017). doi: 10.1126/sciadv.1700518

    CrossRef Google Scholar

    [121] Jin CH, Tao Z, Li TX, Xu Y, Tang TH et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat Mater 20, 940–944 (2021). doi: 10.1038/s41563-021-00959-8

    CrossRef Google Scholar

    [122] Regan EC, Wang DQ, Jin CH, Utama MIB, Gao BN et al. Mott and generalized wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020). doi: 10.1038/s41586-020-2092-4

    CrossRef Google Scholar

    [123] Abouelkomsan A, Liu Z, Bergholtz EJ. Particle-hole duality, emergent fermi liquids, and fractional chern insulators in moiré flatbands. Phys Rev Lett 124, 106803 (2020). doi: 10.1103/PhysRevLett.124.106803

    CrossRef Google Scholar

    [124] Xu Y, Liu S, Rhodes DA, Watanabe K, Taniguchi T et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020). doi: 10.1038/s41586-020-2868-6

    CrossRef Google Scholar

    [125] Tartakovskii A. Moiré or not. Nat Mater 19, 581–582 (2020). doi: 10.1038/s41563-020-0693-9

    CrossRef Google Scholar

    [126] Khelifa R, Back P, Flöry N, Nashashibi S, Malchow K et al. Coupling interlayer excitons to whispering gallery modes in van der waals heterostructures. Nano Lett 20, 6155–6161 (2020). doi: 10.1021/acs.nanolett.0c02432

    CrossRef Google Scholar

    [127] Paik EY, Zhang L, Burg GW, Gogna R, Tutuc E et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019). doi: 10.1038/s41586-019-1779-x

    CrossRef Google Scholar

    [128] Xue H, Wang YD, Dai YY, Kim W, Jussila H et al. A MoSe2/WSe2 heterojunction-based photodetector at telecommunication wavelengths. Adv Funct Mater 28, 1804388 (2018). doi: 10.1002/adfm.201804388

    CrossRef Google Scholar

    [129] Wang GC, Li L, Fan WH, Wang RY, Zhou SS et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv Funct Mater 28, 1800339 (2018). doi: 10.1002/adfm.201800339

    CrossRef Google Scholar

    [130] Jo SH, Lee HW, Shim J, Heo K, Kim M et al. Highly efficient infrared photodetection in a gate-controllable van der waals heterojunction with staggered bandgap alignment. Adv Sci 5, 1700423 (2018). doi: 10.1002/advs.201700423

    CrossRef Google Scholar

    [131] Ross JS, Rivera P, Schaibley J, Lee-Wong E, Yu HY et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett 17, 638–643 (2017). doi: 10.1021/acs.nanolett.6b03398

    CrossRef Google Scholar

    [132] Zhang KN, Zhang TN, Cheng GH, Li TX, Wang SX et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der waals heterostructures. ACS Nano 10, 3852–3858 (2016). doi: 10.1021/acsnano.6b00980

    CrossRef Google Scholar

    [133] Li ZD, Lu XB, Leon DFC, Lyu ZY, Xie HC et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 15, 1539–1547 (2021). doi: 10.1021/acsnano.0c08981

    CrossRef Google Scholar

    [134] Yuan L, Zheng BY, Kunstmann J, Brumme T, Kuc AB et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat Mater 19, 617–623 (2020). doi: 10.1038/s41563-020-0670-3

    CrossRef Google Scholar

    [135] Liu YD, Dini K, Tan QH, Liew T, Novoselov KS et al. Electrically controllable router of interlayer excitons. Sci Adv 6, eaba1830 (2020). doi: 10.1126/sciadv.aba1830

    CrossRef Google Scholar

    [136] Unuchek D, Ciarrocchi A, Avsar A, Sun Z, Watanabe K et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat Nanotechnol 14, 1104–1109 (2019). doi: 10.1038/s41565-019-0559-y

    CrossRef Google Scholar

    [137] Jauregui LA, Joe AY, Pistunova K, Wild DS, High AA et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019). doi: 10.1126/science.aaw4194

    CrossRef Google Scholar

    [138] Ciarrocchi A, Unuchek D, Avsar A, Watanabe K, Taniguchi T et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat Photonics 13, 131–136 (2019). doi: 10.1038/s41566-018-0325-y

    CrossRef Google Scholar

    [139] Unuchek D, Ciarrocchi A, Avsar A, Watanabe K, Taniguchi T et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018). doi: 10.1038/s41586-018-0357-y

    CrossRef Google Scholar

    [140] Jiang CY, Rasmita A, Ma H, Tan QH, Huang ZM et al. Room-temperature bipolar valleytronic transistor in MoS2/WSe2 heterostructures. arXiv:2102.03756.

    Google Scholar

    [141] Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N et al. Solar cell efficiency tables (Version 58). Prog Photovolt Res Appl 29, 657–667 (2021). doi: 10.1002/pip.3444

    CrossRef Google Scholar

    [142] Saliba M, Correa-Baena JP, Grätzel M, Hagfeldt A, Abate A. Perovskite solar cells: from the atomic level to film quality and device performance. Angew Chem Int Ed 57, 2554–2569 (2018). doi: 10.1002/anie.201703226

    CrossRef Google Scholar

    [143] Schileo G, Grancini G. Halide perovskites: current issues and new strategies to push material and device stability. J Phys Energy 2, 021005 (2020). doi: 10.1088/2515-7655/ab6cc4

    CrossRef Google Scholar

    [144] Lekina Y, Shen ZX. Excitonic states and structural stability in two-dimensional hybrid organic-inorganic perovskites. J Sci Adv Mater Dev 4, 189–200 (2019). doi: 10.1016/j.jsamd.2019.03.005

    CrossRef Google Scholar

    [145] Ahmad S, Fu P, Yu SW, Yang Q, Liu X et al. Dion-jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3, 794–806 (2019). doi: 10.1016/j.joule.2018.11.026

    CrossRef Google Scholar

    [146] Cohen BE, Wierzbowska M, Etgar L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv Funct Mater 27, 1604733 (2017). doi: 10.1002/adfm.201604733

    CrossRef Google Scholar

    [147] Dou LT, Wong AB, Yu Y, Lai ML, Kornienko N et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015). doi: 10.1126/science.aac7660

    CrossRef Google Scholar

    [148] Niu W, Eiden A, Prakash GV, Baumberg JJ. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors. Appl Phys Lett 104, 171111 (2014). doi: 10.1063/1.4874846

    CrossRef Google Scholar

    [149] Dhanabalan B, Castelli A, Palei M, Spirito D, Manna L et al. Simple fabrication of layered halide perovskite platelets and enhanced photoluminescence from mechanically exfoliated flakes. Nanoscale 11, 8334–8342 (2019). doi: 10.1039/C9NR00638A

    CrossRef Google Scholar

    [150] Fu YP, Zheng WH, Wang XX, Hautzinger MP, Pan DX. et al. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J Am Chem Soc 140, 15675–15683 (2018). doi: 10.1021/jacs.8b07843

    CrossRef Google Scholar

    [151] Shi EZ, Yuan B, Shiring SB, Gao Y, Akriti et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020). doi: 10.1038/s41586-020-2219-7

    CrossRef Google Scholar

    [152] Akriti, Shi EZ, Shiring SB, Yang JQ, Atencio-Martinez CL et al. Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nat Nanotechnol 16, 584–591 (2021). doi: 10.1038/s41565-021-00848-w

    CrossRef Google Scholar

    [153] Kuo MY, Spitha N, Hautzinger MP, Hsieh PL, Li J et al. Distinct carrier transport properties across horizontally vs vertically oriented heterostructures of 2D/3D perovskites. J Am Chem Soc 143, 4969–4978 (2021). doi: 10.1021/jacs.0c10000

    CrossRef Google Scholar

    [154] Zhang XY, Liu XT, Li LN, Ji CM, Yao YP et al. Great amplification of circular polarization sensitivity via heterostructure engineering of a chiral two-dimensional hybrid perovskite crystal with a three-dimensional MAPbI3 crystal. ACS Cent Sci 7, 1261–1268 (2021). doi: 10.1021/acscentsci.1c00649

    CrossRef Google Scholar

    [155] Karpińska M, Liang MP, Kempt R, Finzel K, Kamminga M et al. Nonradiative energy transfer and selective charge transfer in a WS2/(PEA)2PbI4 heterostructure. ACS Appl Mater Interfaces 13, 33677–33684 (2021). doi: 10.1021/acsami.1c08377

    CrossRef Google Scholar

    [156] Wang QX, Zhang Q, Luo X, Wang JY, Zhu R et al. Optoelectronic properties of a van der waals WS2 monolayer/2D perovskite vertical heterostructure. ACS Appl Mater Interfaces 12, 45235–45242 (2020). doi: 10.1021/acsami.0c14398

    CrossRef Google Scholar

    [157] Yan ZZ, Jiang ZH, Lu JP, Ni ZH. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front Phys 13, 138115 (2018). doi: 10.1007/s11467-018-0785-z

    CrossRef Google Scholar

    [158] Wang HL, Wang XD, Chen Y, Zhang SK, Jiang W et al. Extremely low dark current MoS2 photodetector via 2D halide perovskite as the electron reservoir. Adv Opt Mater 8, 1901402 (2020). doi: 10.1002/adom.201901402

    CrossRef Google Scholar

    [159] Ghosh J, Mawlong LPL, Manasa GB, Pattison AJ, Theis W et al. Solid-state synthesis of stable and color tunable cesium lead halide perovskite nanocrystals and the mechanism of high-performance photodetection in a monolayer MoS2/CsPbBr3 vertical heterojunction. J Mater Chem C 8, 8917–8934 (2020). doi: 10.1039/D0TC01306D

    CrossRef Google Scholar

    [160] Hassan MS, Basera P, Bera S, Mittal M, Ray SK et al. Enhanced photocurrent owing to shuttling of charge carriers across 4-aminothiophenol-functionalized MoSe2–CsPbBr3 nanohybrids. ACS Appl Mater Interfaces 12, 7317–7325 (2020). doi: 10.1021/acsami.9b20050

    CrossRef Google Scholar

    [161] Erkılıç U, Solís-Fernández P, Ji HG, Shinokita K, Lin YC et al. Vapor phase selective growth of two-dimensional perovskite/WS2 heterostructures for optoelectronic applications. ACS Appl Mater Interfaces 11, 40503–40511 (2019). doi: 10.1021/acsami.9b13904

    CrossRef Google Scholar

    [162] Chen YY, Ma JQ, Liu ZY, Li JZ, Duan XF et al. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 14, 15154–15160 (2020). doi: 10.1021/acsnano.0c05343

    CrossRef Google Scholar

    [163] Ma C, Shi YM, Hu WJ, Chiu MH, Liu ZX et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater 28, 3683–3689 (2016). doi: 10.1002/adma.201600069

    CrossRef Google Scholar

    [164] Song XF, Liu XH, Yu DJ, Huo CX, Ji JP et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces 10, 2801–2809 (2018). doi: 10.1021/acsami.7b14745

    CrossRef Google Scholar

    [165] Yang TF, Wang X, Zheng BY, Qi ZY, Ma C et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano 13, 7996–8003 (2019). doi: 10.1021/acsnano.9b02676

    CrossRef Google Scholar

    [166] Karpińska M, Jasiński J, Kempt R, Ziegler JD, Sansom H et al. Interlayer excitons in MoSe2/2D perovskite hybrid heterostructures – the interplay between charge and energy transfer. Nanoscale 14, 8085–8095 (2022). doi: 10.1039/D2NR00877G

    CrossRef Google Scholar

    [167] Wang JT, Li JH, Zhou YC, Yu CZ, Hua YH et al. Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells. J Am Chem Soc 143, 7759–7768 (2021). doi: 10.1021/jacs.1c02118

    CrossRef Google Scholar

    [168] Lee PH, Wu TT, Tian KY, Li CF, Hou CH et al. Work-function-tunable electron transport layer of molecule-capped metal oxide for a high-efficiency and stable p–i–n perovskite solar cell. ACS Appl Mater Interfaces 12, 45936–45949 (2020). doi: 10.1021/acsami.0c10717

    CrossRef Google Scholar

    [169] Liu XC, Choi MS, Hwang E, Yoo WJ, Sun J. Fermi level pinning dependent 2D semiconductor devices: challenges and prospects. Adv Mater 34, 2108425 (2022). doi: 10.1002/adma.202108425

    CrossRef Google Scholar

    [170] Yim C, Passi V, Lemme MC, Duesberg GS, Coileáin CÓ et al. Electrical devices from top-down structured platinum diselenide films. npj 2D Mater Appl 2, 5 (2018). doi: 10.1038/s41699-018-0051-9

    CrossRef Google Scholar

    [171] Afzal AM, Iqbal MZ, Dastgeer G, Ahmad AU, Park B. Highly sensitive, ultrafast, and broadband photo-detecting field-effect transistor with transition-metal dichalcogenide van der waals heterostructures of MoTe2 and PdSe2. Adv Sci 8, 2003713 (2021). doi: 10.1002/advs.202003713

    CrossRef Google Scholar

    [172] Schulman DS, Arnold AJ, Das S. Contact engineering for 2D materials and devices. Chem Soc Rev 47, 3037–3058 (2018). doi: 10.1039/C7CS00828G

    CrossRef Google Scholar

    [173] Alzaid M. Recent progress in the role of two-dimensional materials as an efficient charge transport layer in perovskite solar cells. Int J Energy Res 45, 12598–12613 (2021). doi: 10.1002/er.6672

    CrossRef Google Scholar

    [174] Mahmood K, Khalid A, Ahmad SW, Qutab HG, Hameed M et al. Electrospray deposited MoS2 nanosheets as an electron transporting material for high efficiency and stable perovskite solar cells. Sol Energy 203, 32–36 (2020). doi: 10.1016/j.solener.2020.04.021

    CrossRef Google Scholar

    [175] Jung DH, Oh YJ, Nam YS, Lee H. Effect of layer number on the properties of stable and flexible perovskite solar cells using two dimensional material. J Alloys Compd 850, 156752 (2021). doi: 10.1016/j.jallcom.2020.156752

    CrossRef Google Scholar

    [176] Singh R, Giri A, Pal M, Thiyagarajan K, Kwak J et al. Perovskite solar cells with an MoS2 electron transport layer. J Mater Chem A 7, 7151–7158 (2019). doi: 10.1039/C8TA12254G

    CrossRef Google Scholar

    [177] Tan CL, Cao XH, Wu XJ, He QY, Yang J et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117, 6225–6331 (2017). doi: 10.1021/acs.chemrev.6b00558

    CrossRef Google Scholar

    [178] Guo HW, Hu Z, Liu ZB, Tian JG. Stacking of 2D materials. Adv Funct Mater 31, 2007810 (2021). doi: 10.1002/adfm.202007810

    CrossRef Google Scholar

    [179] Desai SB, Madhvapathy SR, Amani M, Kiriya D, Hettick M et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv Mater 28, 4053–4058 (2016). doi: 10.1002/adma.201506171

    CrossRef Google Scholar

    [180] Liu F, Wu WJ, Bai YS, Chae SH, Li QY et al. Disassembling 2D van der waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020). doi: 10.1126/science.aba1416

    CrossRef Google Scholar

    [181] Zhang Y, Yao YY, Sendeku MG, Yin L, Zhan XY et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv Mater 31, 1901694 (2019). doi: 10.1002/adma.201901694

    CrossRef Google Scholar

    [182] Wang SX, Cui XH, Jian C, Cheng HW, Niu MM et al. Stacking‐engineered heterostructures in transition metal dichalcogenides. Adv Mater 33, 2005735 (2021). doi: 10.1002/adma.202005735

    CrossRef Google Scholar

    [183] Liu LX, Zhai TY. Wafer-scale vertical van der Waals heterostructures. InfoMat 3, 3–21 (2021). doi: 10.1002/inf2.12164

    CrossRef Google Scholar

    [184] Zhou JD, Lin JH, Huang XW, Zhou Y, Chen Y et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018). doi: 10.1038/s41586-018-0008-3

    CrossRef Google Scholar

    [185] Lin HR, Zhou CK, Tian Y, Siegrist T, Ma BW. Low-dimensional organometal halide perovskites. ACS Energy Lett 3, 54–62 (2018). doi: 10.1021/acsenergylett.7b00926

    CrossRef Google Scholar

    [186] Jagielski J, Kumar S, Yu WY, Shih CJ. Layer-controlled two-dimensional perovskites: synthesis and optoelectronics. J Mater Chem C 5, 5610–5627 (2017). doi: 10.1039/C7TC00538E

    CrossRef Google Scholar

    [187] Shamsi J, Urban AS, Imran M, De Trizio L, Manna L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem Rev 119, 3296–3348 (2019). doi: 10.1021/acs.chemrev.8b00644

    CrossRef Google Scholar

    [188] Ha ST, Liu XF, Zhang Q, Giovanni D, Sum TC et al. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv Opt Mater 2, 838–844 (2014). doi: 10.1002/adom.201400106

    CrossRef Google Scholar

    [189] Kim HS, Im SH, Park NG. Organolead halide perovskite: new horizons in solar cell research. J Phys Chem C 118, 5615–5625 (2014).

    Google Scholar

    [190] Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779

    CrossRef Google Scholar

    [191] Schmidt LC, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc 136, 850–853 (2014). doi: 10.1021/ja4109209

    CrossRef Google Scholar

    [192] Niu L, Liu XF, Cong CX, Wu CY, Wu D et al. Controlled synthesis of organic/inorganic van der waals solid for tunable light-matter interactions. Adva Mater 27, 7800–7808 (2015). doi: 10.1002/adma.201503367

    CrossRef Google Scholar

    [193] Wang YP, Shi YF, Xin GQ, Lian J, Shi J. Two-dimensional van der waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst Growth Des 15, 4741–4749 (2015). doi: 10.1021/acs.cgd.5b00949

    CrossRef Google Scholar

    [194] Wang GM, Li DH, Cheng HC, Li YJ, Chen CY et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci Adv 1, e1500613 (2015). doi: 10.1126/sciadv.1500613

    CrossRef Google Scholar

    [195] Liu JY, Xue YZ, Wang ZY, Xu ZQ, Zheng CX et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10, 3536–3542 (2016). doi: 10.1021/acsnano.5b07791

    CrossRef Google Scholar

    [196] Ávila J, Momblona C, Boix PP, Sessolo M, Bolink HJ. Vapor-deposited perovskites: the route to high-performance solar cell production. Joule 1, 431–442 (2017). doi: 10.1016/j.joule.2017.07.014

    CrossRef Google Scholar

    [197] Ono LK, Leyden MR, Wang SH, Qi YB. Organometal halide perovskite thin films and solar cells by vapor deposition. J Mater Chem A 4, 6693–6713 (2016). doi: 10.1039/C5TA08963H

    CrossRef Google Scholar

    [198] Febriansyah B, Lekina Y, Kaur J, Hooper TJN, Harikesh PC et al. Formation of corrugated n=1 2D tin iodide perovskites and their use as lead-free solar absorbers. ACS Nano 15, 6395–6409 (2021). doi: 10.1021/acsnano.0c08204

    CrossRef Google Scholar

    [199] Ng YF, Febriansyah B, Jamaludin NF, Giovanni D, Yantara N et al. Design of 2D templating molecules for mixed-dimensional perovskite light-emitting diodes. Chem Mater 32, 8097–8105 (2020). doi: 10.1021/acs.chemmater.0c00513

    CrossRef Google Scholar

    [200] Lan CY, Zhou ZY, Wei RJ, Ho JC. Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater Today Energy 11, 61–82 (2019). doi: 10.1016/j.mtener.2018.10.008

    CrossRef Google Scholar

    [201] Cheng ZY, Lin J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12, 2646–2662 (2010). doi: 10.1039/c001929a

    CrossRef Google Scholar

    [202] Febriansyah B, Lekina Y, Ghosh B, Harikesh PC, Koh TM et al. Molecular engineering of pure 2D lead-iodide perovskite solar absorbers displaying reduced band gaps and dielectric confinement. ChemSusChem 13, 2693–2701 (2020). doi: 10.1002/cssc.202000028

    CrossRef Google Scholar

    [203] Stoumpos CC, Cao DH, Clark DJ, Young J, Rondinelli JM et al. Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater 28, 2852–2867 (2016). doi: 10.1021/acs.chemmater.6b00847

    CrossRef Google Scholar

    [204] Tian H, Zhao LF, Wang XF, Yeh YW, Yao N et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11, 12247–12256 (2017). doi: 10.1021/acsnano.7b05726

    CrossRef Google Scholar

    [205] Lédée F, Trippé-Allard G, Diab H, Audebert P, Garrot D et al. Fast growth of monocrystalline thin films of 2D layered hybrid perovskite. CrystEngComm 19, 2598–2602 (2017). doi: 10.1039/C7CE00240H

    CrossRef Google Scholar

    [206] Chen ZH, Zhang Q, Zhu ML, Wang XY, Wang QX et al. Synthesis of two‐dimensional perovskite by inverse temperature crystallization and studies of exciton states by two‐photon excitation spectroscopy. Adv Funct Mater 30, 2002661 (2020). doi: 10.1002/adfm.202002661

    CrossRef Google Scholar

    [207] Saikumar I, Ahmad S, Baumberg JJ, Prakash GV. Fabrication of excitonic luminescent inorganic–organic hybrid nano- and microcrystals. Scr Mater 67, 834–837 (2012). doi: 10.1016/j.scriptamat.2012.07.048

    CrossRef Google Scholar

    [208] Gerwien A, Schildhauer M, Thumser S, Mayer P, Dube H. Direct evidence for hula twist and single-bond rotation photoproducts. Nat Commun 9, 2510 (2018). doi: 10.1038/s41467-018-04928-9

    CrossRef Google Scholar

    [209] Xiao X, Dai J, Fang YJ, Zhao JJ, Zheng XP et al. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett 3, 684–688 (2018). doi: 10.1021/acsenergylett.8b00047

    CrossRef Google Scholar

    [210] Liu YC, Zhang YX, Yang Z, Ye HC, Feng JS et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat Commun 9, 5302 (2018). doi: 10.1038/s41467-018-07440-2

    CrossRef Google Scholar

    [211] Yaffe O, Chernikov A, Norman ZM, Zhong Y, Velauthapillai A et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys Rev B 92, 045414 (2015). doi: 10.1103/PhysRevB.92.045414

    CrossRef Google Scholar

    [212] Chen JN, Gan L, Zhuge FW, Li HQ, Song JZ et al. A ternary solvent method for large-sized two-dimensional perovskites. Angew Chem Int Ed 56, 2390–2394 (2017). doi: 10.1002/anie.201611794

    CrossRef Google Scholar

    [213] Hintermayr VA, Richter AF, Ehrat F, Döblinger M, Vanderlinden W et al. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation. Adv Mater 28, 9478–9485 (2016). doi: 10.1002/adma.201602897

    CrossRef Google Scholar

    [214] Zhang Y, Zhang LY, Zhou CW. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46, 2329–2339 (2013). doi: 10.1021/ar300203n

    CrossRef Google Scholar

    [215] Lee YH, Zhang XQ, Zhang WJ, Chang MT, Lin CT et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24, 2320–2325 (2012). doi: 10.1002/adma.201104798

    CrossRef Google Scholar

    [216] Lan CY, Zhou ZY, Zhou ZF, Li C, Shu L et al. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res 11, 3371–3384 (2018). doi: 10.1007/s12274-017-1941-4

    CrossRef Google Scholar

    [217] Sun JY, Lu C, Song YZ, Ji QQ, Song XJ et al. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem Soc Rev 47, 4242–4257 (2018). doi: 10.1039/C8CS00167G

    CrossRef Google Scholar

    [218] Chen ZZ, Wang YP, Sun X, Guo YW, Hu Y et al. Van der waals hybrid perovskite of high optical quality by chemical vapor deposition. Adv Opt Mater 5, 1700373 (2017). doi: 10.1002/adom.201700373

    CrossRef Google Scholar

    [219] Wang YG, Huang XW, Wu D, Zhuo RR, Wu EP et al. A room-temperature near-infrared photodetector based on a MoS2/CdTe p–n heterojunction with a broadband response up to 1700 nm. J Mater Chem C 6, 4861–4865 (2018). doi: 10.1039/C8TC01237G

    CrossRef Google Scholar

    [220] Zhang ZP, Wang SS, Liu XF, Chen YH, Su CL et al. Metal halide perovskite/2D material heterostructures: syntheses and applications. Small Methods 5, 2000937 (2021). doi: 10.1002/smtd.202000937

    CrossRef Google Scholar

    [221] Lu JP, Carvalho A, Liu HW, Lim SX, Neto AHC et al. Hybrid bilayer WSe2-CH3NH3PbI3 organolead halide perovskite as a high-performance photodetector. Angew Chem Int Ed 55, 11945–11949 (2016). doi: 10.1002/anie.201603557

    CrossRef Google Scholar

    [222] Xia KL, Wu WQ, Zhu MJ, Shen XY, Yin Z et al. CVD growth of perovskite/graphene films for high-performance flexible image sensor. Sci Bull 65, 343–349 (2020). doi: 10.1016/j.scib.2019.12.015

    CrossRef Google Scholar

    [223] Suk JW, Kitt A, Magnuson CW, Hao YF, Ahmed S et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011). doi: 10.1021/nn201207c

    CrossRef Google Scholar

    [224] Jeong HJ, Kim HY, Jeong SY, Han JT, Baeg KJ et al. Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly(methylmethacrylate) layers. Carbon 66, 612–618 (2014). doi: 10.1016/j.carbon.2013.09.050

    CrossRef Google Scholar

    [225] Van Ngoc H, Qian YT, Han SK, Kang DJ. PMMA-etching-free transfer of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer method. Sci Rep 6, 33096 (2016). doi: 10.1038/srep33096

    CrossRef Google Scholar

    [226] Bae S, Kim H, Lee Y, Xu XF, Park JS et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5, 574–578 (2010). doi: 10.1038/nnano.2010.132

    CrossRef Google Scholar

    [227] Barin GB, Song Y, De Fátima Gimenez I, Filho AGS, Barreto LS et al. Optimized graphene transfer: influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon 84, 82–90 (2015). doi: 10.1016/j.carbon.2014.11.040

    CrossRef Google Scholar

    [228] Liang XL, Sperling BA, Calizo I, Cheng GJ, Hacker CA et al. Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011). doi: 10.1021/nn203377t

    CrossRef Google Scholar

    [229] Cheng HC, Wang GM, Li DH, He QY, Yin AX et al. Van der waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett 16, 367–373 (2016). doi: 10.1021/acs.nanolett.5b03944

    CrossRef Google Scholar

    [230] Huang X, Qi XY, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev 41, 666–686 (2012). doi: 10.1039/C1CS15078B

    CrossRef Google Scholar

    [231] Muduli S, Pandey P, Devatha G, Babar R, M T et al. Photoluminescence quenching in self-assembled CsPbBr3 quantum dots on few-layer black phosphorus sheets. Angew Chem Int Ed 57, 7682–7686 (2018). doi: 10.1002/anie.201712608

    CrossRef Google Scholar

    [232] Xu YF, Yang MZ, Chen BX, Wang XD, Chen HY et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J Am Chem Soc 139, 5660–5663 (2017). doi: 10.1021/jacs.7b00489

    CrossRef Google Scholar

    [233] Jung M, Ji SG, Kim G, Seok Il S. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem Soc Rev 48, 2011–2038 (2019). doi: 10.1039/C8CS00656C

    CrossRef Google Scholar

    [234] Chao LF, Niu TT, Gao WY, Ran CX, Song L et al. Solvent engineering of the precursor solution toward Large‐area production of perovskite solar cells. Adv Mater 33, 2005410 (2021). doi: 10.1002/adma.202005410

    CrossRef Google Scholar

    [235] Febriansyah B, Koh TM, Rana PJS, Hooper TJN, Ang ZZ et al. Hybrid 2D [Pb(CH3NH2)I2]n coordination polymer precursor for scalable perovskite deposition. ACS Energy Lett 5, 2305–2312 (2020). doi: 10.1021/acsenergylett.0c00781

    CrossRef Google Scholar

    [236] Yoo JJ, Seo G, Chua MR, Park TG, Lu YL et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). doi: 10.1038/s41586-021-03285-w

    CrossRef Google Scholar

    [237] Kim YH, Kim S, Kakekhani A, Park J, Park J et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat Photonics 15, 148–155 (2021). doi: 10.1038/s41566-020-00732-4

    CrossRef Google Scholar

    [238] John RA, Shah N, Vishwanath SK, Ng SE, Febriansyah B et al. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat Commun 12, 3681 (2021). doi: 10.1038/s41467-021-24057-0

    CrossRef Google Scholar

    [239] Kang DH, Pae SR, Shim J, Yoo G, Jeon J et al. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv Mater 28, 7799–7806 (2016). doi: 10.1002/adma.201600992

    CrossRef Google Scholar

    [240] Peng B, Yu GN, Zhao YW, Xu Q, Xing GC et al. Achieving ultrafast hole transfer at the monolayer MoS2 and CH3NH3PbI3 perovskite interface by defect engineering. ACS Nano 10, 6383–6391 (2016). doi: 10.1021/acsnano.6b02845

    CrossRef Google Scholar

    [241] Tang GQ, You P, Tai QD, Yang AN, Cao JP et al. Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv Mater 31, 1807689 (2019).

    Google Scholar

    [242] Fang C, Wang HZ, Shen ZX, Shen HZ, Wang S et al. High-performance photodetectors based on lead-free 2D ruddlesden–popper perovskite/MoS2 heterostructures. ACS Appl Mater Interfaces 11, 8419–8427 (2019). doi: 10.1021/acsami.8b20538

    CrossRef Google Scholar

    [243] Fu QD, Wang XL, Liu FC, Dong YX, Liu ZR et al. Ultrathin ruddlesden–popper perovskite heterojunction for sensitive photodetection. Small 15, 1902890 (2019). doi: 10.1002/smll.201902890

    CrossRef Google Scholar

    [244] Ma JQ, Fang C, Chen C, Jin L, Wang JQ et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019). doi: 10.1021/acsnano.9b00302

    CrossRef Google Scholar

    [245] Wang QX, Wee ATS. Upconversion photovoltaic effect of WS2/2D perovskite heterostructures by two-photon absorption. ACS Nano 15, 10437–10443 (2021). doi: 10.1021/acsnano.1c02782

    CrossRef Google Scholar

    [246] Xiao JT, Zhang L, Zhou H, Shao ZY, Liu JX et al. Type-II interface band alignment in the vdW PbI2 –MoSe2 heterostructure. ACS Appl Mater Interfaces 12, 32099–32105 (2020). doi: 10.1021/acsami.0c04985

    CrossRef Google Scholar

    [247] Lee Y, Kwon J, Hwang E, Ra CH, Yoo WJ et al. High-performance perovskite-graphene hybrid photodetector. Adv Mater 27, 41–46 (2015). doi: 10.1002/adma.201402271

    CrossRef Google Scholar

    [248] Wang YS, Zhang YP, Lu Y, Xu WD, Mu HR et al. Hybrid graphene-perovskite phototransistors with ultrahigh responsivity and gain. Adv Opt Mater 3, 1389–1396 (2015). doi: 10.1002/adom.201500150

    CrossRef Google Scholar

    [249] Spina M, Lehmann M, Náfrádi B, Bernard L, Bonvin E et al. Microengineered CH3NH3PbI3 nanowire/graphene phototransistor for low-intensity light detection at room temperature. Small 11, 4824–4828 (2015). doi: 10.1002/smll.201501257

    CrossRef Google Scholar

    [250] Sun ZH, Aigouy L, Chen ZY. Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale 8, 7377–7383 (2016). doi: 10.1039/C5NR08677A

    CrossRef Google Scholar

    [251] Xie C, Yan F. Perovskite/poly(3-hexylthiophene)/graphene multiheterojunction phototransistors with ultrahigh gain in broadband wavelength region. ACS Appl Mater Interfaces 9, 1569–1576 (2017). doi: 10.1021/acsami.6b11631

    CrossRef Google Scholar

    [252] Shao YC, Liu Y, Chen XL, Chen C, Sarpkaya I et al. Stable graphene-two-dimensional multiphase perovskite heterostructure phototransistors with high gain. Nano Lett 17, 7330–7338 (2017). doi: 10.1021/acs.nanolett.7b02980

    CrossRef Google Scholar

    [253] Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9, 780–793 (2014). doi: 10.1038/nnano.2014.215

    CrossRef Google Scholar

    [254] Mueller T, Xia FN, Avouris P. Graphene photodetectors for high-speed optical communications. Nat Photonics 4, 297–301 (2010). doi: 10.1038/nphoton.2010.40

    CrossRef Google Scholar

    [255] Wu HL, Si HN, Zhang ZH, Kang Z, Wu PW et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der waals heterostructure for ultrasensitive photodetector. Adv Sci 5, 1801219 (2018). doi: 10.1002/advs.201801219

    CrossRef Google Scholar

    [256] Bai F, Qi JJ, Li F, Fang YY, Han WP et al. A High-performance self-powered photodetector based on monolayer MoS2/perovskite heterostructures. Adv Mater Interfaces 5, 1701275 (2018). doi: 10.1002/admi.201701275

    CrossRef Google Scholar

    [257] Peng ZY, Xu JL, Zhang JY, Gao X, Wang SD. Solution-processed high-performance hybrid photodetectors enhanced by perovskite/MoS2 bulk heterojunction. Adv Mater Interfaces 5, 1800505 (2018). doi: 10.1002/admi.201800505

    CrossRef Google Scholar

    [258] Zhang DD, Yu RM. Perovskite-WS2 nanosheet composite optical absorbers on graphene as high-performance phototransistors. Front Chem 7, 257 (2019). doi: 10.3389/fchem.2019.00257

    CrossRef Google Scholar

    [259] Liu X, Li CL, Dai TF, Tao Z, Zhou WX et al. Infrared phototransistor induced by MoS2 quantum dots encapsulated in lead iodide perovskite. IEEE Electron Device Lett 40, 746–749 (2019). doi: 10.1109/LED.2019.2907509

    CrossRef Google Scholar

    [260] Yang D, Cao MH, Zhong QX, Li PL, Zhang XH et al. All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. J Mater Chem C 7, 757–789 (2019). doi: 10.1039/C8TC04381G

    CrossRef Google Scholar

    [261] Xiang WC, Tress W. Review on recent progress of all‐inorganic metal halide perovskites and solar cells. Adv Mater 31, 1902851 (2019). doi: 10.1002/adma.201902851

    CrossRef Google Scholar

    [262] Yettapu GR, Talukdar D, Sarkar S, Swarnkar A, Nag A et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett 16, 4838–4848 (2016). doi: 10.1021/acs.nanolett.6b01168

    CrossRef Google Scholar

    [263] Guo LJ, Gu YS, Yang Z, Tian S, San X et al. CsPbBr3 QDs modified vertically layered MoS2/Si heterojunction for fast UV–vis–NIR spectrum flexible photodetectors. Adv Mater Interfaces 8, 2002231 (2021). doi: 10.1002/admi.202002231

    CrossRef Google Scholar

    [264] Xu Q, Yang Z, Peng DF, Xi JG, Lin P et al. WS2/CsPbBr3 van der waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics. Nano Energy 65, 104001 (2019). doi: 10.1016/j.nanoen.2019.104001

    CrossRef Google Scholar

    [265] Wang ZL. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010). doi: 10.1016/j.nantod.2010.10.008

    CrossRef Google Scholar

    [266] Yang Q, Guo X, Wang WH, Zhang Y, Xu S et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 4, 6285–6291 (2010). doi: 10.1021/nn1022878

    CrossRef Google Scholar

    [267] Hu YF, Chang YL, Fei P, Snyder RL, Wang ZL. Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4, 1234–1240 (2010). doi: 10.1021/nn901805g

    CrossRef Google Scholar

    [268] Noh T, Shin HS, Seo C, Kim JY, Youn J et al. Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots. Nano Res 12, 405–412 (2019). doi: 10.1007/s12274-018-2230-6

    CrossRef Google Scholar

    [269] Lin RC, Li XB, Zheng W, Huang F. Balanced photodetection in mixed-dimensional phototransistors consisting of CsPbBr3 quantum dots and few-layer MoS2. ACS Appl Nano Mater 2, 2599–2605 (2019). doi: 10.1021/acsanm.9b00558

    CrossRef Google Scholar

    [270] Yu XC, Yu P, Wu D, Singh B, Zeng QS et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat Commun 9, 1545 (2018). doi: 10.1038/s41467-018-03935-0

    CrossRef Google Scholar

    [271] Oyedele AD, Yang SZ, Liang LB, Puretzky AA, Wang K et al. PdSe2 : pentagonal two-dimensional layers with high air stability for electronics. J Am Chem Soc 139, 14090–14097 (2017). doi: 10.1021/jacs.7b04865

    CrossRef Google Scholar

    [272] Wu D, Wang YG, Zeng LH, Jia C, Wu EP et al. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 5, 3820–3827 (2018). doi: 10.1021/acsphotonics.8b00853

    CrossRef Google Scholar

    [273] Long MS, Wang Y, Wang P, Zhou XH, Xia H et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511–2519 (2019). doi: 10.1021/acsnano.8b09476

    CrossRef Google Scholar

    [274] Zeng LH, Lin SH, Lou ZH, Yuan HY, Long H et al. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater 10, 352–362 (2018). doi: 10.1038/s41427-018-0035-4

    CrossRef Google Scholar

    [275] Zhao YD, Qiao JS, Yu ZH, Yu P, Xu K et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater 29, 1604230 (2017). doi: 10.1002/adma.201604230

    CrossRef Google Scholar

    [276] Wu D, Guo JW, Du J, Xia CX, Zeng LH et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13, 9907–9917 (2019). doi: 10.1021/acsnano.9b03994

    CrossRef Google Scholar

    [277] Walmsley TS, Andrews K, Wang TJ, Haglund A, Rijal U et al. Near-infrared optical transitions in PdSe2 phototransistors. Nanoscale 11, 14410–14416 (2019). doi: 10.1039/C9NR03505B

    CrossRef Google Scholar

    [278] Zhang ZX, Zeng LH, Tong XW, Gao Y, Xie C et al. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J Phys Chem Lett 9, 1185–1194 (2018). doi: 10.1021/acs.jpclett.8b00266

    CrossRef Google Scholar

    [279] Zeng LH, Chen QM, Zhang ZX, Wu D, Yuan HY et al. Multilayered PdSe2/perovskite schottky junction for fast, self‐powered, polarization‐sensitive, broadband photodetectors, and image sensor application. Adv Sci 6, 1901134 (2019). doi: 10.1002/advs.201901134

    CrossRef Google Scholar

    [280] Wang HL, Chen Y, Lim E, Wang XD, Yuan SJ et al. High-performance lead-free two-dimensional perovskite photo transistors assisted by ferroelectric dielectrics. J Mater Chem C 6, 12714–12720 (2018). doi: 10.1039/C8TC04691C

    CrossRef Google Scholar

    [281] He JG, Yang Y, He Y, Ge C, Zhao Y et al. Low noise and fast photoresponse of few-layered MoS2 passivated by MA3Bi2Br9. ACS Photonics 5, 1877–1884 (2018). doi: 10.1021/acsphotonics.8b00129

    CrossRef Google Scholar

    [282] Gu X, Cui W, Li H, Wu ZW, Zeng ZY et al. A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells. Adv Energy Mater 3, 1262–1268 (2013). doi: 10.1002/aenm201300549

    CrossRef Google Scholar

    [283] Giri A, Park G, Yang H, Pal M, Kwak J et al. Synthesis of 2D metal chalcogenide thin films through the process involving solution‐phase deposition. Adv Mater 30, 1707577 (2018). doi: 10.1002/adma.201707577

    CrossRef Google Scholar

    [284] Yun JM, Noh YJ, Yeo JS, Go YJ, Na SI et al. Efficient work-function engineering of solution-processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. J Mater Chem C 1, 3777–3783 (2013). doi: 10.1039/c3tc30504j

    CrossRef Google Scholar

    [285] Najafi L, Taheri B, Martín-García B, Bellani S, Di Girolamo D et al. MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%. ACS Nano 12, 10736–10754 (2018). doi: 10.1021/acsnano.8b05514

    CrossRef Google Scholar

    [286] Akama T, Okita W, Nagai R, Li C, Kaneko T et al. Schottky solar cell using few-layered transition metal dichalcogenides toward large-scale fabrication of semitransparent and flexible power generator. Sci Rep 7, 11967 (2017). doi: 10.1038/s41598-017-12287-6

    CrossRef Google Scholar

    [287] Wang DA, Elumalai NK, Mahmud MA, Yi HM, Upama MB et al. MoS2 incorporated hybrid hole transport layer for high performance and stable perovskite solar cells. Synth Met 246, 195–203 (2018). doi: 10.1016/j.synthmet.2018.10.012

    CrossRef Google Scholar

    [288] Kim YG, Kwon KC, Le QV, Hong K, Jang HW et al. Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells. J Power Sources 319, 1–8 (2016). doi: 10.1016/j.jpowsour.2016.04.032

    CrossRef Google Scholar

    [289] Kakavelakis G, Paradisanos I, Paci B, Generosi A, Papachatzakis M et al. Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer. Adv Energy Mater 8, 1702287 (2018). doi: 10.1002/aenm.201702287

    CrossRef Google Scholar

    [290] Dasgupta U, Chatterjee S, Pal AJ. Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Sol Energy Mater Sol Cells 172, 353–360 (2017). doi: 10.1016/j.solmat.2017.08.012

    CrossRef Google Scholar

    [291] Huang P, Wang ZW, Li YF, Zhang KC, Yuan LG et al. Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p–i–n perovskite solar cells. ACS Appl Mater Interfaces 9, 25323–25331 (2017). doi: 10.1021/acsami.7b06403

    CrossRef Google Scholar

    [292] Malek NAA, Alias N, Umar AA, Zhang X, Li XG et al. Enhanced charge transfer in atom‐thick 2H–WS2 nanosheets’ electron transport layers of perovskite solar cells. Sol RRL 4, 2000260 (2020). doi: 10.1002/solr.202000260

    CrossRef Google Scholar

    [293] Zhao EL, Gao LG, Yang SZ, Wang LK, Cao JM et al. In situ fabrication of 2D SnS2 nanosheets as a new electron transport layer for perovskite solar cells. Nano Res 11, 5913–5923 (2018). doi: 10.1007/s12274-018-2103-z

    CrossRef Google Scholar

    [294] Zhao XJ, Liu SS, Zhang HT, Chang SY, Huang WC et al. 20% efficient perovskite solar cells with 2D electron transporting layer. Adv Funct Mater 29, 1805168 (2019). doi: 10.1002/adfm.201805168

    CrossRef Google Scholar

    [295] Wang TY, Zheng FY, Tang GQ, Cao JP, You P et al. 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in Tin‐based perovskite solar cells. Adv Sci 8, 2004315 (2021). doi: 10.1002/advs.202004315

    CrossRef Google Scholar

    [296] Cao JP, Tang GQ, You P, Wang TY, Zheng FY et al. Enhanced performance of planar perovskite solar cells induced by van der waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv Funct Mater 30, 2002358 (2020). doi: 10.1002/adfm.202002358

    CrossRef Google Scholar

    [297] Liu ZY, Liu KK, Zhang FP, Jain SM, He TW et al. CH3NH3PbI3: MoS2 heterostructure for stable and efficient inverted perovskite solar cell. Sol Energy 195, 436–445 (2020). doi: 10.1016/j.solener.2019.11.030

    CrossRef Google Scholar

    [298] Luan BQ, Zhou RH. Wettability and friction of water on a MoS2 nanosheet. Appl Phys Lett 108, 131601 (2016). doi: 10.1063/1.4944840

    CrossRef Google Scholar

    [299] Cicero G, Calzolari A, Corni S, Catellani A. Anomalous wetting layer at the Au(111) surface. J Phys Chem Lett 2, 2582–2586 (2011). doi: 10.1021/jz200989n

    CrossRef Google Scholar

    [300] Levita G, Righi MC. Effects of water intercalation and tribochemistry on MoS2 lubricity: an ab initio molecular dynamics investigation. ChemPhysChem 18, 1475–1480 (2017). doi: 10.1002/cphc.201601143

    CrossRef Google Scholar

    [301] Capasso A, Matteocci F, Najafi L, Prato M, Buha J et al. Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv Energy Mater 6, 1600920 (2016). doi: 10.1002/aenm.201600920

    CrossRef Google Scholar

    [302] Liang MY, Ali A, Belaidi A, Hossain MI, Ronan O et al. Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides. npj 2D Mater Appl 4, 40 (2020). doi: 10.1038/s41699-020-00173-1

    CrossRef Google Scholar

    [303] Song QJ, Wang HF, Pan XC, Xu XL et al. Anomalous in-plane anisotropic Raman response of monoclinic semimetal 1 T´-MoTe2. Sci Rep 7, 1758 (2017). doi: 10.1038/s41598-017-01874-2

    CrossRef Google Scholar

    [304] Lekina Y, Febriansyah B, Fan XF, You L, Morris S et al. Strong optical, electrical, and raman in-plane anisotropy in corrugated two-dimensional perovskite. J Phys Chem C 125, 22630–22642 (2021). doi: 10.1021/acs.jpcc.1c06261

    CrossRef Google Scholar

    [305] Xia J, Yan JZ, Wang ZH, He YM, Gong Y et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat Phys 17, 92–98 (2021). doi: 10.1038/s41567-020-1005-7

    CrossRef Google Scholar

    [306] Lin KB, Xing J, Quan LN, De Arquer FPG, Gong XW et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). doi: 10.1038/s41586-018-0575-3

    CrossRef Google Scholar

    [307] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics 12, 681–687 (2018). doi: 10.1038/s41566-018-0260-y

    CrossRef Google Scholar

    [308] Zhao BD, Bai S, Kim V, Lamboll R, Shivanna R et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat Photonics 12, 783–789 (2018). doi: 10.1038/s41566-018-0283-4

    CrossRef Google Scholar

    [309] Cao Y, Wang NN, Tian H, Guo JS, Wei YQ et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018). doi: 10.1038/s41586-018-0576-2

    CrossRef Google Scholar

    [310] Pospischil A, Furchi MM, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol 9, 257–261 (2014). doi: 10.1038/nnano.2014.14

    CrossRef Google Scholar

    [311] Baugher BWH, Churchill HOH, Yang YF, Jarillo-Herrero P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat Nanotechnol 9, 262–267 (2014). doi: 10.1038/nnano.2014.25

    CrossRef Google Scholar

    [312] Dobusch L, Schuler S, Perebeinos V, Mueller T. Thermal light emission from monolayer MoS2. Adv Mater 29, 1701304 (2017). doi: 10.1002/adma.201701304

    CrossRef Google Scholar

    [313] Kong LM, Zhang XY, Li YG, Wang HR, Jiang YZ et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat Commun 12, 1246 (2021). doi: 10.1038/s41467-021-21522-8

    CrossRef Google Scholar

    [314] Jiang YZ, Cui MH, Li SS, Sun CJ, Huang YM et al. Reducing the impact of auger recombination in quasi-2D perovskite light-emitting diodes. Nat Commun 12, 336 (2021). doi: 10.1038/s41467-020-20555-9

    CrossRef Google Scholar

    [315] Quan LN, Ma DX, Zhao YB, Voznyy O, Yuan HF et al. Edge stabilization in reduced-dimensional perovskites. Nat Commun 11, 170 (2020). doi: 10.1038/s41467-019-13944-2

    CrossRef Google Scholar

    [316] Li TT, Guo W, Ma L, Li WS, Yu ZH et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol 16, 1201–1207 (2021). doi: 10.1038/s41565-021-00963-8

    CrossRef Google Scholar

    [317] Lin HH, Zhu Q, Shu DJ, Lin DJ, Xu J et al. Growth of environmentally stable transition metal selenide films. Nat Mater 18, 602–607 (2019). doi: 10.1038/s41563-019-0321-8

    CrossRef Google Scholar

    [318] Rogalski A, Kopytko M, Martyniuk P. Two-dimensional infrared and terahertz detectors: outlook and status. Appl Phys Rev 6, 021316 (2019). doi: 10.1063/1.5088578

    CrossRef Google Scholar

    [319] Ubrig N, Ponomarev E, Zultak J, Domaretskiy D, Zólyomi V et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat Mater 19, 299–304 (2020). doi: 10.1038/s41563-019-0601-3

    CrossRef Google Scholar

    [320] Park NG, Zhu K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat Rev Mater 5, 333–350 (2020). doi: 10.1038/s41578-019-0176-2

    CrossRef Google Scholar

    [321] Han JH, Kwak M, Kim Y, Cheon J. Recent advances in the solution-based preparation of two-dimensional layered transition metal chalcogenide nanostructures. Chem Rev 118, 6151–6188 (2018). doi: 10.1021/acs.chemrev.8b00264

    CrossRef Google Scholar

    [322] Shi L, Bucknall P, Young TL, Zhang M, Hu L et al. Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368, eaba2412 (2020). doi: 10.1126/science.aba2412

    CrossRef Google Scholar

    [323] Khenkin MV, Katz EA, Abate A, Bardizza G, Berry JJ et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat Energy 5, 35–49 (2020). doi: 10.1038/s41560-019-0529-5

    CrossRef Google Scholar

    [324] Xiao K, Lin RX, Han QL, Hou Y, Qin ZY et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat Energy 5, 870–880 (2020). doi: 10.1038/s41560-020-00705-5

    CrossRef Google Scholar

    [325] Lin RX, Xiao K, Qin ZY, Han QL, Zhang CF et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat Energy 4, 864–873 (2019). doi: 10.1038/s41560-019-0466-3

    CrossRef Google Scholar

    [326] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater 2, 17033 (2017). doi: 10.1038/natrevmats.2017.33

    CrossRef Google Scholar

    [327] Klein A, Jaegermann W. Review—electronic properties of 2D layered chalcogenide surfaces and interfaces grown by (quasi) van der waals epitaxy. ECS J Solid State Sci Technol 9, 093012 (2020). doi: 10.1149/2162-8777/abb750

    CrossRef Google Scholar

    [328] Park NG. Perovskite solar cell: research direction for next 10 years. ACS Energy Lett 4, 2983–2985 (2019). doi: 10.1021/acsenergylett.9b02442

    CrossRef Google Scholar

    [329] Yuan J, Liu HL, Wang SR, Li XG. How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale 13, 10281–10304 (2021). doi: 10.1039/D0NR07716J

    CrossRef Google Scholar

    [330] Madi M, Tahir M, Tasleem S. Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: a review. J Environ Chem Eng 9, 106264 (2021). doi: 10.1016/j.jece.2021.106264

    CrossRef Google Scholar

    [331] Wang F, Liu XY, Zhang ZG, Min SX. A noble-metal-free MoS2 nanosheet-coupled MAPbI3 photocatalyst for efficient and stable visible-light-driven hydrogen evolution. Chem Commun 56, 3281–3284 (2020). doi: 10.1039/D0CC00095G

    CrossRef Google Scholar

    [332] Park Y, Lee S, Park HJ, Baac HW, Yoo G et al. Hybrid metal-halide perovskite-MoS2 phototransistor. J Nanosci Nanotechnol 16, 11722–11726 (2016). doi: 10.1166/jnn.2016.13581

    CrossRef Google Scholar

    [333] Chandrasekar PV, Yang SY, Hu JM, Sulaman M, Saleem MI et al. A one-step method to synthesize CH3NH3PbI3 : MoS2 nanohybrids for high-performance solution-processed photodetectors in the visible region. Nanotechnology 30, 085707 (2019). doi: 10.1088/1361-6528/aaf608

    CrossRef Google Scholar

    [334] Li ZB, Li JN, Ding D, Yao HZ, Liu L et al. Direct observation of perovskite photodetector performance enhancement by atomically thin interface engineering. ACS Appl Mater Interfaces 10, 36493–36504 (2018). doi: 10.1021/acsami.8b10971

    CrossRef Google Scholar

    [335] Zhang LW, Shen SL, Li M, Li LY, Zhang JB et al. Strategies for air‐stable and tunable monolayer MoS2‐based hybrid photodetectors with high performance by regulating the fully inorganic trihalide perovskite nanocrystals. Adv Opt Mater 7, 1801744 (2019). doi: 10.1002/adom.201801744

    CrossRef Google Scholar

    [336] Sun B, Xi S, Liu ZY, Liu XY, Wang ZY et al. Sensitive, fast, and stable photodetector based on perovskite/MoS2 hybrid film. Appl Surf Sci 493, 389–395 (2019). doi: 10.1016/j.apsusc.2019.07.036

    CrossRef Google Scholar

    [337] González-Carrero S, Galian RE, Pérez-Prieto J. Organometal halide perovskites: bulk low-dimension materials and nanoparticles. Part Part Syst Charact 32, 709–720 (2015). doi: 10.1002/ppsc.201400214

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(5)

Article Metrics

Article views(35098) PDF downloads(1939) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint