Citation: | Jiao SM, Liu JW, Zhang LW, Yu FH, Zuo GM et al. All-optical logic gate computing for high-speed parallel information processing. Opto-Electron Sci 1, 220010 (2022). doi: 10.29026/oes.2022.220010 |
[1] | Wu JM, Lin X, Guo YC, Liu JW, Fang L et al. Analog optical computing for artificial intelligence. Engineering 10, 133–145 (2022). doi: 10.1016/j.eng.2021.06.021 |
[2] | Liu J, Wu QH, Sui XB, Chen Q, Gu GH et al. Research progress in optical neural networks: theory, applications and developments. PhotoniX 2, 5 (2021). doi: 10.1186/s43074-021-00026-0 |
[3] | Xu RQ, Lv P, Xu FJ, Shi YS. A survey of approaches for implementing optical neural networks. Opt Laser Technol 136, 106787 (2021). doi: 10.1016/j.optlastec.2020.106787 |
[4] | Wetzstein G, Ozcan A, Gigan S, Fan SH, Englund D et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). doi: 10.1038/s41586-020-2973-6 |
[5] | Sui XB, Wu QH, Liu J, Chen Q, Gu GH. A review of optical neural networks. IEEE Access 8, 70773–70783 (2020). doi: 10.1109/ACCESS.2020.2987333 |
[6] | De Marinis L, Cococcioni M, Castoldi P, Andriolli N. Photonic neural networks: a survey. IEEE Access 7, 175827–175841 (2019). doi: 10.1109/ACCESS.2019.2957245 |
[7] | Shen YC, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T et al. Deep learning with coherent nanophotonic circuits. Nat Photonics 11, 441–446 (2017). doi: 10.1038/nphoton.2017.93 |
[8] | Feldmann J, Youngblood N, Karpov M, Gehring H, Li X et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). doi: 10.1038/s41586-020-03070-1 |
[9] | Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). doi: 10.1126/science.aat8084 |
[10] | Zuo Y, Li BH, Zhao YJ, Jiang Y, Chen YC et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019). doi: 10.1364/OPTICA.6.001132 |
[11] | Jiao SM, Feng J, Gao Y, Lei T, Xie ZW et al. Optical machine learning with incoherent light and a single-pixel detector. Opt Lett 44, 5186–5189 (2019). doi: 10.1364/OL.44.005186 |
[12] | Zuo Y, Zhao YJ, Chen YC, Du SW, Liu JW. Scalability of all-optical neural networks based on spatial light modulators. Phys Rev Appl 15, 054034 (2021). doi: 10.1103/PhysRevApplied.15.054034 |
[13] | Tait AN, De Lima TF, Zhou E, Wu AX, Nahmias MA et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep 7, 7430 (2017). doi: 10.1038/s41598-017-07754-z |
[14] | Huang CR, Bilodeau S, De Lima TF, Tait AN, Ma PY et al. Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits. APL Photonics 5, 040803 (2020). doi: 10.1063/1.5144121 |
[15] | Xu XY, Tan MX, Corcoran B, Wu JY, Boes A et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021). doi: 10.1038/s41586-020-03063-0 |
[16] | Khoram E, Chen A, Liu DJ, Ying L, Wang QQ et al. Nanophotonic media for artificial neural inference. Photonics Res 7, 823–827 (2019). doi: 10.1364/PRJ.7.000823 |
[17] | Liao K, Chen Y, Yu ZC, Hu XY, Wang XY et al. All-optical computing based on convolutional neural networks. Opto-Electron Adv 4, 200060 (2021). doi: 10.29026/oea.2021.200060 |
[18] | Davoodi F, Granpayeh N. All optical logic gates: a tutorial. Int J Inf Commun Technol Res 4, 65–98 (2012). |
[19] | Singh P, Tripathi DK, Jaiswal S, Dixit HK. All-optical logic gates: designs, classification, and comparison. Adv Opt Technol 2014, 275083 (2014). |
[20] | Sasikala V, Chitra K. All optical switching and associated technologies: a review. J Opt 47, 307–317 (2018). doi: 10.1007/s12596-018-0452-3 |
[21] | Saharia A, Mudgal N, Agarwal A, Sahu S, Jain S et al. A comparative study of various all-optical logic gates. In Optical and Wireless Technologies 429–437 (Springer, Singapore, 2020); https://doi.org/10.1007/978-981-13-6159-3_45. |
[22] | Minzioni P, Lacava C, Tanabe T, Dong JJ, Hu XY et al. Roadmap on all-optical processing. J Opt 21, 063001 (2019). doi: 10.1088/2040-8986/ab0e66 |
[23] | Wang J, Long Y. On-chip silicon photonic signaling and processing: a review. Sci Bull 63, 1267–1310 (2018). doi: 10.1016/j.scib.2018.05.038 |
[24] | Ghaffari BM, Salehi JA. Multiclass, multistage, and multilevel fiber-optic CDMA signaling techniques based on advanced binary optical logic gate elements. IEEE Trans Commun 57, 1424–1432 (2009). doi: 10.1109/TCOMM.2009.05.070292 |
[25] | Asakawa K, Sugimoto Y, Nakamura S. Silicon photonics for telecom and data-com applications. Opto-Electron Adv 3, 200011 (2020). |
[26] | Caulfield HJ, Westphal J. The logic of optics and the optics of logic. Inf Sci 162, 21–33 (2004). doi: 10.1016/j.ins.2003.01.002 |
[27] | Qian L, Caulfield HJ. What can we do with a linear optical logic gate. Inf Sci 176, 3379–3392 (2006). doi: 10.1016/j.ins.2006.02.001 |
[28] | Tanida J, Ichioka Y. Optical logic array processor using shadowgrams. J Opt Soc Am 73, 800–809 (1983). doi: 10.1364/JOSA.73.000800 |
[29] | Ichioka Y, Tanida J. Optical parallel logic gates using a shadow-casting system for optical digital computing. Proc IEEE 72, 787–801 (1984). doi: 10.1109/PROC.1984.12939 |
[30] | Yatagai T. Optical space-variant logic-gate array based on spatial encoding technique. Opt Lett 11, 260–262 (1986). doi: 10.1364/OL.11.000260 |
[31] | Li Y, Eichmann G, Alfano RR. Optical computing using hybrid encoded shadow casting. Appl Opt 25, 2636–2638 (1986). doi: 10.1364/AO.25.002636 |
[32] | Jutamulia S, Storti G. Noncoded shadow-casting logic array. Appl Opt 28, 4517–4518 (1989). doi: 10.1364/AO.28.004517 |
[33] | Yamamoto H, Hayasaki Y, Nishida N. Securing information display by use of visual cryptography. Opt Lett 28, 1564–1566 (2003). doi: 10.1364/OL.28.001564 |
[34] | Shi YS, Yang XB. Optical hiding with visual cryptography. J Opt 19, 115703 (2017). doi: 10.1088/2040-8986/aa895e |
[35] | Jiao SM, Feng J, Gao Y, Lei T, Yuan XC. Visual cryptography in single-pixel imaging. Opt Express 28, 7301–7313 (2020). doi: 10.1364/OE.383240 |
[36] | Karim MA, Awwal AAS, Cherri AK. Polarization-encoded optical shadow-casting logic units: design. Appl Opt 26, 2720–2725 (1987). doi: 10.1364/AO.26.002720 |
[37] | Lohmann AW, Weigelt J. Spatial filtering logic based on polarization. Appl Opt 26, 131–135 (1987). doi: 10.1364/AO.26.000131 |
[38] | Lohmann AW. Polarization and optical logic. Appl Opt 25, 1594–1597 (1986). doi: 10.1364/AO.25.001594 |
[39] | Torroba R, Henao R, Carletti C. Digital polarization-encoding technique for optical logic operations. Opt Lett 21, 1918–1920 (1996). doi: 10.1364/OL.21.001918 |
[40] | Zaghloul YA, Zaghloul ARM. Unforced polarization-based optical implementation of Binary logic. Opt Express 14, 7252–7269 (2006). doi: 10.1364/OE.14.007252 |
[41] | Zaghloul YA, Zaghloul ARM. Complete all-optical processing polarization-based binary logic gates and optical processors. Opt Express 14, 9879–9895 (2006). doi: 10.1364/OE.14.009879 |
[42] | Zaghloul YA, Zaghloul ARM, Adibi A. Passive all-optical polarization switch, binary logic gates, and digital processor. Opt Express 19, 20332–20346 (2011). doi: 10.1364/OE.19.020332 |
[43] | Qian C, Lin X, Lin XB, Xu J, Sun Y et al. Performing optical logic operations by a diffractive neural network. Light Sci Appl 9, 59 (2020). doi: 10.1038/s41377-020-0303-2 |
[44] | Zhao ZH, Wang Y, Ding XM, Li HY, Fu JH et al. Compact logic operator utilizing a single-layer metasurface. Photonics Res 10, 316–322 (2022). doi: 10.1364/PRJ.439036 |
[45] | Wang PP, Xiong WJ, Huang ZB, He YL, Xie ZQ et al. Orbital angular momentum mode logical operation using optical diffractive neural network. Photonics Res 9, 2116–2124 (2021). doi: 10.1364/PRJ.432919 |
[46] | Jenkins BK, Sawchuk AA, Strand TC, Forchheimer R, Soffer BH. Sequential optical logic implementation. Appl Opt 23, 3455–3464 (1984). doi: 10.1364/AO.23.003455 |
[47] | Stubkjaer KE. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE J Select Top Quant Electron 6, 1428–1435 (2000). doi: 10.1109/2944.902198 |
[48] | Zhang M, Wang L, Ye PD. All optical XOR logic gates: technologies and experiment demonstrations. IEEE Commun Mag 43, S19–S24 (2005). |
[49] | Hamie A, Sharaiha A, Guegan M, Pucel B. All-optical Logic NOR gate using two-cascaded semiconductor optical amplifiers. IEEE Photonics Technol Lett 14, 1439–1441 (2002). doi: 10.1109/LPT.2002.802426 |
[50] | Kim JH, Kim YI, Byun YT, Jhon YM, Lee S et al. All-optical logic gates using semiconductor optical-amplifier-based devices and their applications. J Korean Phys Soc 45, 1158–1161 (2004). |
[51] | Kim SH, Kim JH, Yu BG, Byun YT, Jeon YM et al. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electron Lett 41, 1027–1028 (2005). doi: 10.1049/el:20052320 |
[52] | Sharaiha A, Topomondzo J, Morel P. All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier. Opt Commun 265, 322–325 (2006). doi: 10.1016/j.optcom.2006.03.036 |
[53] | Sasikala V, Chitra K. Performance analysis of multilogic all-optical structure based on nonlinear signal processing in SOA. J Opt 49, 208–215 (2020). doi: 10.1007/s12596-020-00608-4 |
[54] | Kim JH, Jhon YM, Byun YT, Lee S, Woo DH et al. All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technol Lett 14, 1436–1438 (2002). doi: 10.1109/LPT.2002.801841 |
[55] | Dong JJ, Zhang XL, Xu J, Huang DX. 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: Experimental demonstration and theoretical analysis. Opt Commun 281, 1710–1715 (2008). doi: 10.1016/j.optcom.2007.11.054 |
[56] | Dong JJ, Zhang XL, Huang DX. A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection. Opt Express 17, 7725–7730 (2009). doi: 10.1364/OE.17.007725 |
[57] | Kumar S, Willner AE. Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA. Opt Express 14, 5092–5097 (2006). doi: 10.1364/OE.14.005092 |
[58] | Wu BB, Fu SN, Wu J, Shum P, Ngo NQ et al. Simultaneous implementation of all-optical OR and AND logic gates for NRZ/RZ/CSRZ ON–OFF-keying signals. Opt Commun 283, 349–354 (2010). doi: 10.1016/j.optcom.2009.10.074 |
[59] | Li ZH, Li GF. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol Lett 18, 1341–1343 (2006). doi: 10.1109/LPT.2006.877008 |
[60] | Chan K, Chan CK, Chen LK, Tong F. Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier With RZ-DPSK modulated inputs. IEEE Photonics Technol Lett 16, 897–899 (2004). doi: 10.1109/LPT.2004.823750 |
[61] | Kang I, Dorrer C, Leuthold J. All-optical XOR operation of 40 Gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier. Electron Lett 40, 496–498 (2004). doi: 10.1049/el:20040343 |
[62] | Deng N, Chan K, Chan CK, Chen LK. An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier. IEEE J Select Top Quant Electron 12, 702–707 (2006). doi: 10.1109/JSTQE.2006.876603 |
[63] | Kong DM, Li Y, Wang H, Zhang XP, Zhang JY et al. All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol Lett 24, 988–990 (2012). |
[64] | Berrettini G, Simi A, Malacarne A, Bogoni A, Poti L. Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. IEEE Photonics Technol Lett 18, 917–919 (2006). doi: 10.1109/LPT.2006.873570 |
[65] | Dong J, Zhang X, Wang Y, Xu J, Huang D. 40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA. Electron Lett 43, 884–886 (2007). doi: 10.1049/el:20071220 |
[66] | Dong JJ, Zhang XL, Fu SN, Xu J, Shum P et al. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering. IEEE J Select Top Quant Electron 14, 770–778 (2008). doi: 10.1109/JSTQE.2008.916248 |
[67] | Chen X, Huo L, Zhao ZX, Zhuang L, Lou CY. Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s. IEEE Photonics Technol Lett 28, 2463–2466 (2016). doi: 10.1109/LPT.2016.2601079 |
[68] | Han BC, Liu Y. All-optical reconfigurable non-inverted logic gates with a single semiconductor optical amplifier. AIP Adv 9, 015007 (2019). doi: 10.1063/1.5061828 |
[69] | Soto H, Erasme D, Guekos G. 5-Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers. IEEE Photonics Technol Lett 13, 335–337 (2001). doi: 10.1109/68.917843 |
[70] | Guo LQ, Connelly MJ. All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier. Opt Express 14, 2938–2943 (2006). doi: 10.1364/OE.14.002938 |
[71] | Zhang JY, Wu J, Feng CF, Xu K, Lin JT. All-optical logic OR gate exploiting nonlinear polarization rotation in an SOA and red-shifted sideband filtering. IEEE Photonics Technol Lett 19, 33–35 (2007). doi: 10.1109/LPT.2006.888991 |
[72] | Han LY, Wen H, Jiang H, Guo YL, Zhang HY. All-Optical AND logic gate without additional input beam by utilizing cross polarization modulation effect. Chin Phys Lett 25, 3901–3904 (2008). doi: 10.1088/0256-307X/25/11/018 |
[73] | Mukherjee K, Raja A, Maji K. All-optical logic gate NAND using semiconductor optical amplifiers with simulation. J Opt 48, 357–364 (2019). doi: 10.1007/s12596-019-00555-9 |
[74] | Toliver P, Runser RJ, Glesk I, Prucnal PR. Comparison of three nonlinear interferometric optical switch geometries. Opt Commun 175, 365–373 (2000). doi: 10.1016/S0030-4018(00)00484-3 |
[75] | Fjelde T, Wolfson D, Kloch A, Dagens B, Coquelin A et al. Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter. Electron Lett 36, 1863–1864 (2000). doi: 10.1049/el:20001302 |
[76] | Wang Q, Zhu GH, Chen HM, Jaques J, Leuthold J et al. Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE J Quant Electron 40, 703–710 (2004). doi: 10.1109/JQE.2004.828261 |
[77] | Sun HZ, Wang Q, Dong H, Chen Z, Dutta NK et al. All-Optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. IEEE J Quant Electron 42, 747–751 (2006). doi: 10.1109/JQE.2006.878184 |
[78] | Dailey JM, Webb RP, Manning RJ. All-optical technique for modulation format conversion from on-off-keying to alternate-mark-inversion. Opt Express 18, 21873–21882 (2010). doi: 10.1364/OE.18.021873 |
[79] | Dong H, Sun H, Wang Q, Dutta NK, Jaques J. 80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme. Opt Commun 265, 79–83 (2006). doi: 10.1016/j.optcom.2006.02.045 |
[80] | Wang G, Yang XL, Hu WS. All-optical logic gates for 40Gb/s NRZ signals using complementary data in SOA-MZIs. Opt Commun 290, 28–32 (2013). doi: 10.1016/j.optcom.2012.10.047 |
[81] | Taraphdar C, Chattopadhyay T, Roy JN. Mach–Zehnder interferometer-based all-optical reversible logic gate. Opt Laser Technol 42, 249–259 (2010). doi: 10.1016/j.optlastec.2009.06.017 |
[82] | Kang I, Rasras M, Buhl L, Dinu M, Cabot S et al. All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers. Opt Express 17, 19062–19066 (2009). doi: 10.1364/OE.17.019062 |
[83] | Kim JY, Kang JM, Kim TY, Han SK. All-Optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment. J Lightwave Technol 24, 3392–3399 (2006). doi: 10.1109/JLT.2006.880593 |
[84] | Kotb A, Zoiros KE, Guo CL. All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules. Opt Laser Technol 108, 426–433 (2018). doi: 10.1016/j.optlastec.2018.07.027 |
[85] | Kotb A, Guo CL. 100 Gb/s all-optical multifunctional AND, NOR, XOR, OR, XNOR, and NAND logic gates in a single compact scheme based on semiconductor optical amplifiers. Opt Laser Technol 137, 106828 (2021). doi: 10.1016/j.optlastec.2020.106828 |
[86] | Zhang M, Zhao YP, Wang L, Wang J, Ye PD. Design and analysis of all-optical XOR gate using SOA-based Mach–Zehnder interferometer. Opt Commun 223, 301–308 (2003). doi: 10.1016/S0030-4018(03)01692-4 |
[87] | Houbavlis T, Zoiros KE, Kanellos G, Tsekrekos C. Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach–Zehnder Interferometer. Opt Commun 232, 179–199 (2004). doi: 10.1016/j.optcom.2003.12.062 |
[88] | Ye XH, Ye PD, Zhang M. All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer. Opt Fiber Technol 12, 312–316 (2006). doi: 10.1016/j.yofte.2005.12.001 |
[89] | Sokoloff JP, Prucnal PR, Glesk I, Kane M. A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photonics Technol Lett 5, 787–790 (1993). doi: 10.1109/68.229807 |
[90] | Houbavlis T, Zoiros K, Hatziefremidis A, Avramopoulos H, Occhi L et al. 10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate. Electron Lett 35, 1650–1652 (1999). doi: 10.1049/el:19991142 |
[91] | Zhou YF, Wu J, Lin JT. Novel ultrafast all-optical XOR scheme based on Sagnac interferometric structure. IEEE J Quant Electron 41, 823–827 (2005). doi: 10.1109/JQE.2005.847544 |
[92] | Zoiros KE, Papadopoulos G, Houbavlis T, Kanellos GT. Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer. Opt Commun 258, 114–134 (2006). doi: 10.1016/j.optcom.2005.07.059 |
[93] | Feng CF, Wu J, Xu K, Lin JT. Simple ultrafast all-optical AND logic gate. Opt Eng 46, 125006 (2007). doi: 10.1117/1.2817651 |
[94] | Chattopadhyay T, Roy JN. Semiconductor optical amplifier (SOA)-assisted Sagnac switch for designing of all-optical TRI-state logic gates. Optik 122, 1073–1078 (2011). doi: 10.1016/j.ijleo.2010.06.045 |
[95] | Roy JN, Gayen DK. Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device-alternative approach. Appl Opt 46, 5304–5310 (2007). doi: 10.1364/AO.46.005304 |
[96] | Bintjas C, Kalyvas M, Theophilopoulos G, Stathopoulos T, Avramopoulos H et al. 20 Gb/s all-optical XOR with UNI gate. IEEE Photonics Technol Lett 12, 834–836 (2000). doi: 10.1109/68.853516 |
[97] | Webb RP, Yang X, Manning RJ, Giller R. All-optical 40 Gbit/s XOR gate with dual ultrafast nonlinear interferometer. Electron Lett 41, 1396–1397 (2005). doi: 10.1049/el:20052982 |
[98] | Siarkos T, Zoiros KE, Nastou D. On the feasibility of full pattern-operated all-optical XOR gate with single semiconductor optical amplifier-based ultrafast nonlinear interferometer. Opt Commun 282, 2729–2440 (2009). doi: 10.1016/j.optcom.2009.03.077 |
[99] | Dong H, Wang Q, Zhu G, Jaques J, Piccirilli AB et al. Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer. Opt Commun 242, 479–485 (2004). doi: 10.1016/j.optcom.2004.08.053 |
[100] | Wang Q, Dong H, Zhu G, Sun H, Jaques J et al. All-optical logic OR gate using SOA and Delayed interferometer. Opt Commun 260, 81–86 (2006). doi: 10.1016/j.optcom.2005.10.028 |
[101] | Xu J, Zhang XL, Zhang Y, Dong JJ, Liu DM et al. Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments. J Lightwave Technol 27, 5268–5275 (2009). doi: 10.1109/JLT.2009.2028036 |
[102] | Zhao XF, Lou CY, Feng YM. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer. Front Optoelectron China 4, 308–314 (2011). doi: 10.1007/s12200-011-0143-z |
[103] | Dong WC, Huang ZY, Hou J, Santos R, Zhang XL. Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Opt Lett 43, 2150–2153 (2018). doi: 10.1364/OL.43.002150 |
[104] | Ma SZ, Chen Z, Dutta NK. All-optical logic gates based on two-photon absorption in semiconductor optical amplifiers. Opt Commun 282, 4508–4012 (2009). doi: 10.1016/j.optcom.2009.08.039 |
[105] | Ma SZ, Chen Z, Sun HZ, Dutta NK. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers. Opt Express 18, 6417–6422 (2010). doi: 10.1364/OE.18.006417 |
[106] | Rostami A, Nejad HBA, Qartavol RM, Saghai HR. Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J Quant Electron 46, 354–360 (2010). doi: 10.1109/JQE.2009.2033253 |
[107] | Dimitriadou E, Zoiros KE. On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt Laser Technol 44, 600–607 (2012). doi: 10.1016/j.optlastec.2011.08.028 |
[108] | Kotb A. Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s. Optik 127, 320–325 (2016). doi: 10.1016/j.ijleo.2015.10.093 |
[109] | Zhang X, Dutta NK. Effects of two-photon absorption on all optical logic operation based on quantum-dot semiconductor optical amplifiers. J Mod Opt 65, 166–173 (2018). doi: 10.1080/09500340.2017.1382595 |
[110] | Hu HY, Zhang X, Zhao S. High-speed all optical logic gate using QD-SOA and its application. Cogent Phys 4, 1388156 (2017). doi: 10.1080/23311940.2017.1388156 |
[111] | Kotb A, Zoiros KE, Guo CL. 2 Tb/s all-optical gates based on two-photon absorption in quantum dot semiconductor optical amplifiers. Opt Laser Technol 112, 442–451 (2019). doi: 10.1016/j.optlastec.2018.11.048 |
[112] | Kotb A, Guo CL. All-optical NOR and XNOR logic gates at 2 Tb/s based on two-photon absorption in quantum-dot semiconductor optical amplifiers. Opt Quant Electron 52, 30 (2020). doi: 10.1007/s11082-019-2142-z |
[113] | Kotb A, Guo CL. 120 Gb/s all-optical NAND logic gate using reflective semiconductor optical amplifiers. J Mod Opt 67, 1138–1144 (2020). doi: 10.1080/09500340.2020.1813342 |
[114] | Kotb A, Guo CL. Numerical modeling of photonic crystal semiconductor optical amplifiers-based 160 Gb/s all-optical NOR and XNOR logic gates. Opt Quant Electron 52, 89 (2020). doi: 10.1007/s11082-020-2225-x |
[115] | Kwok CH, Lin C. Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum. IEEE J Select Top Quant Electron 12, 451–458 (2006). doi: 10.1109/JSTQE.2006.872732 |
[116] | Bogris A, Velanas P, Syvridis D. Numerical investigation of a 160-Gb/s reconfigurable photonic logic gate based on cross-phase modulation in fibers. IEEE Photonics Technol Lett 19, 402–404 (2007). doi: 10.1109/LPT.2007.891977 |
[117] | Qiu JF, Sun K, Rochette M, Chen LR. Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber. IEEE Photonics Technol Lett 22, 1199–1201 (2010). doi: 10.1109/LPT.2010.2050876 |
[118] | Bogoni A, Potì L, Proietti R, Meloni G, Ponzini F et al. Regenerative and reconfigurable all-optical logic gates for ultra-fast applications. Electron Lett 41, 435–436 (2005). doi: 10.1049/el:20058010 |
[119] | Miyoshi Y, Ikeda K, Tobioka H, Inoue T, Namiki S et al. Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. Opt Express 16, 2570–2577 (2008). doi: 10.1364/OE.16.002570 |
[120] | Lai DMF, Kwok CH, Wong KKY. All-optical picoseconds logic gates based on a fiber optical parametric amplifier. Opt Express 16, 18362–18370 (2008). doi: 10.1364/OE.16.018362 |
[121] | Li LL, Wu J, Qiu JF, Wu BB, Xu K et al. Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal. Opt Commun 283, 3608–3612 (2010). doi: 10.1016/j.optcom.2010.05.028 |
[122] | Wang J, Sun QZ, Sun JQ. All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing. Opt Express 17, 12555–12563 (2009). doi: 10.1364/OE.17.012555 |
[123] | Fagotto EAM, Abbade MLF. All-optical demultiplexing of 4-ASK optical signals with four-wave mixing optical gates. Opt Commun 283, 1102–1109 (2010). doi: 10.1016/j.optcom.2009.10.094 |
[124] | Yu CY, Christen L, Luo T, Wang Y, Pan ZQ et al. All-optical XOR gate using polarization rotation in single highly nonlinear fiber. IEEE Photonics Technol Lett 17, 1232–1234 (2005). doi: 10.1109/LPT.2005.846918 |
[125] | Chen Y, Cheng YK, Zhu RB, Wang FF, Cheng HT et al. Nanoscale all-optical logic devices. Sci China Phys Mech Astron 62, 44201 (2019). doi: 10.1007/s11433-018-9289-3 |
[126] | Wang LJ, Yan LS, Guo YH, Wen KH, Pan W et al. Optical quasi logic gates based on polarization-dependent four-wave mixing in subwavelength metallic waveguides. Opt Express 21, 14442–14451 (2013). doi: 10.1364/OE.21.014442 |
[127] | Gao SM, Wang XY, Xie YQ, Hu PR, Yan Q. Reconfigurable dual-channel all-optical logic gate in a silicon waveguide using polarization encoding. Opt Lett 40, 1448–1451 (2015). doi: 10.1364/OL.40.001448 |
[128] | Vo TD, Pant R, Pelusi MD, Schröder J, Choi DY et al. Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals. Opt Lett 36, 710–712 (2011). doi: 10.1364/OL.36.000710 |
[129] | Husko C, Vo TD, Corcoran B, Li J, Krauss TF et al. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide. Opt Express 19, 20681–20690 (2011). doi: 10.1364/OE.19.020681 |
[130] | Liang TK, Nunes LR, Tsuchiya M, Abedin KS, Miyazaki T et al. High speed logic gate using two-photon absorption in silicon waveguides. Opt Commun 265, 171–174 (2006). doi: 10.1016/j.optcom.2006.03.031 |
[131] | Wu W, Sun QB, Wang LR, Wang GX, Zeng C et al. Influence of two-photon absorption and free-carrier effects on all-optical logic gates in silicon waveguides. Appl Phys Express 12, 042005 (2019). doi: 10.7567/1882-0786/ab066f |
[132] | Passaro VMN, De Passaro F. All-optical AND gate based on Raman effect in silicon-on-insulator waveguide. Opt Quant Electron 38, 877–888 (2006). doi: 10.1007/s11082-006-9021-0 |
[133] | Khorasaninejad M, Saini SS. All-optical logic gates using nonlinear effects in silicon-on-insulator waveguides. Appl Opt 48, F31–F36 (2009). doi: 10.1364/AO.48.000F31 |
[134] | Fujisawa T, Koshiba M. All-optical logic gates based on nonlinear slot-waveguide couplers. J Opt Soc Am B 23, 684–691 (2006). |
[135] | Larom B, Nazarathy M, Rudnitsky A, Nevet A, Zalevsky Z. Cascadable and reconfigurable photonic logic gates based on linear Lightwave interference and non-linear phase erasure. Opt Express 18, 13600–13607 (2010). doi: 10.1364/OE.18.013600 |
[136] | Pan D, Wei H, Xu HX. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt Express 21, 9556–9562 (2013). doi: 10.1364/OE.21.009556 |
[137] | Lu QC, Yan X, Wei W, Zhang X, Zhang MQ et al. High-speed ultra-compact all-optical NOT and AND logic gates designed by a multi-objective particle swarm optimized method. Opt Laser Technol 116, 322–327 (2019). doi: 10.1016/j.optlastec.2019.03.032 |
[138] | Yao CN, Kotb A, Wang B, Singh SC, Guo CL. All-optical logic gates using dielectric-loaded waveguides with quasi-rhombus metasurfaces. Opt Lett 45, 3769–3772 (2020). doi: 10.1364/OL.396978 |
[139] | Peng CN, Li JY, Liao HM, Li Z, Sun CW et al. Universal linear-optical logic gate with maximal intensity contrast ratios. ACS Photonics 5, 1137–1143 (2018). doi: 10.1021/acsphotonics.7b01566 |
[140] | Kita S, Nozaki K, Takata K, Shinya A, Notomi M. Ultrashort low-loss Ψ gates for linear optical logic on Si photonics platform. Commun Phys 3, 33 (2020). doi: 10.1038/s42005-020-0298-2 |
[141] | Ortiz-Martinez M, Hernandez-Serrano AI, Guerrero MAJ, Strupiechonski E, Castro-Camus E. Logic gates for terahertz frequencies fabricated by three-dimensional printing. J Opt Soc Am B 37, 3660–3664 (2020). |
[142] | Fu YL, Hu XY, Lu CC, Yue S, Yang H et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12, 5784–5790 (2012). doi: 10.1021/nl303095s |
[143] | Li ZJ, Chen ZW, Li BJ. Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference. Opt Express 13, 1033–1038 (2005). doi: 10.1364/OPEX.13.001033 |
[144] | Lee YL, Yu BA, Eom TJ, Shin W, Jung C et al. All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide. Opt Express 14, 2776–2782 (2006). doi: 10.1364/OE.14.002776 |
[145] | Wang J, Sun JQ, Sun QZ. Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation. Opt Express 15, 1690–1699 (2007). doi: 10.1364/OE.15.001690 |
[146] | Wang J, Sun JQ, Sun QZ, Wang DL, Zhou MJ et al. All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier. Appl Phys Lett 91, 051107 (2007). doi: 10.1063/1.2761513 |
[147] | Wang J, Sun JQ, Sun QZ, Wang DL, Zhou MJ et al. Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking. Opt Lett 32, 2462–2464 (2007). doi: 10.1364/OL.32.002462 |
[148] | McGeehan JE, Giltrelli M, Willner AE. All-optical digital 3-input AND gate using sum- and difference-frequency generation in PPLN waveguide. Electron Lett 43, 409–410 (2007). doi: 10.1049/el:20073430 |
[149] | Wang J, Sun JQ, Zhang XL, Huang DX, Fejer MM. Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate. Opt Lett 33, 1419–1421 (2008). doi: 10.1364/OL.33.001419 |
[150] | Wang J, Sun JQ, Sun QZ, Wang DL, Zhang XL et al. PPLN-based flexible optical logic AND gate. IEEE Photonics Technol Lett 20, 211–213 (2008). doi: 10.1109/LPT.2007.913227 |
[151] | Bogoni A, Wu XX, Bakhtiari Z, Nuccio S, Willner AE. 640 Gbits/s photonic logic gates. Opt Lett 35, 3955–3957 (2010). doi: 10.1364/OL.35.003955 |
[152] | Ibrahim TA, Grover R, Kuo LC, Kanakaraju S, Calhoun LC et al. All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photonics Technol Lett 15, 1422–1424 (2003). doi: 10.1109/LPT.2003.818049 |
[153] | Almeida VR, Barrios CA, Panepucci RR, Lipson M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004). doi: 10.1038/nature02921 |
[154] | Xu QF, Lipson M. All-optical logic based on silicon micro-ring resonators. Opt Express 15, 924–929 (2007). doi: 10.1364/OE.15.000924 |
[155] | Zhao WY, Ju DQ, Jiang YY. Pulse controlled all-optical logic gate based on nonlinear ring resonator realizing all fundamental logic operations. Plasmonics 10, 311–317 (2015). doi: 10.1007/s11468-014-9810-4 |
[156] | Moradi M, Danaie M, Orouji AA. Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt Quant Electron 51, 154 (2019). doi: 10.1007/s11082-019-1874-0 |
[157] | Mikroulis S, Simos H, Roditi E, Chipouras A, Syvridis D. 40-Gb/s NRZ and RZ operation of an all-optical AND logic gate based on a passive InGaAsP/InP microring resonator. J Lightwave Technol 24, 1159–1164 (2006). doi: 10.1109/JLT.2005.863320 |
[158] | Ibrahim TA, Amarnath K, Kuo LC, Grover R, Van V et al. Photonic logic NOR gate based on two symmetric microring resonators. Opt Lett 29, 2779–2781 (2004). doi: 10.1364/OL.29.002779 |
[159] | Fushimi A, Tanabe T. All-optical logic gate operating with single wavelength. Opt Express 22, 4466–4479 (2014). doi: 10.1364/OE.22.004466 |
[160] | Moroney N, Bino LD, Woodley MTM, Ghalanos GN, Silver JM et al. Logic gates based on interaction of counterpropagating light in microresonators. J Lightwave Technol 38, 1414–1419 (2020). doi: 10.1109/JLT.2020.2975119 |
[161] | Wang SH, Li YH, Little BE, Wang LR, Wang X et al. Athermal third harmonic generation in micro-ring resonators. Opto-Electron Adv 3, 200028 (2020). |
[162] | Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C. Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23, 31755–31765 (2015). doi: 10.1364/OE.23.031755 |
[163] | Ota M, Sumimura A, Fukuhara M, Ishii Y, Fukuda M. Plasmonic-multimode-interference-based logic circuit with simple phase adjustment. Sci Rep 6, 24546 (2016). doi: 10.1038/srep24546 |
[164] | Wu XT, Tian JP, Yang RC. A type of all-optical logic gate based on graphene surface plasmon polaritons. Opt Commun 403, 185–192 (2017). doi: 10.1016/j.optcom.2017.07.041 |
[165] | Sharma P, Kumar VD. All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photonics Technol Lett 30, 959–962 (2018). doi: 10.1109/LPT.2018.2826051 |
[166] | Li P, Wang YX, Xu P. All-optical logic gates based on unidirectional surface plasmon polaritons. Appl Opt 58, 4205–4210 (2019). doi: 10.1364/AO.58.004205 |
[167] | Gogoi N, Sahu PP. All-optical compact surface plasmonic two-mode interference device for optical logic gate operation. Appl Opt 54, 1051–1057 (2015). doi: 10.1364/AO.54.001051 |
[168] | Ho KS, Han YH, Ri CS, Im SJ. Actively phase-controlled coupling between plasmonic waveguides via in-between gain-assisted nanoresonator: nanoscale optical logic gates. Opt Lett 41, 3739–3742 (2016). doi: 10.1364/OL.41.003739 |
[169] | Zhu ZB, Yuan J, Jiang LY. Multifunctional and multichannel all-optical logic gates based on the in-plane coherent control of localized surface plasmons. Opt Lett 45, 6362–6365 (2020). doi: 10.1364/OL.402085 |
[170] | Liu Q, Li N, Tan CH. All-optical logic gate based on manipulation of surface polaritons solitons via external gradient magnetic fields. Phys Rev A 101, 023818 (2020). doi: 10.1103/PhysRevA.101.023818 |
[171] | Sang YG, Wu XJ, Raja SS, Wang CY, Li HZ et al. Broadband multifunctional plasmonic logic gates. Adv Opt Mater 6, 1701368 (2018). doi: 10.1002/adom.201701368 |
[172] | Lu CC, Hu XY, Yue S, Fu YL, Yang H et al. Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics 8, 749–754 (2013). doi: 10.1007/s11468-012-9467-9 |
[173] | Cohen M, Zalevsky Z, Shavit R. Towards integrated nanoplasmonic logic circuitry. Nanoscale 5, 5442–5449 (2013). doi: 10.1039/c3nr00830d |
[174] | Liu HQ, Quan ZQ, Cheng Y, Deng SJ, Yuan LB. Ultra-compact universal linear-optical logic gate based on single rectangle plasmonic slot nanoantenna. Plasmonics 16, 973–980 (2021). doi: 10.1007/s11468-020-01363-9 |
[175] | Li F, Vo TD, Husko C, Pelusi M, Xu DX et al. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire. Opt Express 19, 20364–20371 (2011). doi: 10.1364/OE.19.020364 |
[176] | Yin ZS, Wu J, Zang JZ, Kong DM, Qiu JF et al. All-optical logic gate for XOR operation between 40-Gbaud QPSK tributaries in an ultra-short silicon nanowire. IEEE Photonics J 6, 4500307 (2014). |
[177] | Wei H, Li ZP, Tian XR, Wang ZX, Cong FZ et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett 11, 471–475 (2011). doi: 10.1021/nl103228b |
[178] | Wei H, Wang ZX, Tian XR, Käll M, Xu HX. Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2, 387 (2011). doi: 10.1038/ncomms1388 |
[179] | Piccione B, Cho CH, van Vugt LK, Agarwal R. All-optical active switching in individual semiconductor nanowires. Nat Nanotech 7, 640–645 (2012). doi: 10.1038/nnano.2012.144 |
[180] | Gao L, Chen L, Wei H, Xu HX. Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates. Nanoscale 10, 11923–11929 (2018). doi: 10.1039/C8NR01827H |
[181] | Yang H, Khayrudinov V, Dhaka V, Jiang H, Autere A et al. Nanowire network-based multifunctional all-optical logic gates. Sci Adv 4, eaar7954 (2018). doi: 10.1126/sciadv.aar7954 |
[182] | Lv YC, Xu FF, Wang K, Li YJ, Zhao YS. Loss compensation of surface plasmon polaritons in organic/metal nanowire heterostructures toward photonic logic processing. Sci China Mater 63, 1464–1471 (2020). doi: 10.1007/s40843-019-1216-5 |
[183] | Salmanpour A, Mohammadnejad S, Bahrami A. Photonic crystal logic gates: an overview. Opt Quant Electron 47, 2249–2275 (2015). doi: 10.1007/s11082-014-0102-1 |
[184] | Caballero LEP, Neto OPV. A review on photonic crystal logic gates. J Integr Circuits Syst 16, 1–13 (2021). |
[185] | Zhang YL, Zhang Y, Li BJ. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt Express 15, 9287–9292 (2007). doi: 10.1364/OE.15.009287 |
[186] | Christina XS, Kabilan AP. Design of optical logic gates using self-collimated beams in 2D photonic crystal. Photonic Sens 2, 173–179 (2012). doi: 10.1007/s13320-012-0054-7 |
[187] | Fan RR, Yang XL, Meng XF, Sun XW. 2D photonic crystal logic gates based on self-collimated effect. J Phys D Appl Phys 49, 325104 (2016). doi: 10.1088/0022-3727/49/32/325104 |
[188] | Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M. Design of ultra compact all-optical XOR and AND logic gates with low power consumption. Opt Commun 284, 3528–3533 (2011). doi: 10.1016/j.optcom.2011.03.069 |
[189] | Liu WJ, Yang DQ, Shen GS, Tian HP, Ji YF. Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt Laser Technol 50, 55–64 (2013). doi: 10.1016/j.optlastec.2012.12.030 |
[190] | Tang CR, Dou XY, Lin YX, Yin HX, Wu B et al. Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt Commun 316, 49–55 (2014). doi: 10.1016/j.optcom.2013.11.053 |
[191] | Zhu ZH, Ye WM, Ji JR, Yuan XD, Zen C. High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt Express 14, 1783–1788 (2006). doi: 10.1364/OE.14.001783 |
[192] | Fu YL, Hu XY, Gong QH. Silicon photonic crystal all-optical logic gates. Phys Lett A 377, 329–333 (2013). doi: 10.1016/j.physleta.2012.11.034 |
[193] | Rani P, Kalra Y, Sinha RK. Realization of AND gate in Y shaped photonic crystal waveguide. Opt Commun 298–299, 227–231 (2013). |
[194] | Rani P, Kalra Y, Sinha RK. Design of all optical logic gates in photonic crystal waveguides. Optik 126, 950–955 (2015). doi: 10.1016/j.ijleo.2015.03.003 |
[195] | Singh BR, Rawal S. Photonic-crystal-based all-optical NOT logic gate. J Opt Soc Am A 32, 2260–2263 (2015). doi: 10.1364/JOSAA.32.002260 |
[196] | Rao DGS, Swarnakar S, Kumar S. Performance analysis of all-optical NAND, NOR, and XNOR logic gates using photonic crystal waveguide for optical computing applications. Opt Eng 59, 057101 (2020). |
[197] | Mohebzadeh-Bahabady A, Olyaee S. All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on an interference effect. IET Optoelectron 12, 191–195 (2018). doi: 10.1049/iet-opt.2017.0174 |
[198] | Parandin F, Malmir MR, Naseri M, Zahedi A. Reconfigurable all-optical NOT, XOR, and NOR logic gates based on two dimensional photonic crystals. Superlattices Microstruct 113, 737–744 (2018). doi: 10.1016/j.spmi.2017.12.005 |
[199] | Goudarzi K, Mir A, Chaharmahali I, Goudarzi D. All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal. Opt Laser Technol 78, 139–142 (2016). doi: 10.1016/j.optlastec.2015.10.013 |
[200] | Lu CH, Zhu B, Zhu CY, Ge LC, Liu Y et al. All-optical logic gates and a half-adder based on lithium niobate photonic crystal micro-cavities. Chin Opt Lett 17, 072301 (2019). doi: 10.3788/COL201917.072301 |
[201] | Isfahani BM, Tameh TA, Granpayeh N, Javan ARM. All-optical NOR gate based on nonlinear photonic crystal microring resonators. J Opt Soc Am B 26, 1097–1102 (2009). doi: 10.1364/JOSAB.26.001097 |
[202] | Bai JB, Wang JQ, Jiang JZ, Chen XY, Li H et al. Photonic not and nor gates based on a single compact photonic crystal ring resonator. Appl Opt 48, 6923–6927 (2009). doi: 10.1364/AO.48.006923 |
[203] | Andalib P, Granpayeh N. All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators. J Opt A Pure Appl Opt 11, 085203 (2009). doi: 10.1088/1464-4258/11/8/085203 |
[204] | Andalib P, Granpayeh N. All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J Opt Soc Am B 26, 10–16 (2009). |
[205] | Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Optik 125, 5701–5704 (2014). doi: 10.1016/j.ijleo.2014.06.013 |
[206] | Pirzadi M, Mir A, Bodaghi D. Realization of ultra-accurate and compact all-optical photonic crystal OR logic gate. IEEE Photonics Technol Lett 28, 2387–2390 (2016). doi: 10.1109/LPT.2016.2596580 |
[207] | D’souza NM, Mathew V. Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt Laser Technol 80, 214–219 (2016). doi: 10.1016/j.optlastec.2016.01.014 |
[208] | Moniem TA. All-optical XNOR gate based on 2D photonic-crystal ring resonators. Quant Electron 47, 169–172 (2017). doi: 10.1070/QEL16279 |
[209] | Hussein HME, Ali TA, Rafat NH. New designs of a complete set of Photonic Crystals logic gates. Opt Commun 411, 175–181 (2018). doi: 10.1016/j.optcom.2017.11.043 |
[210] | Salimzadeh A, Alipour-Banaei H. An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators. Opt Commun 410, 793–798 (2018). doi: 10.1016/j.optcom.2017.11.036 |
[211] | Younis RM, Areed NFF, Obayya SSA. Fully integrated AND and OR optical logic gates. IEEE Photonics Technol Lett 26, 1900–1903 (2014). doi: 10.1109/LPT.2014.2340435 |
[212] | Liu Y, Qin F, Meng ZM, Zhou F, Mao QH et al. All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt Express 19, 1945–1953 (2011). doi: 10.1364/OE.19.001945 |
[213] | Yanik MF, Fan SH, Soljačić M. High-contrast all-optical bistable switching in photonic crystal microcavities. Appl Phys Lett 83, 2739–2741 (2003). doi: 10.1063/1.1615835 |
[214] | Yanik MF, Fan SH, Soljačić M, Joannopoulos JD. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt Lett 28, 2506–2508 (2003). doi: 10.1364/OL.28.002506 |
[215] | Vujic D, John S. Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching. Physical Review A 72, 013807 (2005). doi: 10.1103/PhysRevA.72.013807 |
[216] | Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics 4, 477–483 (2010). doi: 10.1038/nphoton.2010.89 |
[217] | Jandieri V, Khomeriki R, Erni D. Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides. Opt Express 26, 19845–19853 (2018). doi: 10.1364/OE.26.019845 |
[218] | Jandieri V, Khomeriki R, Onoprishvili T, Werner DH, Berakdar J et al. Functional all-optical logic gates for true time-domain signal processing in nonlinear photonic crystal waveguides. Opt Express 28, 18317–18331 (2020). doi: 10.1364/OE.395015 |
[219] | Caballero LP, Povinelli ML, Ramirez JC, Guimarães PSS, Neto OPV. Complementary photonic crystal integrated logic devices. Opt Lett 45, 5502–5505 (2020). doi: 10.1364/OL.393846 |
[220] | He L, Zhang WX, Zhang XD. Topological all-optical logic gates based on two-dimensional photonic crystals. Opt Express 27, 25841–25859 (2019). doi: 10.1364/OE.27.025841 |
[221] | He L, Ji HY, Wang YJ, Zhang XD. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs. Opt Express 28, 34015–34023 (2020). doi: 10.1364/OE.409265 |
[222] | Coelho AG, Costa MBC, Ferreira AC, da Silva MG, Lyra ML et al. Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber. J Lightwave Technol 31, 731–739 (2013). doi: 10.1109/JLT.2012.2232641 |
[223] | Sousa JRR, Filho AFGF, Ferreira AC, Batista GS, Sobrinho CS et al. Generation of logic gates based on a photonic crystal fiber Michelson interferometer. Opt Commun 322, 143–149 (2014). doi: 10.1016/j.optcom.2014.02.023 |
[224] | Kumar S, Sen M. Integrable all-optical NOT gate using nonlinear photonic crystal MZI for photonic integrated circuit. J Opt Soc Am B 37, 359–369 (2020). doi: 10.1364/JOSAB.380351 |
[225] | Datta T, Sen M. Raman mediated ultrafast all-optical nor gate. Appl Opt 59, 6352–6359 (2020). doi: 10.1364/AO.396859 |
[226] | Dhasarathan V, Sahu SK, Nguyen TK, Palai G. Realization of all logic gates using metamaterials based three dimensional photonics structures: a future application of 3D photonics to optical computing. Optik 202, 163723 (2020). doi: 10.1016/j.ijleo.2019.163723 |
[227] | Ginzburg P, Orenstein M. Photonic switching in waveguides using spatial concepts inspired by EIT. Opt Express 14, 11312–11317 (2006). doi: 10.1364/OE.14.011312 |
[228] | Ginzburg P, Hayat A, Vishnyakov V, Orenstein M. Photonic logic by linear unidirectional interference. Opt Express 17, 4251–4256 (2009). doi: 10.1364/OE.17.004251 |
[229] | Raghuwanshi SK, Kumar A, Kumar S. 1 × 4 signal router using three Mach-Zehnder interferometers. Opt Eng 52, 035002 (2013). doi: 10.1117/1.OE.52.3.035002 |
[230] | Tang XF, Fang ZQ, Zhai YX, Jiao XS, Gao N et al. A reconfigurable optical logic gate with up to 25 logic functions based on polarization modulation with direct detection. IEEE Photonics J 9, 7802011 (2017). |
[231] | Ooi KJA, Chu HS, Bai P, Ang LK. Electro-optical graphene plasmonic logic gates. Opt Lett 39, 1629–1632 (2014). doi: 10.1364/OL.39.001629 |
[232] | Ying ZF, Soref R. Electro-optical logic using dual-nanobeam Mach-Zehnder interferometer switches. Opt Express 29, 12801–12812 (2021). doi: 10.1364/OE.419287 |
[233] | Min SC, Liao SS, Zou CL, Zhang XL, Dong JJ. Route-asymmetrical optical transmission and logic gate based on optical gradient force. Opt Express 22, 25947–25952 (2014). doi: 10.1364/OE.22.025947 |
[234] | Zhang YH, Xiang SY, Cao XY, Zhao SH, Guo XX et al. Experimental demonstration of pyramidal neuron-like dynamics dominated by dendritic action potentials based on a VCSEL for all-optical XOR classification task. Photonics Res 9, 1055–1061 (2021). doi: 10.1364/PRJ.422628 |
[235] | Xiang SY, Ren ZX, Zhang YH, Song ZW, Hao Y. All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on a VCSEL-SA. Opt Lett 45, 1104–1107 (2020). doi: 10.1364/OL.383942 |
[236] | Wu LM, Fan TJ, Wei SR, Xu YJ, Zhang Y et al. All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability. Opto-Electron Adv 5, 200046 (2022). doi: 10.29026/oea.2022.200046 |
[237] | Miller DAB. Are optical transistors the logical next step. Nat Photonics 4, 3–5 (2010). doi: 10.1038/nphoton.2009.240 |
[238] | Qiu CY, Xiao HF, Wang LH, Tian YH. Recent advances in integrated optical directed logic operations for high performance optical computing: a review. Front Optoelectron 15, 1 (2022). doi: 10.1007/s12200-022-00001-y |
[239] | Ying ZF, Feng CH, Zhao Z, Dhar S, Dalir H et al. Electronic-photonic arithmetic logic unit for high-speed computing. Nat Commun 11, 2154 (2020). doi: 10.1038/s41467-020-16057-3 |
[240] | Boolakee T, Heide C, Garzón-Ramírez A, Weber HB, Franco I et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022). doi: 10.1038/s41586-022-04565-9 |
[241] | Lei L, Dong JJ, Yu Y, Tan SS, Zhang XL. All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers. J Lightwave Technol 30, 3532–3539 (2012). doi: 10.1109/JLT.2012.2218575 |
[242] | Caballero LP, Povinelli ML, Ramirez JC, Guimarães PSS, Neto OPV. Photonic crystal integrated logic gates and circuits. Opt Express 30, 1976–1993 (2022). doi: 10.1364/OE.444714 |
[243] | Chen XB, Yu Y, Zhang XL. All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40Gb/s. IEEE Photonics Technol Lett 23, 118–120 (2011). doi: 10.1109/LPT.2010.2091628 |
[244] | Reis C, Maziotis A, Kouloumentas C, Stamatiadis C, Bougioukos M et al. All-optical synchronous S-R flip-flop based on active interferometric devices. Electron Lett 46, 709–710 (2010). doi: 10.1049/el.2010.1017 |
[245] | Aikawa Y, Shimizu S, Uenohara H. Demonstration of all-optical divider circuit using SOA-MZI-type XOR gate and feedback loop for forward error detection. J Lightwave Technol 29, 2259–2366 (2011). doi: 10.1109/JLT.2011.2158570 |
[246] | Wang Y, Zhang XL, Dong JJ, Huang DX. Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers. Opt Express 15, 15080–15085 (2007). doi: 10.1364/OE.15.015080 |
[247] | Lin X, Liu JP, Hao JY, Wang K, Zhang YY et al. Collinear holographic data storage technologies. Opto-Electron Adv 3, 190004 (2020). |
[248] | Hardy J, Shamir J. Optics inspired logic architecture. Opt Express 15, 150–165 (2007). doi: 10.1364/OE.15.000150 |
[249] | Wang YH, He S, Gao XY, Ye PP, Lei L et al. Enhanced optical nonlinearity in a silicon–organic hybrid slot waveguide for all-optical signal processing. Photonics Res 10, 50–58 (2022). doi: 10.1364/PRJ.439251 |
[250] | Wang C, Li F, Xu Y, Duan M, Song Y et al. Tin Selenide: a promising black-phosphorus-analogue nonlinear optical material and its application as all-optical switcher and all-optical logic gate. Mater Today Phys 21, 100500 (2021). doi: 10.1016/j.mtphys.2021.100500 |
Timeline of advances in optical logic gates and related technologies.
Overview of various optical logic gate schemes.
Optical logic gates created by the superposition of spatially encoded transparent thin films: (a) cells encoded for binary input; (b) cells encoded for different logical operations30.
Performing logic gate operations optically with a diffractive neural network system. Figure reproduced from ref.43, under a Creative Commons Attribution 4.0 International License.
(a) XOR gate with two SOAs based on XGM effect (input A and B). (b) NAND gate with two SOAs based on XGM effect (input A and B).
Optical logic gates with SOA based on T-XPM: (a) optical setup; (b) frequency spectrum of the output probe signal. Figure reproduced with permission from ref.56, © The Optical Society.
(a) Four-wave mixing. (b) Degenerate four-wave mixing.
Optical AND logic gates with SOA based on CPM.
SOA-MZI configuration: (a) copropagation; (b) counterpropagation.
SOA assisted Sagnac configuration: (a) XOR gate90; (b) AND gate93.
(a) Multi-function optical logic gate system based on HNLF. (b) Frequency spectrum of the output probe signal and logic gate design. Figure reproduced from ref.116, IEEE.
Optical logic gate based linear interference with waveguide path length differences: (a) OR gate; (b) XOR gate; (c) XNOR gate (A and B: input ports; O: output ports).
Microring resonator coupled with a straight waveguide with both pump signal and probe signal are injected into the input of the straight waveguide. Figure reproduced with permission from ref.154, © The Optical Society.
Simple nanowire networks for logic gates (input marked in red and output marked in blue). Figure reproduced with permission from ref.177, American Chemical Society.
Self-collimated light interference in photonic crystals for logic gates (Input: I1 and I2, Output: O1 or O2)185. Figure reproduced with permission from ref.185, © The Optical Society.
Logic gates based on MMI in a photonic crystal (input in the left and output in the right). Figure reproduced with permission from ref.189, Elsevier.
Linear interference with phase difference in photonic crystal: (a) OR gate; (b) XOR gate; (c) XNOR gate. Figure reproduced from ref.192, Elsevier.
Two examples of microring structures in a photonic crystal: (a) AND gate (or NOR gate); (b) OR gate. Figure reproduced from: (a) ref.204, Optical Society of America; (b) ref.206, IEEE.