Jiao SM, Liu JW, Zhang LW, Yu FH, Zuo GM et al. All-optical logic gate computing for high-speed parallel information processing. Opto-Electron Sci 1, 220010 (2022). doi: 10.29026/oes.2022.220010
Citation: Jiao SM, Liu JW, Zhang LW, Yu FH, Zuo GM et al. All-optical logic gate computing for high-speed parallel information processing. Opto-Electron Sci 1, 220010 (2022). doi: 10.29026/oes.2022.220010

Review Open Access

All-optical logic gate computing for high-speed parallel information processing

More Information
  • Optical computing and optical neural network have gained increasing attention in recent years because of their potential advantages of parallel processing at the speed of light and low power consumption by comparison with electronic computing. The optical implementation of the fundamental building blocks of a digital computer, i.e. logic gates, has been investigated extensively in the past few decades. Optical logic gate computing is an alternative approach to various analogue optical computing architectures. In this paper, the latest development of optical logic gate computing with different kinds of implementations is reviewed. Firstly, the basic concepts of analogue and digital computing with logic gates in the electronic and optical domains are introduced. And then a comprehensive summary of various optical logic gate schemes including spatial encoding of light field, semiconductor optical amplifiers (SOA), highly nonlinear fiber (HNLF), microscale and nanoscale waveguides, and photonic crystal structures is presented. To conclude, the formidable challenges in developing practical all-optical logic gates are analyzed and the prospects of the future are discussed.
  • 加载中
  • [1] Wu JM, Lin X, Guo YC, Liu JW, Fang L et al. Analog optical computing for artificial intelligence. Engineering 10, 133–145 (2022). doi: 10.1016/j.eng.2021.06.021

    CrossRef Google Scholar

    [2] Liu J, Wu QH, Sui XB, Chen Q, Gu GH et al. Research progress in optical neural networks: theory, applications and developments. PhotoniX 2, 5 (2021). doi: 10.1186/s43074-021-00026-0

    CrossRef Google Scholar

    [3] Xu RQ, Lv P, Xu FJ, Shi YS. A survey of approaches for implementing optical neural networks. Opt Laser Technol 136, 106787 (2021). doi: 10.1016/j.optlastec.2020.106787

    CrossRef Google Scholar

    [4] Wetzstein G, Ozcan A, Gigan S, Fan SH, Englund D et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). doi: 10.1038/s41586-020-2973-6

    CrossRef Google Scholar

    [5] Sui XB, Wu QH, Liu J, Chen Q, Gu GH. A review of optical neural networks. IEEE Access 8, 70773–70783 (2020). doi: 10.1109/ACCESS.2020.2987333

    CrossRef Google Scholar

    [6] De Marinis L, Cococcioni M, Castoldi P, Andriolli N. Photonic neural networks: a survey. IEEE Access 7, 175827–175841 (2019). doi: 10.1109/ACCESS.2019.2957245

    CrossRef Google Scholar

    [7] Shen YC, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T et al. Deep learning with coherent nanophotonic circuits. Nat Photonics 11, 441–446 (2017). doi: 10.1038/nphoton.2017.93

    CrossRef Google Scholar

    [8] Feldmann J, Youngblood N, Karpov M, Gehring H, Li X et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). doi: 10.1038/s41586-020-03070-1

    CrossRef Google Scholar

    [9] Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). doi: 10.1126/science.aat8084

    CrossRef Google Scholar

    [10] Zuo Y, Li BH, Zhao YJ, Jiang Y, Chen YC et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019). doi: 10.1364/OPTICA.6.001132

    CrossRef Google Scholar

    [11] Jiao SM, Feng J, Gao Y, Lei T, Xie ZW et al. Optical machine learning with incoherent light and a single-pixel detector. Opt Lett 44, 5186–5189 (2019). doi: 10.1364/OL.44.005186

    CrossRef Google Scholar

    [12] Zuo Y, Zhao YJ, Chen YC, Du SW, Liu JW. Scalability of all-optical neural networks based on spatial light modulators. Phys Rev Appl 15, 054034 (2021). doi: 10.1103/PhysRevApplied.15.054034

    CrossRef Google Scholar

    [13] Tait AN, De Lima TF, Zhou E, Wu AX, Nahmias MA et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep 7, 7430 (2017). doi: 10.1038/s41598-017-07754-z

    CrossRef Google Scholar

    [14] Huang CR, Bilodeau S, De Lima TF, Tait AN, Ma PY et al. Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits. APL Photonics 5, 040803 (2020). doi: 10.1063/1.5144121

    CrossRef Google Scholar

    [15] Xu XY, Tan MX, Corcoran B, Wu JY, Boes A et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021). doi: 10.1038/s41586-020-03063-0

    CrossRef Google Scholar

    [16] Khoram E, Chen A, Liu DJ, Ying L, Wang QQ et al. Nanophotonic media for artificial neural inference. Photonics Res 7, 823–827 (2019). doi: 10.1364/PRJ.7.000823

    CrossRef Google Scholar

    [17] Liao K, Chen Y, Yu ZC, Hu XY, Wang XY et al. All-optical computing based on convolutional neural networks. Opto-Electron Adv 4, 200060 (2021). doi: 10.29026/oea.2021.200060

    CrossRef Google Scholar

    [18] Davoodi F, Granpayeh N. All optical logic gates: a tutorial. Int J Inf Commun Technol Res 4, 65–98 (2012).

    Google Scholar

    [19] Singh P, Tripathi DK, Jaiswal S, Dixit HK. All-optical logic gates: designs, classification, and comparison. Adv Opt Technol 2014, 275083 (2014).

    Google Scholar

    [20] Sasikala V, Chitra K. All optical switching and associated technologies: a review. J Opt 47, 307–317 (2018). doi: 10.1007/s12596-018-0452-3

    CrossRef Google Scholar

    [21] Saharia A, Mudgal N, Agarwal A, Sahu S, Jain S et al. A comparative study of various all-optical logic gates. In Optical and Wireless Technologies 429–437 (Springer, Singapore, 2020); https://doi.org/10.1007/978-981-13-6159-3_45.

    Google Scholar

    [22] Minzioni P, Lacava C, Tanabe T, Dong JJ, Hu XY et al. Roadmap on all-optical processing. J Opt 21, 063001 (2019). doi: 10.1088/2040-8986/ab0e66

    CrossRef Google Scholar

    [23] Wang J, Long Y. On-chip silicon photonic signaling and processing: a review. Sci Bull 63, 1267–1310 (2018). doi: 10.1016/j.scib.2018.05.038

    CrossRef Google Scholar

    [24] Ghaffari BM, Salehi JA. Multiclass, multistage, and multilevel fiber-optic CDMA signaling techniques based on advanced binary optical logic gate elements. IEEE Trans Commun 57, 1424–1432 (2009). doi: 10.1109/TCOMM.2009.05.070292

    CrossRef Google Scholar

    [25] Asakawa K, Sugimoto Y, Nakamura S. Silicon photonics for telecom and data-com applications. Opto-Electron Adv 3, 200011 (2020).

    Google Scholar

    [26] Caulfield HJ, Westphal J. The logic of optics and the optics of logic. Inf Sci 162, 21–33 (2004). doi: 10.1016/j.ins.2003.01.002

    CrossRef Google Scholar

    [27] Qian L, Caulfield HJ. What can we do with a linear optical logic gate. Inf Sci 176, 3379–3392 (2006). doi: 10.1016/j.ins.2006.02.001

    CrossRef Google Scholar

    [28] Tanida J, Ichioka Y. Optical logic array processor using shadowgrams. J Opt Soc Am 73, 800–809 (1983). doi: 10.1364/JOSA.73.000800

    CrossRef Google Scholar

    [29] Ichioka Y, Tanida J. Optical parallel logic gates using a shadow-casting system for optical digital computing. Proc IEEE 72, 787–801 (1984). doi: 10.1109/PROC.1984.12939

    CrossRef Google Scholar

    [30] Yatagai T. Optical space-variant logic-gate array based on spatial encoding technique. Opt Lett 11, 260–262 (1986). doi: 10.1364/OL.11.000260

    CrossRef Google Scholar

    [31] Li Y, Eichmann G, Alfano RR. Optical computing using hybrid encoded shadow casting. Appl Opt 25, 2636–2638 (1986). doi: 10.1364/AO.25.002636

    CrossRef Google Scholar

    [32] Jutamulia S, Storti G. Noncoded shadow-casting logic array. Appl Opt 28, 4517–4518 (1989). doi: 10.1364/AO.28.004517

    CrossRef Google Scholar

    [33] Yamamoto H, Hayasaki Y, Nishida N. Securing information display by use of visual cryptography. Opt Lett 28, 1564–1566 (2003). doi: 10.1364/OL.28.001564

    CrossRef Google Scholar

    [34] Shi YS, Yang XB. Optical hiding with visual cryptography. J Opt 19, 115703 (2017). doi: 10.1088/2040-8986/aa895e

    CrossRef Google Scholar

    [35] Jiao SM, Feng J, Gao Y, Lei T, Yuan XC. Visual cryptography in single-pixel imaging. Opt Express 28, 7301–7313 (2020). doi: 10.1364/OE.383240

    CrossRef Google Scholar

    [36] Karim MA, Awwal AAS, Cherri AK. Polarization-encoded optical shadow-casting logic units: design. Appl Opt 26, 2720–2725 (1987). doi: 10.1364/AO.26.002720

    CrossRef Google Scholar

    [37] Lohmann AW, Weigelt J. Spatial filtering logic based on polarization. Appl Opt 26, 131–135 (1987). doi: 10.1364/AO.26.000131

    CrossRef Google Scholar

    [38] Lohmann AW. Polarization and optical logic. Appl Opt 25, 1594–1597 (1986). doi: 10.1364/AO.25.001594

    CrossRef Google Scholar

    [39] Torroba R, Henao R, Carletti C. Digital polarization-encoding technique for optical logic operations. Opt Lett 21, 1918–1920 (1996). doi: 10.1364/OL.21.001918

    CrossRef Google Scholar

    [40] Zaghloul YA, Zaghloul ARM. Unforced polarization-based optical implementation of Binary logic. Opt Express 14, 7252–7269 (2006). doi: 10.1364/OE.14.007252

    CrossRef Google Scholar

    [41] Zaghloul YA, Zaghloul ARM. Complete all-optical processing polarization-based binary logic gates and optical processors. Opt Express 14, 9879–9895 (2006). doi: 10.1364/OE.14.009879

    CrossRef Google Scholar

    [42] Zaghloul YA, Zaghloul ARM, Adibi A. Passive all-optical polarization switch, binary logic gates, and digital processor. Opt Express 19, 20332–20346 (2011). doi: 10.1364/OE.19.020332

    CrossRef Google Scholar

    [43] Qian C, Lin X, Lin XB, Xu J, Sun Y et al. Performing optical logic operations by a diffractive neural network. Light Sci Appl 9, 59 (2020). doi: 10.1038/s41377-020-0303-2

    CrossRef Google Scholar

    [44] Zhao ZH, Wang Y, Ding XM, Li HY, Fu JH et al. Compact logic operator utilizing a single-layer metasurface. Photonics Res 10, 316–322 (2022). doi: 10.1364/PRJ.439036

    CrossRef Google Scholar

    [45] Wang PP, Xiong WJ, Huang ZB, He YL, Xie ZQ et al. Orbital angular momentum mode logical operation using optical diffractive neural network. Photonics Res 9, 2116–2124 (2021). doi: 10.1364/PRJ.432919

    CrossRef Google Scholar

    [46] Jenkins BK, Sawchuk AA, Strand TC, Forchheimer R, Soffer BH. Sequential optical logic implementation. Appl Opt 23, 3455–3464 (1984). doi: 10.1364/AO.23.003455

    CrossRef Google Scholar

    [47] Stubkjaer KE. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE J Select Top Quant Electron 6, 1428–1435 (2000). doi: 10.1109/2944.902198

    CrossRef Google Scholar

    [48] Zhang M, Wang L, Ye PD. All optical XOR logic gates: technologies and experiment demonstrations. IEEE Commun Mag 43, S19–S24 (2005).

    Google Scholar

    [49] Hamie A, Sharaiha A, Guegan M, Pucel B. All-optical Logic NOR gate using two-cascaded semiconductor optical amplifiers. IEEE Photonics Technol Lett 14, 1439–1441 (2002). doi: 10.1109/LPT.2002.802426

    CrossRef Google Scholar

    [50] Kim JH, Kim YI, Byun YT, Jhon YM, Lee S et al. All-optical logic gates using semiconductor optical-amplifier-based devices and their applications. J Korean Phys Soc 45, 1158–1161 (2004).

    Google Scholar

    [51] Kim SH, Kim JH, Yu BG, Byun YT, Jeon YM et al. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electron Lett 41, 1027–1028 (2005). doi: 10.1049/el:20052320

    CrossRef Google Scholar

    [52] Sharaiha A, Topomondzo J, Morel P. All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier. Opt Commun 265, 322–325 (2006). doi: 10.1016/j.optcom.2006.03.036

    CrossRef Google Scholar

    [53] Sasikala V, Chitra K. Performance analysis of multilogic all-optical structure based on nonlinear signal processing in SOA. J Opt 49, 208–215 (2020). doi: 10.1007/s12596-020-00608-4

    CrossRef Google Scholar

    [54] Kim JH, Jhon YM, Byun YT, Lee S, Woo DH et al. All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technol Lett 14, 1436–1438 (2002). doi: 10.1109/LPT.2002.801841

    CrossRef Google Scholar

    [55] Dong JJ, Zhang XL, Xu J, Huang DX. 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: Experimental demonstration and theoretical analysis. Opt Commun 281, 1710–1715 (2008). doi: 10.1016/j.optcom.2007.11.054

    CrossRef Google Scholar

    [56] Dong JJ, Zhang XL, Huang DX. A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection. Opt Express 17, 7725–7730 (2009). doi: 10.1364/OE.17.007725

    CrossRef Google Scholar

    [57] Kumar S, Willner AE. Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA. Opt Express 14, 5092–5097 (2006). doi: 10.1364/OE.14.005092

    CrossRef Google Scholar

    [58] Wu BB, Fu SN, Wu J, Shum P, Ngo NQ et al. Simultaneous implementation of all-optical OR and AND logic gates for NRZ/RZ/CSRZ ON–OFF-keying signals. Opt Commun 283, 349–354 (2010). doi: 10.1016/j.optcom.2009.10.074

    CrossRef Google Scholar

    [59] Li ZH, Li GF. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol Lett 18, 1341–1343 (2006). doi: 10.1109/LPT.2006.877008

    CrossRef Google Scholar

    [60] Chan K, Chan CK, Chen LK, Tong F. Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier With RZ-DPSK modulated inputs. IEEE Photonics Technol Lett 16, 897–899 (2004). doi: 10.1109/LPT.2004.823750

    CrossRef Google Scholar

    [61] Kang I, Dorrer C, Leuthold J. All-optical XOR operation of 40 Gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier. Electron Lett 40, 496–498 (2004). doi: 10.1049/el:20040343

    CrossRef Google Scholar

    [62] Deng N, Chan K, Chan CK, Chen LK. An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier. IEEE J Select Top Quant Electron 12, 702–707 (2006). doi: 10.1109/JSTQE.2006.876603

    CrossRef Google Scholar

    [63] Kong DM, Li Y, Wang H, Zhang XP, Zhang JY et al. All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol Lett 24, 988–990 (2012).

    Google Scholar

    [64] Berrettini G, Simi A, Malacarne A, Bogoni A, Poti L. Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. IEEE Photonics Technol Lett 18, 917–919 (2006). doi: 10.1109/LPT.2006.873570

    CrossRef Google Scholar

    [65] Dong J, Zhang X, Wang Y, Xu J, Huang D. 40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA. Electron Lett 43, 884–886 (2007). doi: 10.1049/el:20071220

    CrossRef Google Scholar

    [66] Dong JJ, Zhang XL, Fu SN, Xu J, Shum P et al. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering. IEEE J Select Top Quant Electron 14, 770–778 (2008). doi: 10.1109/JSTQE.2008.916248

    CrossRef Google Scholar

    [67] Chen X, Huo L, Zhao ZX, Zhuang L, Lou CY. Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s. IEEE Photonics Technol Lett 28, 2463–2466 (2016). doi: 10.1109/LPT.2016.2601079

    CrossRef Google Scholar

    [68] Han BC, Liu Y. All-optical reconfigurable non-inverted logic gates with a single semiconductor optical amplifier. AIP Adv 9, 015007 (2019). doi: 10.1063/1.5061828

    CrossRef Google Scholar

    [69] Soto H, Erasme D, Guekos G. 5-Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers. IEEE Photonics Technol Lett 13, 335–337 (2001). doi: 10.1109/68.917843

    CrossRef Google Scholar

    [70] Guo LQ, Connelly MJ. All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier. Opt Express 14, 2938–2943 (2006). doi: 10.1364/OE.14.002938

    CrossRef Google Scholar

    [71] Zhang JY, Wu J, Feng CF, Xu K, Lin JT. All-optical logic OR gate exploiting nonlinear polarization rotation in an SOA and red-shifted sideband filtering. IEEE Photonics Technol Lett 19, 33–35 (2007). doi: 10.1109/LPT.2006.888991

    CrossRef Google Scholar

    [72] Han LY, Wen H, Jiang H, Guo YL, Zhang HY. All-Optical AND logic gate without additional input beam by utilizing cross polarization modulation effect. Chin Phys Lett 25, 3901–3904 (2008). doi: 10.1088/0256-307X/25/11/018

    CrossRef Google Scholar

    [73] Mukherjee K, Raja A, Maji K. All-optical logic gate NAND using semiconductor optical amplifiers with simulation. J Opt 48, 357–364 (2019). doi: 10.1007/s12596-019-00555-9

    CrossRef Google Scholar

    [74] Toliver P, Runser RJ, Glesk I, Prucnal PR. Comparison of three nonlinear interferometric optical switch geometries. Opt Commun 175, 365–373 (2000). doi: 10.1016/S0030-4018(00)00484-3

    CrossRef Google Scholar

    [75] Fjelde T, Wolfson D, Kloch A, Dagens B, Coquelin A et al. Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter. Electron Lett 36, 1863–1864 (2000). doi: 10.1049/el:20001302

    CrossRef Google Scholar

    [76] Wang Q, Zhu GH, Chen HM, Jaques J, Leuthold J et al. Study of all-optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE J Quant Electron 40, 703–710 (2004). doi: 10.1109/JQE.2004.828261

    CrossRef Google Scholar

    [77] Sun HZ, Wang Q, Dong H, Chen Z, Dutta NK et al. All-Optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. IEEE J Quant Electron 42, 747–751 (2006). doi: 10.1109/JQE.2006.878184

    CrossRef Google Scholar

    [78] Dailey JM, Webb RP, Manning RJ. All-optical technique for modulation format conversion from on-off-keying to alternate-mark-inversion. Opt Express 18, 21873–21882 (2010). doi: 10.1364/OE.18.021873

    CrossRef Google Scholar

    [79] Dong H, Sun H, Wang Q, Dutta NK, Jaques J. 80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme. Opt Commun 265, 79–83 (2006). doi: 10.1016/j.optcom.2006.02.045

    CrossRef Google Scholar

    [80] Wang G, Yang XL, Hu WS. All-optical logic gates for 40Gb/s NRZ signals using complementary data in SOA-MZIs. Opt Commun 290, 28–32 (2013). doi: 10.1016/j.optcom.2012.10.047

    CrossRef Google Scholar

    [81] Taraphdar C, Chattopadhyay T, Roy JN. Mach–Zehnder interferometer-based all-optical reversible logic gate. Opt Laser Technol 42, 249–259 (2010). doi: 10.1016/j.optlastec.2009.06.017

    CrossRef Google Scholar

    [82] Kang I, Rasras M, Buhl L, Dinu M, Cabot S et al. All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers. Opt Express 17, 19062–19066 (2009). doi: 10.1364/OE.17.019062

    CrossRef Google Scholar

    [83] Kim JY, Kang JM, Kim TY, Han SK. All-Optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment. J Lightwave Technol 24, 3392–3399 (2006). doi: 10.1109/JLT.2006.880593

    CrossRef Google Scholar

    [84] Kotb A, Zoiros KE, Guo CL. All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules. Opt Laser Technol 108, 426–433 (2018). doi: 10.1016/j.optlastec.2018.07.027

    CrossRef Google Scholar

    [85] Kotb A, Guo CL. 100 Gb/s all-optical multifunctional AND, NOR, XOR, OR, XNOR, and NAND logic gates in a single compact scheme based on semiconductor optical amplifiers. Opt Laser Technol 137, 106828 (2021). doi: 10.1016/j.optlastec.2020.106828

    CrossRef Google Scholar

    [86] Zhang M, Zhao YP, Wang L, Wang J, Ye PD. Design and analysis of all-optical XOR gate using SOA-based Mach–Zehnder interferometer. Opt Commun 223, 301–308 (2003). doi: 10.1016/S0030-4018(03)01692-4

    CrossRef Google Scholar

    [87] Houbavlis T, Zoiros KE, Kanellos G, Tsekrekos C. Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach–Zehnder Interferometer. Opt Commun 232, 179–199 (2004). doi: 10.1016/j.optcom.2003.12.062

    CrossRef Google Scholar

    [88] Ye XH, Ye PD, Zhang M. All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer. Opt Fiber Technol 12, 312–316 (2006). doi: 10.1016/j.yofte.2005.12.001

    CrossRef Google Scholar

    [89] Sokoloff JP, Prucnal PR, Glesk I, Kane M. A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photonics Technol Lett 5, 787–790 (1993). doi: 10.1109/68.229807

    CrossRef Google Scholar

    [90] Houbavlis T, Zoiros K, Hatziefremidis A, Avramopoulos H, Occhi L et al. 10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate. Electron Lett 35, 1650–1652 (1999). doi: 10.1049/el:19991142

    CrossRef Google Scholar

    [91] Zhou YF, Wu J, Lin JT. Novel ultrafast all-optical XOR scheme based on Sagnac interferometric structure. IEEE J Quant Electron 41, 823–827 (2005). doi: 10.1109/JQE.2005.847544

    CrossRef Google Scholar

    [92] Zoiros KE, Papadopoulos G, Houbavlis T, Kanellos GT. Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer. Opt Commun 258, 114–134 (2006). doi: 10.1016/j.optcom.2005.07.059

    CrossRef Google Scholar

    [93] Feng CF, Wu J, Xu K, Lin JT. Simple ultrafast all-optical AND logic gate. Opt Eng 46, 125006 (2007). doi: 10.1117/1.2817651

    CrossRef Google Scholar

    [94] Chattopadhyay T, Roy JN. Semiconductor optical amplifier (SOA)-assisted Sagnac switch for designing of all-optical TRI-state logic gates. Optik 122, 1073–1078 (2011). doi: 10.1016/j.ijleo.2010.06.045

    CrossRef Google Scholar

    [95] Roy JN, Gayen DK. Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device-alternative approach. Appl Opt 46, 5304–5310 (2007). doi: 10.1364/AO.46.005304

    CrossRef Google Scholar

    [96] Bintjas C, Kalyvas M, Theophilopoulos G, Stathopoulos T, Avramopoulos H et al. 20 Gb/s all-optical XOR with UNI gate. IEEE Photonics Technol Lett 12, 834–836 (2000). doi: 10.1109/68.853516

    CrossRef Google Scholar

    [97] Webb RP, Yang X, Manning RJ, Giller R. All-optical 40 Gbit/s XOR gate with dual ultrafast nonlinear interferometer. Electron Lett 41, 1396–1397 (2005). doi: 10.1049/el:20052982

    CrossRef Google Scholar

    [98] Siarkos T, Zoiros KE, Nastou D. On the feasibility of full pattern-operated all-optical XOR gate with single semiconductor optical amplifier-based ultrafast nonlinear interferometer. Opt Commun 282, 2729–2440 (2009). doi: 10.1016/j.optcom.2009.03.077

    CrossRef Google Scholar

    [99] Dong H, Wang Q, Zhu G, Jaques J, Piccirilli AB et al. Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer. Opt Commun 242, 479–485 (2004). doi: 10.1016/j.optcom.2004.08.053

    CrossRef Google Scholar

    [100] Wang Q, Dong H, Zhu G, Sun H, Jaques J et al. All-optical logic OR gate using SOA and Delayed interferometer. Opt Commun 260, 81–86 (2006). doi: 10.1016/j.optcom.2005.10.028

    CrossRef Google Scholar

    [101] Xu J, Zhang XL, Zhang Y, Dong JJ, Liu DM et al. Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments. J Lightwave Technol 27, 5268–5275 (2009). doi: 10.1109/JLT.2009.2028036

    CrossRef Google Scholar

    [102] Zhao XF, Lou CY, Feng YM. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer. Front Optoelectron China 4, 308–314 (2011). doi: 10.1007/s12200-011-0143-z

    CrossRef Google Scholar

    [103] Dong WC, Huang ZY, Hou J, Santos R, Zhang XL. Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Opt Lett 43, 2150–2153 (2018). doi: 10.1364/OL.43.002150

    CrossRef Google Scholar

    [104] Ma SZ, Chen Z, Dutta NK. All-optical logic gates based on two-photon absorption in semiconductor optical amplifiers. Opt Commun 282, 4508–4012 (2009). doi: 10.1016/j.optcom.2009.08.039

    CrossRef Google Scholar

    [105] Ma SZ, Chen Z, Sun HZ, Dutta NK. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers. Opt Express 18, 6417–6422 (2010). doi: 10.1364/OE.18.006417

    CrossRef Google Scholar

    [106] Rostami A, Nejad HBA, Qartavol RM, Saghai HR. Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J Quant Electron 46, 354–360 (2010). doi: 10.1109/JQE.2009.2033253

    CrossRef Google Scholar

    [107] Dimitriadou E, Zoiros KE. On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt Laser Technol 44, 600–607 (2012). doi: 10.1016/j.optlastec.2011.08.028

    CrossRef Google Scholar

    [108] Kotb A. Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s. Optik 127, 320–325 (2016). doi: 10.1016/j.ijleo.2015.10.093

    CrossRef Google Scholar

    [109] Zhang X, Dutta NK. Effects of two-photon absorption on all optical logic operation based on quantum-dot semiconductor optical amplifiers. J Mod Opt 65, 166–173 (2018). doi: 10.1080/09500340.2017.1382595

    CrossRef Google Scholar

    [110] Hu HY, Zhang X, Zhao S. High-speed all optical logic gate using QD-SOA and its application. Cogent Phys 4, 1388156 (2017). doi: 10.1080/23311940.2017.1388156

    CrossRef Google Scholar

    [111] Kotb A, Zoiros KE, Guo CL. 2 Tb/s all-optical gates based on two-photon absorption in quantum dot semiconductor optical amplifiers. Opt Laser Technol 112, 442–451 (2019). doi: 10.1016/j.optlastec.2018.11.048

    CrossRef Google Scholar

    [112] Kotb A, Guo CL. All-optical NOR and XNOR logic gates at 2 Tb/s based on two-photon absorption in quantum-dot semiconductor optical amplifiers. Opt Quant Electron 52, 30 (2020). doi: 10.1007/s11082-019-2142-z

    CrossRef Google Scholar

    [113] Kotb A, Guo CL. 120 Gb/s all-optical NAND logic gate using reflective semiconductor optical amplifiers. J Mod Opt 67, 1138–1144 (2020). doi: 10.1080/09500340.2020.1813342

    CrossRef Google Scholar

    [114] Kotb A, Guo CL. Numerical modeling of photonic crystal semiconductor optical amplifiers-based 160 Gb/s all-optical NOR and XNOR logic gates. Opt Quant Electron 52, 89 (2020). doi: 10.1007/s11082-020-2225-x

    CrossRef Google Scholar

    [115] Kwok CH, Lin C. Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum. IEEE J Select Top Quant Electron 12, 451–458 (2006). doi: 10.1109/JSTQE.2006.872732

    CrossRef Google Scholar

    [116] Bogris A, Velanas P, Syvridis D. Numerical investigation of a 160-Gb/s reconfigurable photonic logic gate based on cross-phase modulation in fibers. IEEE Photonics Technol Lett 19, 402–404 (2007). doi: 10.1109/LPT.2007.891977

    CrossRef Google Scholar

    [117] Qiu JF, Sun K, Rochette M, Chen LR. Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber. IEEE Photonics Technol Lett 22, 1199–1201 (2010). doi: 10.1109/LPT.2010.2050876

    CrossRef Google Scholar

    [118] Bogoni A, Potì L, Proietti R, Meloni G, Ponzini F et al. Regenerative and reconfigurable all-optical logic gates for ultra-fast applications. Electron Lett 41, 435–436 (2005). doi: 10.1049/el:20058010

    CrossRef Google Scholar

    [119] Miyoshi Y, Ikeda K, Tobioka H, Inoue T, Namiki S et al. Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. Opt Express 16, 2570–2577 (2008). doi: 10.1364/OE.16.002570

    CrossRef Google Scholar

    [120] Lai DMF, Kwok CH, Wong KKY. All-optical picoseconds logic gates based on a fiber optical parametric amplifier. Opt Express 16, 18362–18370 (2008). doi: 10.1364/OE.16.018362

    CrossRef Google Scholar

    [121] Li LL, Wu J, Qiu JF, Wu BB, Xu K et al. Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal. Opt Commun 283, 3608–3612 (2010). doi: 10.1016/j.optcom.2010.05.028

    CrossRef Google Scholar

    [122] Wang J, Sun QZ, Sun JQ. All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing. Opt Express 17, 12555–12563 (2009). doi: 10.1364/OE.17.012555

    CrossRef Google Scholar

    [123] Fagotto EAM, Abbade MLF. All-optical demultiplexing of 4-ASK optical signals with four-wave mixing optical gates. Opt Commun 283, 1102–1109 (2010). doi: 10.1016/j.optcom.2009.10.094

    CrossRef Google Scholar

    [124] Yu CY, Christen L, Luo T, Wang Y, Pan ZQ et al. All-optical XOR gate using polarization rotation in single highly nonlinear fiber. IEEE Photonics Technol Lett 17, 1232–1234 (2005). doi: 10.1109/LPT.2005.846918

    CrossRef Google Scholar

    [125] Chen Y, Cheng YK, Zhu RB, Wang FF, Cheng HT et al. Nanoscale all-optical logic devices. Sci China Phys Mech Astron 62, 44201 (2019). doi: 10.1007/s11433-018-9289-3

    CrossRef Google Scholar

    [126] Wang LJ, Yan LS, Guo YH, Wen KH, Pan W et al. Optical quasi logic gates based on polarization-dependent four-wave mixing in subwavelength metallic waveguides. Opt Express 21, 14442–14451 (2013). doi: 10.1364/OE.21.014442

    CrossRef Google Scholar

    [127] Gao SM, Wang XY, Xie YQ, Hu PR, Yan Q. Reconfigurable dual-channel all-optical logic gate in a silicon waveguide using polarization encoding. Opt Lett 40, 1448–1451 (2015). doi: 10.1364/OL.40.001448

    CrossRef Google Scholar

    [128] Vo TD, Pant R, Pelusi MD, Schröder J, Choi DY et al. Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals. Opt Lett 36, 710–712 (2011). doi: 10.1364/OL.36.000710

    CrossRef Google Scholar

    [129] Husko C, Vo TD, Corcoran B, Li J, Krauss TF et al. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide. Opt Express 19, 20681–20690 (2011). doi: 10.1364/OE.19.020681

    CrossRef Google Scholar

    [130] Liang TK, Nunes LR, Tsuchiya M, Abedin KS, Miyazaki T et al. High speed logic gate using two-photon absorption in silicon waveguides. Opt Commun 265, 171–174 (2006). doi: 10.1016/j.optcom.2006.03.031

    CrossRef Google Scholar

    [131] Wu W, Sun QB, Wang LR, Wang GX, Zeng C et al. Influence of two-photon absorption and free-carrier effects on all-optical logic gates in silicon waveguides. Appl Phys Express 12, 042005 (2019). doi: 10.7567/1882-0786/ab066f

    CrossRef Google Scholar

    [132] Passaro VMN, De Passaro F. All-optical AND gate based on Raman effect in silicon-on-insulator waveguide. Opt Quant Electron 38, 877–888 (2006). doi: 10.1007/s11082-006-9021-0

    CrossRef Google Scholar

    [133] Khorasaninejad M, Saini SS. All-optical logic gates using nonlinear effects in silicon-on-insulator waveguides. Appl Opt 48, F31–F36 (2009). doi: 10.1364/AO.48.000F31

    CrossRef Google Scholar

    [134] Fujisawa T, Koshiba M. All-optical logic gates based on nonlinear slot-waveguide couplers. J Opt Soc Am B 23, 684–691 (2006).

    Google Scholar

    [135] Larom B, Nazarathy M, Rudnitsky A, Nevet A, Zalevsky Z. Cascadable and reconfigurable photonic logic gates based on linear Lightwave interference and non-linear phase erasure. Opt Express 18, 13600–13607 (2010). doi: 10.1364/OE.18.013600

    CrossRef Google Scholar

    [136] Pan D, Wei H, Xu HX. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt Express 21, 9556–9562 (2013). doi: 10.1364/OE.21.009556

    CrossRef Google Scholar

    [137] Lu QC, Yan X, Wei W, Zhang X, Zhang MQ et al. High-speed ultra-compact all-optical NOT and AND logic gates designed by a multi-objective particle swarm optimized method. Opt Laser Technol 116, 322–327 (2019). doi: 10.1016/j.optlastec.2019.03.032

    CrossRef Google Scholar

    [138] Yao CN, Kotb A, Wang B, Singh SC, Guo CL. All-optical logic gates using dielectric-loaded waveguides with quasi-rhombus metasurfaces. Opt Lett 45, 3769–3772 (2020). doi: 10.1364/OL.396978

    CrossRef Google Scholar

    [139] Peng CN, Li JY, Liao HM, Li Z, Sun CW et al. Universal linear-optical logic gate with maximal intensity contrast ratios. ACS Photonics 5, 1137–1143 (2018). doi: 10.1021/acsphotonics.7b01566

    CrossRef Google Scholar

    [140] Kita S, Nozaki K, Takata K, Shinya A, Notomi M. Ultrashort low-loss Ψ gates for linear optical logic on Si photonics platform. Commun Phys 3, 33 (2020). doi: 10.1038/s42005-020-0298-2

    CrossRef Google Scholar

    [141] Ortiz-Martinez M, Hernandez-Serrano AI, Guerrero MAJ, Strupiechonski E, Castro-Camus E. Logic gates for terahertz frequencies fabricated by three-dimensional printing. J Opt Soc Am B 37, 3660–3664 (2020).

    Google Scholar

    [142] Fu YL, Hu XY, Lu CC, Yue S, Yang H et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12, 5784–5790 (2012). doi: 10.1021/nl303095s

    CrossRef Google Scholar

    [143] Li ZJ, Chen ZW, Li BJ. Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference. Opt Express 13, 1033–1038 (2005). doi: 10.1364/OPEX.13.001033

    CrossRef Google Scholar

    [144] Lee YL, Yu BA, Eom TJ, Shin W, Jung C et al. All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide. Opt Express 14, 2776–2782 (2006). doi: 10.1364/OE.14.002776

    CrossRef Google Scholar

    [145] Wang J, Sun JQ, Sun QZ. Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation. Opt Express 15, 1690–1699 (2007). doi: 10.1364/OE.15.001690

    CrossRef Google Scholar

    [146] Wang J, Sun JQ, Sun QZ, Wang DL, Zhou MJ et al. All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier. Appl Phys Lett 91, 051107 (2007). doi: 10.1063/1.2761513

    CrossRef Google Scholar

    [147] Wang J, Sun JQ, Sun QZ, Wang DL, Zhou MJ et al. Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking. Opt Lett 32, 2462–2464 (2007). doi: 10.1364/OL.32.002462

    CrossRef Google Scholar

    [148] McGeehan JE, Giltrelli M, Willner AE. All-optical digital 3-input AND gate using sum- and difference-frequency generation in PPLN waveguide. Electron Lett 43, 409–410 (2007). doi: 10.1049/el:20073430

    CrossRef Google Scholar

    [149] Wang J, Sun JQ, Zhang XL, Huang DX, Fejer MM. Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate. Opt Lett 33, 1419–1421 (2008). doi: 10.1364/OL.33.001419

    CrossRef Google Scholar

    [150] Wang J, Sun JQ, Sun QZ, Wang DL, Zhang XL et al. PPLN-based flexible optical logic AND gate. IEEE Photonics Technol Lett 20, 211–213 (2008). doi: 10.1109/LPT.2007.913227

    CrossRef Google Scholar

    [151] Bogoni A, Wu XX, Bakhtiari Z, Nuccio S, Willner AE. 640 Gbits/s photonic logic gates. Opt Lett 35, 3955–3957 (2010). doi: 10.1364/OL.35.003955

    CrossRef Google Scholar

    [152] Ibrahim TA, Grover R, Kuo LC, Kanakaraju S, Calhoun LC et al. All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photonics Technol Lett 15, 1422–1424 (2003). doi: 10.1109/LPT.2003.818049

    CrossRef Google Scholar

    [153] Almeida VR, Barrios CA, Panepucci RR, Lipson M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004). doi: 10.1038/nature02921

    CrossRef Google Scholar

    [154] Xu QF, Lipson M. All-optical logic based on silicon micro-ring resonators. Opt Express 15, 924–929 (2007). doi: 10.1364/OE.15.000924

    CrossRef Google Scholar

    [155] Zhao WY, Ju DQ, Jiang YY. Pulse controlled all-optical logic gate based on nonlinear ring resonator realizing all fundamental logic operations. Plasmonics 10, 311–317 (2015). doi: 10.1007/s11468-014-9810-4

    CrossRef Google Scholar

    [156] Moradi M, Danaie M, Orouji AA. Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt Quant Electron 51, 154 (2019). doi: 10.1007/s11082-019-1874-0

    CrossRef Google Scholar

    [157] Mikroulis S, Simos H, Roditi E, Chipouras A, Syvridis D. 40-Gb/s NRZ and RZ operation of an all-optical AND logic gate based on a passive InGaAsP/InP microring resonator. J Lightwave Technol 24, 1159–1164 (2006). doi: 10.1109/JLT.2005.863320

    CrossRef Google Scholar

    [158] Ibrahim TA, Amarnath K, Kuo LC, Grover R, Van V et al. Photonic logic NOR gate based on two symmetric microring resonators. Opt Lett 29, 2779–2781 (2004). doi: 10.1364/OL.29.002779

    CrossRef Google Scholar

    [159] Fushimi A, Tanabe T. All-optical logic gate operating with single wavelength. Opt Express 22, 4466–4479 (2014). doi: 10.1364/OE.22.004466

    CrossRef Google Scholar

    [160] Moroney N, Bino LD, Woodley MTM, Ghalanos GN, Silver JM et al. Logic gates based on interaction of counterpropagating light in microresonators. J Lightwave Technol 38, 1414–1419 (2020). doi: 10.1109/JLT.2020.2975119

    CrossRef Google Scholar

    [161] Wang SH, Li YH, Little BE, Wang LR, Wang X et al. Athermal third harmonic generation in micro-ring resonators. Opto-Electron Adv 3, 200028 (2020).

    Google Scholar

    [162] Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C. Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23, 31755–31765 (2015). doi: 10.1364/OE.23.031755

    CrossRef Google Scholar

    [163] Ota M, Sumimura A, Fukuhara M, Ishii Y, Fukuda M. Plasmonic-multimode-interference-based logic circuit with simple phase adjustment. Sci Rep 6, 24546 (2016). doi: 10.1038/srep24546

    CrossRef Google Scholar

    [164] Wu XT, Tian JP, Yang RC. A type of all-optical logic gate based on graphene surface plasmon polaritons. Opt Commun 403, 185–192 (2017). doi: 10.1016/j.optcom.2017.07.041

    CrossRef Google Scholar

    [165] Sharma P, Kumar VD. All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photonics Technol Lett 30, 959–962 (2018). doi: 10.1109/LPT.2018.2826051

    CrossRef Google Scholar

    [166] Li P, Wang YX, Xu P. All-optical logic gates based on unidirectional surface plasmon polaritons. Appl Opt 58, 4205–4210 (2019). doi: 10.1364/AO.58.004205

    CrossRef Google Scholar

    [167] Gogoi N, Sahu PP. All-optical compact surface plasmonic two-mode interference device for optical logic gate operation. Appl Opt 54, 1051–1057 (2015). doi: 10.1364/AO.54.001051

    CrossRef Google Scholar

    [168] Ho KS, Han YH, Ri CS, Im SJ. Actively phase-controlled coupling between plasmonic waveguides via in-between gain-assisted nanoresonator: nanoscale optical logic gates. Opt Lett 41, 3739–3742 (2016). doi: 10.1364/OL.41.003739

    CrossRef Google Scholar

    [169] Zhu ZB, Yuan J, Jiang LY. Multifunctional and multichannel all-optical logic gates based on the in-plane coherent control of localized surface plasmons. Opt Lett 45, 6362–6365 (2020). doi: 10.1364/OL.402085

    CrossRef Google Scholar

    [170] Liu Q, Li N, Tan CH. All-optical logic gate based on manipulation of surface polaritons solitons via external gradient magnetic fields. Phys Rev A 101, 023818 (2020). doi: 10.1103/PhysRevA.101.023818

    CrossRef Google Scholar

    [171] Sang YG, Wu XJ, Raja SS, Wang CY, Li HZ et al. Broadband multifunctional plasmonic logic gates. Adv Opt Mater 6, 1701368 (2018). doi: 10.1002/adom.201701368

    CrossRef Google Scholar

    [172] Lu CC, Hu XY, Yue S, Fu YL, Yang H et al. Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics 8, 749–754 (2013). doi: 10.1007/s11468-012-9467-9

    CrossRef Google Scholar

    [173] Cohen M, Zalevsky Z, Shavit R. Towards integrated nanoplasmonic logic circuitry. Nanoscale 5, 5442–5449 (2013). doi: 10.1039/c3nr00830d

    CrossRef Google Scholar

    [174] Liu HQ, Quan ZQ, Cheng Y, Deng SJ, Yuan LB. Ultra-compact universal linear-optical logic gate based on single rectangle plasmonic slot nanoantenna. Plasmonics 16, 973–980 (2021). doi: 10.1007/s11468-020-01363-9

    CrossRef Google Scholar

    [175] Li F, Vo TD, Husko C, Pelusi M, Xu DX et al. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire. Opt Express 19, 20364–20371 (2011). doi: 10.1364/OE.19.020364

    CrossRef Google Scholar

    [176] Yin ZS, Wu J, Zang JZ, Kong DM, Qiu JF et al. All-optical logic gate for XOR operation between 40-Gbaud QPSK tributaries in an ultra-short silicon nanowire. IEEE Photonics J 6, 4500307 (2014).

    Google Scholar

    [177] Wei H, Li ZP, Tian XR, Wang ZX, Cong FZ et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett 11, 471–475 (2011). doi: 10.1021/nl103228b

    CrossRef Google Scholar

    [178] Wei H, Wang ZX, Tian XR, Käll M, Xu HX. Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2, 387 (2011). doi: 10.1038/ncomms1388

    CrossRef Google Scholar

    [179] Piccione B, Cho CH, van Vugt LK, Agarwal R. All-optical active switching in individual semiconductor nanowires. Nat Nanotech 7, 640–645 (2012). doi: 10.1038/nnano.2012.144

    CrossRef Google Scholar

    [180] Gao L, Chen L, Wei H, Xu HX. Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates. Nanoscale 10, 11923–11929 (2018). doi: 10.1039/C8NR01827H

    CrossRef Google Scholar

    [181] Yang H, Khayrudinov V, Dhaka V, Jiang H, Autere A et al. Nanowire network-based multifunctional all-optical logic gates. Sci Adv 4, eaar7954 (2018). doi: 10.1126/sciadv.aar7954

    CrossRef Google Scholar

    [182] Lv YC, Xu FF, Wang K, Li YJ, Zhao YS. Loss compensation of surface plasmon polaritons in organic/metal nanowire heterostructures toward photonic logic processing. Sci China Mater 63, 1464–1471 (2020). doi: 10.1007/s40843-019-1216-5

    CrossRef Google Scholar

    [183] Salmanpour A, Mohammadnejad S, Bahrami A. Photonic crystal logic gates: an overview. Opt Quant Electron 47, 2249–2275 (2015). doi: 10.1007/s11082-014-0102-1

    CrossRef Google Scholar

    [184] Caballero LEP, Neto OPV. A review on photonic crystal logic gates. J Integr Circuits Syst 16, 1–13 (2021).

    Google Scholar

    [185] Zhang YL, Zhang Y, Li BJ. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt Express 15, 9287–9292 (2007). doi: 10.1364/OE.15.009287

    CrossRef Google Scholar

    [186] Christina XS, Kabilan AP. Design of optical logic gates using self-collimated beams in 2D photonic crystal. Photonic Sens 2, 173–179 (2012). doi: 10.1007/s13320-012-0054-7

    CrossRef Google Scholar

    [187] Fan RR, Yang XL, Meng XF, Sun XW. 2D photonic crystal logic gates based on self-collimated effect. J Phys D Appl Phys 49, 325104 (2016). doi: 10.1088/0022-3727/49/32/325104

    CrossRef Google Scholar

    [188] Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M. Design of ultra compact all-optical XOR and AND logic gates with low power consumption. Opt Commun 284, 3528–3533 (2011). doi: 10.1016/j.optcom.2011.03.069

    CrossRef Google Scholar

    [189] Liu WJ, Yang DQ, Shen GS, Tian HP, Ji YF. Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt Laser Technol 50, 55–64 (2013). doi: 10.1016/j.optlastec.2012.12.030

    CrossRef Google Scholar

    [190] Tang CR, Dou XY, Lin YX, Yin HX, Wu B et al. Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt Commun 316, 49–55 (2014). doi: 10.1016/j.optcom.2013.11.053

    CrossRef Google Scholar

    [191] Zhu ZH, Ye WM, Ji JR, Yuan XD, Zen C. High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt Express 14, 1783–1788 (2006). doi: 10.1364/OE.14.001783

    CrossRef Google Scholar

    [192] Fu YL, Hu XY, Gong QH. Silicon photonic crystal all-optical logic gates. Phys Lett A 377, 329–333 (2013). doi: 10.1016/j.physleta.2012.11.034

    CrossRef Google Scholar

    [193] Rani P, Kalra Y, Sinha RK. Realization of AND gate in Y shaped photonic crystal waveguide. Opt Commun 298–299, 227–231 (2013).

    Google Scholar

    [194] Rani P, Kalra Y, Sinha RK. Design of all optical logic gates in photonic crystal waveguides. Optik 126, 950–955 (2015). doi: 10.1016/j.ijleo.2015.03.003

    CrossRef Google Scholar

    [195] Singh BR, Rawal S. Photonic-crystal-based all-optical NOT logic gate. J Opt Soc Am A 32, 2260–2263 (2015). doi: 10.1364/JOSAA.32.002260

    CrossRef Google Scholar

    [196] Rao DGS, Swarnakar S, Kumar S. Performance analysis of all-optical NAND, NOR, and XNOR logic gates using photonic crystal waveguide for optical computing applications. Opt Eng 59, 057101 (2020).

    Google Scholar

    [197] Mohebzadeh-Bahabady A, Olyaee S. All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on an interference effect. IET Optoelectron 12, 191–195 (2018). doi: 10.1049/iet-opt.2017.0174

    CrossRef Google Scholar

    [198] Parandin F, Malmir MR, Naseri M, Zahedi A. Reconfigurable all-optical NOT, XOR, and NOR logic gates based on two dimensional photonic crystals. Superlattices Microstruct 113, 737–744 (2018). doi: 10.1016/j.spmi.2017.12.005

    CrossRef Google Scholar

    [199] Goudarzi K, Mir A, Chaharmahali I, Goudarzi D. All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal. Opt Laser Technol 78, 139–142 (2016). doi: 10.1016/j.optlastec.2015.10.013

    CrossRef Google Scholar

    [200] Lu CH, Zhu B, Zhu CY, Ge LC, Liu Y et al. All-optical logic gates and a half-adder based on lithium niobate photonic crystal micro-cavities. Chin Opt Lett 17, 072301 (2019). doi: 10.3788/COL201917.072301

    CrossRef Google Scholar

    [201] Isfahani BM, Tameh TA, Granpayeh N, Javan ARM. All-optical NOR gate based on nonlinear photonic crystal microring resonators. J Opt Soc Am B 26, 1097–1102 (2009). doi: 10.1364/JOSAB.26.001097

    CrossRef Google Scholar

    [202] Bai JB, Wang JQ, Jiang JZ, Chen XY, Li H et al. Photonic not and nor gates based on a single compact photonic crystal ring resonator. Appl Opt 48, 6923–6927 (2009). doi: 10.1364/AO.48.006923

    CrossRef Google Scholar

    [203] Andalib P, Granpayeh N. All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators. J Opt A Pure Appl Opt 11, 085203 (2009). doi: 10.1088/1464-4258/11/8/085203

    CrossRef Google Scholar

    [204] Andalib P, Granpayeh N. All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J Opt Soc Am B 26, 10–16 (2009).

    Google Scholar

    [205] Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Optik 125, 5701–5704 (2014). doi: 10.1016/j.ijleo.2014.06.013

    CrossRef Google Scholar

    [206] Pirzadi M, Mir A, Bodaghi D. Realization of ultra-accurate and compact all-optical photonic crystal OR logic gate. IEEE Photonics Technol Lett 28, 2387–2390 (2016). doi: 10.1109/LPT.2016.2596580

    CrossRef Google Scholar

    [207] D’souza NM, Mathew V. Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt Laser Technol 80, 214–219 (2016). doi: 10.1016/j.optlastec.2016.01.014

    CrossRef Google Scholar

    [208] Moniem TA. All-optical XNOR gate based on 2D photonic-crystal ring resonators. Quant Electron 47, 169–172 (2017). doi: 10.1070/QEL16279

    CrossRef Google Scholar

    [209] Hussein HME, Ali TA, Rafat NH. New designs of a complete set of Photonic Crystals logic gates. Opt Commun 411, 175–181 (2018). doi: 10.1016/j.optcom.2017.11.043

    CrossRef Google Scholar

    [210] Salimzadeh A, Alipour-Banaei H. An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators. Opt Commun 410, 793–798 (2018). doi: 10.1016/j.optcom.2017.11.036

    CrossRef Google Scholar

    [211] Younis RM, Areed NFF, Obayya SSA. Fully integrated AND and OR optical logic gates. IEEE Photonics Technol Lett 26, 1900–1903 (2014). doi: 10.1109/LPT.2014.2340435

    CrossRef Google Scholar

    [212] Liu Y, Qin F, Meng ZM, Zhou F, Mao QH et al. All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt Express 19, 1945–1953 (2011). doi: 10.1364/OE.19.001945

    CrossRef Google Scholar

    [213] Yanik MF, Fan SH, Soljačić M. High-contrast all-optical bistable switching in photonic crystal microcavities. Appl Phys Lett 83, 2739–2741 (2003). doi: 10.1063/1.1615835

    CrossRef Google Scholar

    [214] Yanik MF, Fan SH, Soljačić M, Joannopoulos JD. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt Lett 28, 2506–2508 (2003). doi: 10.1364/OL.28.002506

    CrossRef Google Scholar

    [215] Vujic D, John S. Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching. Physical Review A 72, 013807 (2005). doi: 10.1103/PhysRevA.72.013807

    CrossRef Google Scholar

    [216] Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics 4, 477–483 (2010). doi: 10.1038/nphoton.2010.89

    CrossRef Google Scholar

    [217] Jandieri V, Khomeriki R, Erni D. Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides. Opt Express 26, 19845–19853 (2018). doi: 10.1364/OE.26.019845

    CrossRef Google Scholar

    [218] Jandieri V, Khomeriki R, Onoprishvili T, Werner DH, Berakdar J et al. Functional all-optical logic gates for true time-domain signal processing in nonlinear photonic crystal waveguides. Opt Express 28, 18317–18331 (2020). doi: 10.1364/OE.395015

    CrossRef Google Scholar

    [219] Caballero LP, Povinelli ML, Ramirez JC, Guimarães PSS, Neto OPV. Complementary photonic crystal integrated logic devices. Opt Lett 45, 5502–5505 (2020). doi: 10.1364/OL.393846

    CrossRef Google Scholar

    [220] He L, Zhang WX, Zhang XD. Topological all-optical logic gates based on two-dimensional photonic crystals. Opt Express 27, 25841–25859 (2019). doi: 10.1364/OE.27.025841

    CrossRef Google Scholar

    [221] He L, Ji HY, Wang YJ, Zhang XD. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs. Opt Express 28, 34015–34023 (2020). doi: 10.1364/OE.409265

    CrossRef Google Scholar

    [222] Coelho AG, Costa MBC, Ferreira AC, da Silva MG, Lyra ML et al. Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber. J Lightwave Technol 31, 731–739 (2013). doi: 10.1109/JLT.2012.2232641

    CrossRef Google Scholar

    [223] Sousa JRR, Filho AFGF, Ferreira AC, Batista GS, Sobrinho CS et al. Generation of logic gates based on a photonic crystal fiber Michelson interferometer. Opt Commun 322, 143–149 (2014). doi: 10.1016/j.optcom.2014.02.023

    CrossRef Google Scholar

    [224] Kumar S, Sen M. Integrable all-optical NOT gate using nonlinear photonic crystal MZI for photonic integrated circuit. J Opt Soc Am B 37, 359–369 (2020). doi: 10.1364/JOSAB.380351

    CrossRef Google Scholar

    [225] Datta T, Sen M. Raman mediated ultrafast all-optical nor gate. Appl Opt 59, 6352–6359 (2020). doi: 10.1364/AO.396859

    CrossRef Google Scholar

    [226] Dhasarathan V, Sahu SK, Nguyen TK, Palai G. Realization of all logic gates using metamaterials based three dimensional photonics structures: a future application of 3D photonics to optical computing. Optik 202, 163723 (2020). doi: 10.1016/j.ijleo.2019.163723

    CrossRef Google Scholar

    [227] Ginzburg P, Orenstein M. Photonic switching in waveguides using spatial concepts inspired by EIT. Opt Express 14, 11312–11317 (2006). doi: 10.1364/OE.14.011312

    CrossRef Google Scholar

    [228] Ginzburg P, Hayat A, Vishnyakov V, Orenstein M. Photonic logic by linear unidirectional interference. Opt Express 17, 4251–4256 (2009). doi: 10.1364/OE.17.004251

    CrossRef Google Scholar

    [229] Raghuwanshi SK, Kumar A, Kumar S. 1 × 4 signal router using three Mach-Zehnder interferometers. Opt Eng 52, 035002 (2013). doi: 10.1117/1.OE.52.3.035002

    CrossRef Google Scholar

    [230] Tang XF, Fang ZQ, Zhai YX, Jiao XS, Gao N et al. A reconfigurable optical logic gate with up to 25 logic functions based on polarization modulation with direct detection. IEEE Photonics J 9, 7802011 (2017).

    Google Scholar

    [231] Ooi KJA, Chu HS, Bai P, Ang LK. Electro-optical graphene plasmonic logic gates. Opt Lett 39, 1629–1632 (2014). doi: 10.1364/OL.39.001629

    CrossRef Google Scholar

    [232] Ying ZF, Soref R. Electro-optical logic using dual-nanobeam Mach-Zehnder interferometer switches. Opt Express 29, 12801–12812 (2021). doi: 10.1364/OE.419287

    CrossRef Google Scholar

    [233] Min SC, Liao SS, Zou CL, Zhang XL, Dong JJ. Route-asymmetrical optical transmission and logic gate based on optical gradient force. Opt Express 22, 25947–25952 (2014). doi: 10.1364/OE.22.025947

    CrossRef Google Scholar

    [234] Zhang YH, Xiang SY, Cao XY, Zhao SH, Guo XX et al. Experimental demonstration of pyramidal neuron-like dynamics dominated by dendritic action potentials based on a VCSEL for all-optical XOR classification task. Photonics Res 9, 1055–1061 (2021). doi: 10.1364/PRJ.422628

    CrossRef Google Scholar

    [235] Xiang SY, Ren ZX, Zhang YH, Song ZW, Hao Y. All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on a VCSEL-SA. Opt Lett 45, 1104–1107 (2020). doi: 10.1364/OL.383942

    CrossRef Google Scholar

    [236] Wu LM, Fan TJ, Wei SR, Xu YJ, Zhang Y et al. All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability. Opto-Electron Adv 5, 200046 (2022). doi: 10.29026/oea.2022.200046

    CrossRef Google Scholar

    [237] Miller DAB. Are optical transistors the logical next step. Nat Photonics 4, 3–5 (2010). doi: 10.1038/nphoton.2009.240

    CrossRef Google Scholar

    [238] Qiu CY, Xiao HF, Wang LH, Tian YH. Recent advances in integrated optical directed logic operations for high performance optical computing: a review. Front Optoelectron 15, 1 (2022). doi: 10.1007/s12200-022-00001-y

    CrossRef Google Scholar

    [239] Ying ZF, Feng CH, Zhao Z, Dhar S, Dalir H et al. Electronic-photonic arithmetic logic unit for high-speed computing. Nat Commun 11, 2154 (2020). doi: 10.1038/s41467-020-16057-3

    CrossRef Google Scholar

    [240] Boolakee T, Heide C, Garzón-Ramírez A, Weber HB, Franco I et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022). doi: 10.1038/s41586-022-04565-9

    CrossRef Google Scholar

    [241] Lei L, Dong JJ, Yu Y, Tan SS, Zhang XL. All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers. J Lightwave Technol 30, 3532–3539 (2012). doi: 10.1109/JLT.2012.2218575

    CrossRef Google Scholar

    [242] Caballero LP, Povinelli ML, Ramirez JC, Guimarães PSS, Neto OPV. Photonic crystal integrated logic gates and circuits. Opt Express 30, 1976–1993 (2022). doi: 10.1364/OE.444714

    CrossRef Google Scholar

    [243] Chen XB, Yu Y, Zhang XL. All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40Gb/s. IEEE Photonics Technol Lett 23, 118–120 (2011). doi: 10.1109/LPT.2010.2091628

    CrossRef Google Scholar

    [244] Reis C, Maziotis A, Kouloumentas C, Stamatiadis C, Bougioukos M et al. All-optical synchronous S-R flip-flop based on active interferometric devices. Electron Lett 46, 709–710 (2010). doi: 10.1049/el.2010.1017

    CrossRef Google Scholar

    [245] Aikawa Y, Shimizu S, Uenohara H. Demonstration of all-optical divider circuit using SOA-MZI-type XOR gate and feedback loop for forward error detection. J Lightwave Technol 29, 2259–2366 (2011). doi: 10.1109/JLT.2011.2158570

    CrossRef Google Scholar

    [246] Wang Y, Zhang XL, Dong JJ, Huang DX. Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers. Opt Express 15, 15080–15085 (2007). doi: 10.1364/OE.15.015080

    CrossRef Google Scholar

    [247] Lin X, Liu JP, Hao JY, Wang K, Zhang YY et al. Collinear holographic data storage technologies. Opto-Electron Adv 3, 190004 (2020).

    Google Scholar

    [248] Hardy J, Shamir J. Optics inspired logic architecture. Opt Express 15, 150–165 (2007). doi: 10.1364/OE.15.000150

    CrossRef Google Scholar

    [249] Wang YH, He S, Gao XY, Ye PP, Lei L et al. Enhanced optical nonlinearity in a silicon–organic hybrid slot waveguide for all-optical signal processing. Photonics Res 10, 50–58 (2022). doi: 10.1364/PRJ.439251

    CrossRef Google Scholar

    [250] Wang C, Li F, Xu Y, Duan M, Song Y et al. Tin Selenide: a promising black-phosphorus-analogue nonlinear optical material and its application as all-optical switcher and all-optical logic gate. Mater Today Phys 21, 100500 (2021). doi: 10.1016/j.mtphys.2021.100500

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint