Xu ZY, Niu WQ, Liu Y, Lin XH, Cai JF et al. 31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure. Opto-Electron Sci 2, 230005 (2023). doi: 10.29026/oes.2023.230005
Citation: Xu ZY, Niu WQ, Liu Y, Lin XH, Cai JF et al. 31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure. Opto-Electron Sci 2, 230005 (2023). doi: 10.29026/oes.2023.230005

Article Open Access

31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure

More Information
  • Although the 5G wireless network has made significant advances, it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras. As a result, emerging technologies in higher frequencies including visible light communication (VLC), are becoming a hot topic. In particular, LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing (WDM) technology. This paper proposes an optimized multi-color LED array chip for high-speed VLC systems. Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency, especially in the “yellow gap” region, and it achieves significant improvement in data rate compared with earlier research. This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model, which provides an explanation of the simulation and experiment results. In the final test using a laboratory communication system, the data rates of eight channels from short to long wavelength are 3.91 Gb/s, 3.77 Gb/s, 3.67 Gb/s, 4.40 Gb/s, 3.78 Gb/s, 3.18 Gb/s, 4.31 Gb/s, and 4.35 Gb/s (31.38 Gb/s in total), with advanced digital signal processing (DSP) techniques including digital equalization technique and bit-power loading discrete multitone (DMT) modulation format.
  • 加载中
  • [1] Juntti M, Kantola R, Kyösti P, LaValle S, De Lima C M et al. Key drivers and research challenges for 6g ubiquitous wireless intelligence. (2019).

    Google Scholar

    [2] Chen YW, Zhang R, Hsu CW, Chang GK. Key enabling technologies for the post-5G era: fully adaptive, all-spectra coordinated radio access network with function decoupling. IEEE Commun Mag 58, 60–66 (2020). doi: 10.1109/MCOM.001.2000186

    CrossRef Google Scholar

    [3] Giordani M, Polese M, Mezzavilla M, Rangan S, Zorzi M. Toward 6G networks: use cases and technologies. IEEE Commun Mag 58, 55–61 (2020). doi: 10.1109/MCOM.2020.9269935

    CrossRef Google Scholar

    [4] Chi N, Zhou YJ, Wei YR, Hu FC. Visible light communication in 6G: advances, challenges, and prospects. IEEE Veh Technol Mag 15, 93–102 (2020). doi: 10.1109/MVT.2020.3017153

    CrossRef Google Scholar

    [5] Sharma H, Jha RK. VLC enabled hybrid wireless network for B5G/6G communications. Wireless Pers Commun 124, 1741–1771 (2022). doi: 10.1007/s11277-021-09429-5

    CrossRef Google Scholar

    [6] Wei ZX, Wang ZM, Zhang JA, Li Q, Zhang JP et al. Evolution of optical wireless communication for B5G/6G. Progress Quantum Electron 83, 100398 (2022). doi: 10.1016/j.pquantelec.2022.100398

    CrossRef Google Scholar

    [7] Qiu PJ, Zhu SJ, Jin ZX, Zhou XL, Cui XG et al. Beyond 25 Gbps optical wireless communication using wavelength division multiplexed LEDs and micro-LEDs. Opt Lett 47, 317–320 (2022). doi: 10.1364/OL.447540

    CrossRef Google Scholar

    [8] Hu FC, Holguin-Lerma JA, Mao Y, Zou P, Shen C et al. Demonstration of a low-complexity memory-polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode. Opto-Electron Adv 3, 200009 (2020). doi: 10.29026/oea.2020.200009

    CrossRef Google Scholar

    [9] Chang YH, Huang YM, Gunawan WH, Chang GH, Liou FJ et al. 4.343-gbit/s green semipolar (20-21) μ-LED for high speed visible light communication. IEEE Photonics J 13, 7300204 (2021). doi: 10.1109/JPHOT.2021.3092878

    CrossRef Google Scholar

    [10] Xu FF, Jin ZX, Tao T, Tian PF, Wang GB et al. C-plane blue micro-LED with 1.53 GHz bandwidth for high-speed visible light communication. IEEE Electron Device Lett 43, 910–913 (2022). doi: 10.1109/LED.2022.3168314

    CrossRef Google Scholar

    [11] Wang L, Wei ZX, Chen CJ, Wang L, Fu HY et al. 1.3 GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photonics Res 9, 792–802 (2021). doi: 10.1364/PRJ.411863

    CrossRef Google Scholar

    [12] Wei ZX, Liu ZX, Liu X, Wang L, Wang L et al. 8.75 Gbps visible light communication link using an artificial neural network equalizer and a single-pixel blue micro-LED. Opt Lett 46, 4670–4673 (2021). doi: 10.1364/OL.437632

    CrossRef Google Scholar

    [13] Lu TW, Lin XS, Guo QA, Tu CC, Liu SB et al. High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication. Opto-Electron Sci 1, 220020 (2022). doi: 10.29026/oes.2022.220020

    CrossRef Google Scholar

    [14] Hu FC, Chen SQ, Zhang YY, Li GQ, Zou P et al. High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers. PhotoniX 2, 16 (2021). doi: 10.1186/s43074-021-00039-9

    CrossRef Google Scholar

    [15] Niu WQ, Xu ZY, Liu Y, Lin XH, Cai JF et al. Key technologies for high-speed Si-substrate LED based visible light communicatioN. J Lightwave Technol 41, 3316–3331 (2023). doi: 10.1109/JLT.2023.3252005

    CrossRef Google Scholar

    [16] Lin RL, Chen YF. Equivalent circuit model of light-emitting-diode for system analyses of lighting drivers. In 2009 IEEE Industry Applications Society Annual Meeting 1–5 (IEEE, 2009); http://doi.org/10.1109/IAS.2009.5324876.

    Google Scholar

    [17] Deng W, Jin XC, Lv Y, Zhang XJ, Zhang XH et al. 2D ruddlesden–popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv Funct Mater 29, 1903861 (2019). doi: 10.1002/adfm.201903861

    CrossRef Google Scholar

    [18] Baureis P. Compact modeling of electrical, thermal and optical LED behavior. In Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005 145–148 (IEEE, 2005); http://doi.org/10.1109/ESSDER.2005.1546606.

    Google Scholar

    [19] Han DP, Shim JI, Shin DS. Analysis of carrier recombination dynamics in InGaN-based light-emitting diodes by differential carrier lifetime measurement. Appl Phys Express 10, 052101 (2017). doi: 10.7567/APEX.10.052101

    CrossRef Google Scholar

    [20] Niu WQ, Xu ZY, Xiao WH, Liu Y, Hu FC et al. Phosphor-free golden light LED array for 5.4-Gbps visible light communication using MIMO tomlinson-harashima precoding. J Lightwave Technol 40, 5031–5040 (2022). doi: 10.1109/JLT.2022.3172867

    CrossRef Google Scholar

    [21] Lin RZ, Jin ZX, Qiu PJ, Liao Y, Hoo J et al. High bandwidth series-biased green micro-LED array toward 6 Gbps visible light communication. Opt Lett 47, 3343–3346 (2022). doi: 10.1364/OL.458495

    CrossRef Google Scholar

    [22] Wei ZX, Wang L, Liu ZX, Zhang C, Chen CJ et al. Multigigabit visible light communication based on high-bandwidth InGaN quantum dot green micro-LED. ACS Photonics 9, 2354–2366 (2022). doi: 10.1021/acsphotonics.2c00380

    CrossRef Google Scholar

    [23] Chang YH, Huang YM, Liou FJ, Chow CW, Liu Y et al. 2.805 Gbit/s high-bandwidth phosphor white light visible light communication utilizing an InGaN/GaN semipolar blue micro-LED. Opt Express 30, 16938–16946 (2022). doi: 10.1364/OE.455312

    CrossRef Google Scholar

    [24] Ferreira RXG, Xie EY, McKendry JJD, Rajbhandari S, Chun H et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol Lett 28, 2023–2026 (2016). doi: 10.1109/LPT.2016.2581318

    CrossRef Google Scholar

    [25] Hu FC, Chen SQ, Li GQ, Zou P, Zhang JW et al. Si-substrate LEDs with multiple superlattice interlayers for beyond 24 Gbps visible light communication. Photonics Res 9, 1581–1591 (2021). doi: 10.1364/PRJ.424934

    CrossRef Google Scholar

    [26] Quan ZJ, Wang L, Zheng CD, Liu JL, Jiang FY. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes. J Appl Phys 116, 183107 (2014). doi: 10.1063/1.4901828

    CrossRef Google Scholar

    [27] Jiang FY, Zhang JL, Xu LQ, Ding J, Wang GX et al. Efficient InGaN-based yellow-light-emitting diodes. Photonics Res 7, 144–148 (2019). doi: 10.1364/PRJ.7.000144

    CrossRef Google Scholar

    [28] Damilano B, Gil B. Yellow–red emission from (Ga, In)N heterostructures. J Phys D:Appl Phys 48, 403001 (2015). doi: 10.1088/0022-3727/48/40/403001

    CrossRef Google Scholar

    [29] Yang XD, Zhang JL, Wang XL, Zheng CD, Quan ZJ et al. Enhance the efficiency of green-yellow LED by optimizing the growth condition of preparation layer. Superlattices Microstruct 141, 106459 (2020). doi: 10.1016/j.spmi.2020.106459

    CrossRef Google Scholar

    [30] Linnartz JPMG, Deng X, Alexeev A, van Voorthuisen P. An LED communication model based on carrier recombination in the quantum well. In 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) 1–6 (IEEE, 2021); http://doi.org/10.1109/PIMRC50174.2021.9569261.

    Google Scholar

    [31] Shi JY, Xiao WH, Ha Y, Niu WQ, Xu ZY et al. 3.76-Gbps yellow-light visible light communication system over 1.2 m free space transmission utilizing a Si-substrate LED and a cascaded pre-equalizer network. Opt Express 30, 33337–33352 (2022). doi: 10.1364/OE.463989

    CrossRef Google Scholar

    [32] Zhao LX, Zhu SC, Wu CH, Yang C, Yu ZG et al. GaN-based LEDs for light communication. Sci China Phys, Mech Astron 59, 107301 (2016). doi: 10.1007/s11433-016-0150-y

    CrossRef Google Scholar

    [33] Li XC, Ghassemlooy Z, Zvanovec S, Alves LN. An equivalent circuit model of a commercial LED with an ESD protection component for VLC. IEEE Photonics Technol Lett 33, 777–779 (2021). doi: 10.1109/LPT.2021.3095557

    CrossRef Google Scholar

    [34] Wu XM. Study on the luminescence properties of V-pit-containing GaN based blue LEDs on Si substrates (Nanchang University, Nanchang, 2014).

    Google Scholar

    [35] Gao JD, Zhang JL, Quan ZJ, Pan S, Liu JL et al. Effect of horizontal p–n junction on optoelectronics characteristics in InGaN-based light-emitting diodes with V-shaped pits. J Phys D:Appl Phys 53, 335103 (2020). doi: 10.1088/1361-6463/ab87c4

    CrossRef Google Scholar

  • Supplementary information for 31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint