Citation: | Gu ZF, Gao YX, Zhou KS et al. Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses. Opto-Electron Sci 3, 240017 (2024). doi: 10.29026/oes.2024.240017 |
[1] | Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat Photon 5, 141–148 (2011). doi: 10.1038/nphoton.2011.309 |
[2] | Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser. Opt Lett 38, 127–129 (2013). doi: 10.1364/OL.38.000127 |
[3] | Zhao ZM, Wu B, Wang XS et al. Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev 11, 1700005 (2017). doi: 10.1002/lpor.201700005 |
[4] | Ta’eed VG, Baker NJ, Fu LB et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt Express 15, 9205–9221 (2007). doi: 10.1364/OE.15.009205 |
[5] | Su P, Han Z, Kita D et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector. Appl Phys Lett 114, 051103 (2019). doi: 10.1063/1.5053599 |
[6] | Kang M, Sisken L, Lonergan C et al. Monolithic chalcogenide optical nanocomposites enable infrared system innovation: gradient refractive index optics. Adv Opt Mater 8, 2000150 (2020). doi: 10.1002/adom.202000150 |
[7] | Zheng WF, Xia KL, Jia G et al. Customized linear refractive index GRIN prepared by rapid sintering of multilayer chalcogenide glass powders. J Am Chem Soc 107, 4585–4593 (2024). |
[8] | Gibson D, Bayya S, Nguyen V et al. IR-GRIN optics for imaging. Proc SPIE 9822, 98220R (2016). |
[9] | Zhang XH, Guimond Y, Bellec Y. Production of complex chalcogenide glass optics by molding for thermal imaging. J Non-Cryst Solids 326–327, 519–523 (2003). |
[10] | Ostrovsky N, Yehuda D, Tzadka S et al. Direct imprint of optical functionalities on free-form chalcogenide glasses. Adv Opt Mater 7, 1900652 (2019). doi: 10.1002/adom.201900652 |
[11] | Deng HT, Qi DF, Wang XM et al. Femtosecond laser writing of infrared microlens arrays on chalcogenide glass. Opt Laser Technol 159, 108953 (2023). doi: 10.1016/j.optlastec.2022.108953 |
[12] | Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186 |
[13] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[14] | Zhu RC, Wang JF, Qiu TS et al. Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network. Opto-Electron Adv 6, 220148 (2023). doi: 10.29026/oea.2023.220148 |
[15] | Fan JX, Li ZL, Xue ZQ et al. Hybrid bound states in the continuum in terahertz metasurfaces. Opto-Electron Sci 2, 230006 (2023). doi: 10.29026/oes.2023.230006 |
[16] | Wang K, Titchener JG, Kruk SS et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018). doi: 10.1126/science.aat8196 |
[17] | Xu DY, Xu WH, Yang Q et al. All-optical object identification and three-dimensional reconstruction based on optical computing metasurface. Opto-Electron Adv 6, 230120 (2023). doi: 10.29026/oea.2023.230120 |
[18] | Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z |
[19] | Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1 |
[20] | Yue Z, Li JT, Li J et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014 |
[21] | Park JS, Zhang SY, She AL et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett 19, 8673–8682 (2019). doi: 10.1021/acs.nanolett.9b03333 |
[22] | Lalanne P, Chavel P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev 11, 1600295 (2017). doi: 10.1002/lpor.201600295 |
[23] | Wang YJ, Chen QM, Yang WH et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9 |
[24] | Zuo HJ, Choi DY, Gai X et al. High-efficiency all-dielectric metalenses for mid-infrared imaging. Adv Opt Mater 5, 1700585 (2017). doi: 10.1002/adom.201700585 |
[25] | Yoon G, Kim K, Kim SU et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano 15, 698–706 (2021). doi: 10.1021/acsnano.0c06968 |
[26] | Zhang F, Pu MB, Li X et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157 |
[27] | Zhang SY, Soibel A, Keo SA et al. Solid-immersion metalenses for infrared focal plane arrays. Appl Phys Lett 113, 111104 (2018). doi: 10.1063/1.5040395 |
[28] | Lim SWD, Meretska ML, Capasso F. A high aspect ratio inverse-designed holey metalens. Nano Lett 21, 8642–8649 (2021). doi: 10.1021/acs.nanolett.1c02612 |
[29] | Fan QB, Liu MZ, Yang C et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Appl Phys Lett 113, 201104 (2018). doi: 10.1063/1.5050562 |
[30] | Hou MM, Chen Y, Yi F. Lightweight long-wave infrared camera via a single 5-centimeter-aperture metalens. In 2022 Conference on Lasers and Electro-Optics 1–2 (IEEE, 2022).https://ieeexplore.ieee.org/abstract/document/9890320 |
[31] | Lin HI, Geldmeier J, Baleine E et al. Wide-field-of-view, large-area long-wave infrared silicon metalenses. ACS Photonics 11, 1943–1949 (2024). doi: 10.1021/acsphotonics.4c00013 |
[32] | Soref RA, Emelett SJ, Buchwald WR. Silicon waveguided components for the long-wave infrared region. J Opt A Pure Appl Opt 8, 840–848 (2006). doi: 10.1088/1464-4258/8/10/004 |
[33] | Wang A, Chen ZM, Dan YP. Planar metalenses in the mid-infrared. AIP Adv 9, 085327 (2019). doi: 10.1063/1.5124074 |
[34] | Nalbant HC, Balli F, Yelboğa T et al. Transmission optimized LWIR metalens. Appl Opt 61, 9946–9950 (2022). doi: 10.1364/AO.469805 |
[35] | Liu MZ, Fan QB, Yu L et al. Polarization-independent infrared micro-lens array based on all-silicon metasurfaces. Opt Express 27, 10738–10744 (2019). doi: 10.1364/OE.27.010738 |
[36] | Palik ED. Handbook of Optical Constants of Solids: Volume 2 (Academic Press, Orlando, 1991). |
[37] | Lipson HG, Tsay YF, Bendow B et al. Temperature dependence of the refractive index of alkaline earth fluorides. Appl Opt 15, 2352–2354 (1976). doi: 10.1364/AO.15.002352 |
[38] | Hahn D. Calcium fluoride and barium fluoride crystals in optics. Opt Photonik 9, 45–48 (2014). doi: 10.1002/opph.201400066 |
[39] | Palik ED. Handbook of Optical Constants of Solids (Academic Press, Orlando, 1998). |
[40] | Palik ED. Handbook of Optical Constants of Solids: Volume 1 (Academic Press, Orlando, 1985). |
[41] | Harris RJ, Johnston GT, Kepple GA et al. Infrared thermooptic coefficient measurement of polycrystalline ZnSe, ZnS, CdTe, CaF2, and BaF2, single crystal KCl, and TI-20 glass. Appl Opt 16, 436–438 (1977). doi: 10.1364/AO.16.000436 |
[42] | Valdez LA, Caravaca MA, Casali RA. Ab-initio study of elastic anisotropy, hardness and volumetric thermal expansion coefficient of ZnO, ZnS, ZnSe in wurtzite and zinc blende phases. J Phys Chem Solids 134, 245–254 (2019). doi: 10.1016/j.jpcs.2019.05.019 |
[43] | Icenogle HW, Platt BC, Wolfe WL. Refractive indexes and temperature coefficients of germanium and silicon. Appl Opt 15, 2348–2351 (1976). doi: 10.1364/AO.15.002348 |
[44] | Batchelder DN, Simmons RO. Lattice constants and thermal expansivities of silicon and of calcium fluoride between 6° and 322°K. J Chem Phys 41, 2324–2329 (1964). doi: 10.1063/1.1726266 |
[45] | Harris DC. Durable 3–5 μm transmitting infrared window materials. Infrared Phys Technol 39, 185–201 (1998). doi: 10.1016/S1350-4495(98)00006-1 |
[46] | Khorasaninejad M, Zhu AY, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett 16, 7229–7234 (2016). doi: 10.1021/acs.nanolett.6b03626 |
[47] | Chen WT, Zhu AY, Khorasaninejad M et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett 17, 3188–3194 (2017). doi: 10.1021/acs.nanolett.7b00717 |
[48] | Lee JH, Kim H, Lee WH et al. Surface modification of chalcogenide glass for diamond-like-carbon coating. Appl Surf Sci 478, 802–805 (2019). doi: 10.1016/j.apsusc.2019.02.043 |
[49] | Lin H, Xu ZQ, Cao GY et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci Appl 9, 137 (2020). doi: 10.1038/s41377-020-00374-9 |
[50] | Zheng XR, Jia BH, Lin H et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun 6, 8433 (2015). doi: 10.1038/ncomms9433 |
[51] | Wang HT, Hao CL, Lin H et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021). doi: 10.29026/oea.2021.200031 |
[52] | Cao GY, Lin H, Jia BH. Broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting. Ultrafast Sci 3, 0018 (2023). doi: 10.34133/ultrafastscience.0018 |
[53] | Fan QB, Wang YL, Liu MZ et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Opt Lett 43, 6005–6008 (2018). doi: 10.1364/OL.43.006005 |
[54] | Xia CS, Liu MZ, Wang JM et al. A polarization-insensitive infrared broadband achromatic metalens consisting of all-silicon anisotropic microstructures. Appl Phys Lett 121, 161701 (2022). doi: 10.1063/5.0120717 |
[55] | Wang YL, Zhang S, Liu MZ et al. Compact meta-optics infrared camera based on a polarization-insensitive metalens with a large field of view. Opt Lett 48, 4709–4712 (2023). doi: 10.1364/OL.499942 |
[56] | Xu P, Li XC, Yang T et al. Long-infrared dual-wavelength linear-polarization-multiplexed confocal metalens based on an all-silicon dielectric. Opt Express 31, 26685–26696 (2023). doi: 10.1364/OE.494599 |
[57] | Hu T, Wen L, Li H et al. Aberration-corrected hybrid metalens for longwave infrared thermal imaging. Nanophotonics 13, 3059–3066 (2024). doi: 10.1515/nanoph-2023-0918 |
[58] | Basilio-Ortiz JC, Moreno I. Multilayer dielectric metalens. Opt Lett 47, 5333–5336 (2022). doi: 10.1364/OL.474974 |
[59] | Basilio-Ortiz JC, Moreno I. All dielectric reflective metalens based on multilayer meta-atoms. Opt Lett 48, 5647–5650 (2023). doi: 10.1364/OL.505616 |
[60] | Chen WT, Park JS, Marchioni J et al. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency. Nat Commun 14, 2544 (2023). doi: 10.1038/s41467-023-38185-2 |
[61] | Yang MY, Shen X, Li ZP et al. High focusing efficiency metalens with large numerical aperture at terahertz frequency. Opt Lett 48, 4677–4680 (2023). doi: 10.1364/OL.498397 |
[62] | Phan T, Sell D, Wang EW et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci Appl 8, 48 (2019). doi: 10.1038/s41377-019-0159-5 |
[63] | Li SY, Lin HC, Hsu CW. High-efficiency high-numerical-aperture metalens designed by maximizing the efficiency limit. Optica 11, 454–459 (2024). doi: 10.1364/OPTICA.514907 |
Supplementary information for Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses |
(a) Photo of double-side polished As2Se3 disks. (b) Two-dimensional AFM image of a polished As2Se3 disk, Scale bar: 1 μm. (c) Transmission spectra of common LWIR materials. The thickness of all samples is 1 mm, except for the As2Se3, which has a thickness of 1.5 mm. The blue shaded region indicates the LWIR band ranging from 8 to 12 μm. (d) The refractive index of As2Se3 glass as a function of wavelength.
(a) Schematic for LWIR all-chalcogenide metalens operating in transmission mode. (b) Side view of the homogeneous metalens unit cell (As2Se3 micropillar on As2Se3 substrate with square lattice). (c, d) Transmission and phase diagrams as a function of the micropillar diameter D and height H at the wavelength of 9.78 μm, with a lattice constant P of 5.5 μm. (e) The transmission and phase of micropillar with different diameters were calculated at a lattice constant of P = 5.5 μm and a height of H = 8 μm. (f) The transmittance and phase of eight selected micropillars, which can provide high transmittance and equidistant phase shifts covering the entire 2π range. (g) The normalized field profiles in As2Se3 micropillars with diameters (i) D = 2.4 μm, (ii) D = 3.0 μm, and (iii) D = 3.6 μm. The white dashed lines outline the micropillar structure and the electromagnetic field is tightly confined within the cylindrical structure. (h) The transmitted electric field in one unit cell with selected micropillar diameters, corresponding to 2(f).
(a) Transmitted field profile through a beam deflecting metasurface with a deflection angle θ of 13°. (b) The discrete phase profile of an all-As2Se3 metalens with a diameter of 2 mm. (c) The intensity distribution of the light field on the x-y plane at the focal plane of the designed metalens. (d) Simulation of the normalized field intensity profile on the x-z plane at y = 0 μm after light passes through the metalens, concentrating incident light at the focal point with z = 2 mm.
(a) Fabrication process of the all-chalcogenide glass metalens. The metalens is fabricated using a selective etching process. Initially, the photoresist is patterned using an electron beam exposure system. Following development, chromium (Cr) is deposited and the resist is removed. Subsequently, the As2Se3 glass undergoes dry etching with fluoride gas utilizing the Cr pattern as an etching mask. Cr exhibits low etching rates in fluoride plasma. Upon reaching an etched column height of 8 μm, the etching process is terminated, and the structure is immersed in a hydrochloric acid solution to dissolve the metal mask, leaving only the As2Se3 micropillar structure. (b) Photograph of the fabricated 2 mm diameter metalens on the surface of a As2Se3 glass disk with a diameter of 10 mm. Scale bar: 2 mm. (c) and (d) These images depict metalens captured under Olympus microscopes at different magnifications, with scale bars of 200 μm and 10 μm, respectively. (e) A zoomed-in view of the metalens captured by SEM. Scale bar: 10 μm.
(a) The measurement setup utilized to characterize the focusing performance of the fabricated metalens. (b) Intensity profiles (x-y cross-section) measured at various distances (∆z) from the focal plane. (c) Cross-sectional views of the normalized light intensity profiles (represented by the black line) and calculated intensity profiles (represented by the red dotted line) along the x-axis direction on the focal plane. The inset is a focus image of the metalens. (d) Focal length of metalens at different temperatures.
(a) The target resolution test chart (left), and the captured image of a resolution card (right) by all-chalcogenide metalens under blackbody radiation with a narrow bandpass filter. Scale bar: 200 μm. (b) The image of the high-temperature electric soldering iron captured by the metalens without (left) and with (right) the narrow bandpass filter. The inset is the photograph of soldering iron. (c) A polymer NBU logo and its image under blackbody irradiation with a narrowband filter. (d) The thermal image of a human hand captured by the all-chalcogenide metalens.