Gu ZF, Gao YX, Zhou KS et al. Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses. Opto-Electron Sci 3, 240017 (2024). doi: 10.29026/oes.2024.240017
Citation: Gu ZF, Gao YX, Zhou KS et al. Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses. Opto-Electron Sci 3, 240017 (2024). doi: 10.29026/oes.2024.240017

Article Open Access

Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses

More Information
  • Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices, with their surface as a key dimension for wavefront control. Here, we demonstrate direct patterning high-aspect-ratio microstructures on the surface of chalcogenide glasses offers an efficient and robust method to manipulate longwave infrared radiations. Despite chalcogenide glass being considered soft in terms of its mechanical properties, we successfullyfabricate high-aspect-ratio micropillars with a height of 8 μm using optimized deep etching process, and we demonstrate a 2-mm-diameter all-chalcogenide metalens with a numerical aperture of 0.45 on the surface of a 1.5-mm-thick As2Se3 glass. Leveraging the exceptional longwave infrared (LWIR) transparency and moderate refractive index of As2Se3 glass, the all-chalcogenide metalens produces a focal spot size of ~1.39λ0 with a focusing efficiency of 47% at the wavelength of 9.78 μm, while also exhibiting high-resolution imaging capabilities. Our work provides a promising route to realize easy-to-fabricate, mass-producible planar infrared optics for compact, light-weight LWIR imaging systems.
  • 加载中
  • [1] Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat Photon 5, 141–148 (2011). doi: 10.1038/nphoton.2011.309

    CrossRef Google Scholar

    [2] Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser. Opt Lett 38, 127–129 (2013). doi: 10.1364/OL.38.000127

    CrossRef Google Scholar

    [3] Zhao ZM, Wu B, Wang XS et al. Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev 11, 1700005 (2017). doi: 10.1002/lpor.201700005

    CrossRef Google Scholar

    [4] Ta’eed VG, Baker NJ, Fu LB et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt Express 15, 9205–9221 (2007). doi: 10.1364/OE.15.009205

    CrossRef Google Scholar

    [5] Su P, Han Z, Kita D et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector. Appl Phys Lett 114, 051103 (2019). doi: 10.1063/1.5053599

    CrossRef Google Scholar

    [6] Kang M, Sisken L, Lonergan C et al. Monolithic chalcogenide optical nanocomposites enable infrared system innovation: gradient refractive index optics. Adv Opt Mater 8, 2000150 (2020). doi: 10.1002/adom.202000150

    CrossRef Google Scholar

    [7] Zheng WF, Xia KL, Jia G et al. Customized linear refractive index GRIN prepared by rapid sintering of multilayer chalcogenide glass powders. J Am Chem Soc 107, 4585–4593 (2024).

    Google Scholar

    [8] Gibson D, Bayya S, Nguyen V et al. IR-GRIN optics for imaging. Proc SPIE 9822, 98220R (2016).

    Google Scholar

    [9] Zhang XH, Guimond Y, Bellec Y. Production of complex chalcogenide glass optics by molding for thermal imaging. J Non-Cryst Solids 326–327, 519–523 (2003).

    Google Scholar

    [10] Ostrovsky N, Yehuda D, Tzadka S et al. Direct imprint of optical functionalities on free-form chalcogenide glasses. Adv Opt Mater 7, 1900652 (2019). doi: 10.1002/adom.201900652

    CrossRef Google Scholar

    [11] Deng HT, Qi DF, Wang XM et al. Femtosecond laser writing of infrared microlens arrays on chalcogenide glass. Opt Laser Technol 159, 108953 (2023). doi: 10.1016/j.optlastec.2022.108953

    CrossRef Google Scholar

    [12] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [13] Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [14] Zhu RC, Wang JF, Qiu TS et al. Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network. Opto-Electron Adv 6, 220148 (2023). doi: 10.29026/oea.2023.220148

    CrossRef Google Scholar

    [15] Fan JX, Li ZL, Xue ZQ et al. Hybrid bound states in the continuum in terahertz metasurfaces. Opto-Electron Sci 2, 230006 (2023). doi: 10.29026/oes.2023.230006

    CrossRef Google Scholar

    [16] Wang K, Titchener JG, Kruk SS et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018). doi: 10.1126/science.aat8196

    CrossRef Google Scholar

    [17] Xu DY, Xu WH, Yang Q et al. All-optical object identification and three-dimensional reconstruction based on optical computing metasurface. Opto-Electron Adv 6, 230120 (2023). doi: 10.29026/oea.2023.230120

    CrossRef Google Scholar

    [18] Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [19] Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [20] Yue Z, Li JT, Li J et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [21] Park JS, Zhang SY, She AL et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett 19, 8673–8682 (2019). doi: 10.1021/acs.nanolett.9b03333

    CrossRef Google Scholar

    [22] Lalanne P, Chavel P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev 11, 1600295 (2017). doi: 10.1002/lpor.201600295

    CrossRef Google Scholar

    [23] Wang YJ, Chen QM, Yang WH et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9

    CrossRef Google Scholar

    [24] Zuo HJ, Choi DY, Gai X et al. High-efficiency all-dielectric metalenses for mid-infrared imaging. Adv Opt Mater 5, 1700585 (2017). doi: 10.1002/adom.201700585

    CrossRef Google Scholar

    [25] Yoon G, Kim K, Kim SU et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano 15, 698–706 (2021). doi: 10.1021/acsnano.0c06968

    CrossRef Google Scholar

    [26] Zhang F, Pu MB, Li X et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [27] Zhang SY, Soibel A, Keo SA et al. Solid-immersion metalenses for infrared focal plane arrays. Appl Phys Lett 113, 111104 (2018). doi: 10.1063/1.5040395

    CrossRef Google Scholar

    [28] Lim SWD, Meretska ML, Capasso F. A high aspect ratio inverse-designed holey metalens. Nano Lett 21, 8642–8649 (2021). doi: 10.1021/acs.nanolett.1c02612

    CrossRef Google Scholar

    [29] Fan QB, Liu MZ, Yang C et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Appl Phys Lett 113, 201104 (2018). doi: 10.1063/1.5050562

    CrossRef Google Scholar

    [30] Hou MM, Chen Y, Yi F. Lightweight long-wave infrared camera via a single 5-centimeter-aperture metalens. In 2022 Conference on Lasers and Electro-Optics 1–2 (IEEE, 2022).https://ieeexplore.ieee.org/abstract/document/9890320

    Google Scholar

    [31] Lin HI, Geldmeier J, Baleine E et al. Wide-field-of-view, large-area long-wave infrared silicon metalenses. ACS Photonics 11, 1943–1949 (2024). doi: 10.1021/acsphotonics.4c00013

    CrossRef Google Scholar

    [32] Soref RA, Emelett SJ, Buchwald WR. Silicon waveguided components for the long-wave infrared region. J Opt A Pure Appl Opt 8, 840–848 (2006). doi: 10.1088/1464-4258/8/10/004

    CrossRef Google Scholar

    [33] Wang A, Chen ZM, Dan YP. Planar metalenses in the mid-infrared. AIP Adv 9, 085327 (2019). doi: 10.1063/1.5124074

    CrossRef Google Scholar

    [34] Nalbant HC, Balli F, Yelboğa T et al. Transmission optimized LWIR metalens. Appl Opt 61, 9946–9950 (2022). doi: 10.1364/AO.469805

    CrossRef Google Scholar

    [35] Liu MZ, Fan QB, Yu L et al. Polarization-independent infrared micro-lens array based on all-silicon metasurfaces. Opt Express 27, 10738–10744 (2019). doi: 10.1364/OE.27.010738

    CrossRef Google Scholar

    [36] Palik ED. Handbook of Optical Constants of Solids: Volume 2 (Academic Press, Orlando, 1991).

    Google Scholar

    [37] Lipson HG, Tsay YF, Bendow B et al. Temperature dependence of the refractive index of alkaline earth fluorides. Appl Opt 15, 2352–2354 (1976). doi: 10.1364/AO.15.002352

    CrossRef Google Scholar

    [38] Hahn D. Calcium fluoride and barium fluoride crystals in optics. Opt Photonik 9, 45–48 (2014). doi: 10.1002/opph.201400066

    CrossRef Google Scholar

    [39] Palik ED. Handbook of Optical Constants of Solids (Academic Press, Orlando, 1998).

    Google Scholar

    [40] Palik ED. Handbook of Optical Constants of Solids: Volume 1 (Academic Press, Orlando, 1985).

    Google Scholar

    [41] Harris RJ, Johnston GT, Kepple GA et al. Infrared thermooptic coefficient measurement of polycrystalline ZnSe, ZnS, CdTe, CaF2, and BaF2, single crystal KCl, and TI-20 glass. Appl Opt 16, 436–438 (1977). doi: 10.1364/AO.16.000436

    CrossRef Google Scholar

    [42] Valdez LA, Caravaca MA, Casali RA. Ab-initio study of elastic anisotropy, hardness and volumetric thermal expansion coefficient of ZnO, ZnS, ZnSe in wurtzite and zinc blende phases. J Phys Chem Solids 134, 245–254 (2019). doi: 10.1016/j.jpcs.2019.05.019

    CrossRef Google Scholar

    [43] Icenogle HW, Platt BC, Wolfe WL. Refractive indexes and temperature coefficients of germanium and silicon. Appl Opt 15, 2348–2351 (1976). doi: 10.1364/AO.15.002348

    CrossRef Google Scholar

    [44] Batchelder DN, Simmons RO. Lattice constants and thermal expansivities of silicon and of calcium fluoride between 6° and 322°K. J Chem Phys 41, 2324–2329 (1964). doi: 10.1063/1.1726266

    CrossRef Google Scholar

    [45] Harris DC. Durable 3–5 μm transmitting infrared window materials. Infrared Phys Technol 39, 185–201 (1998). doi: 10.1016/S1350-4495(98)00006-1

    CrossRef Google Scholar

    [46] Khorasaninejad M, Zhu AY, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett 16, 7229–7234 (2016). doi: 10.1021/acs.nanolett.6b03626

    CrossRef Google Scholar

    [47] Chen WT, Zhu AY, Khorasaninejad M et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett 17, 3188–3194 (2017). doi: 10.1021/acs.nanolett.7b00717

    CrossRef Google Scholar

    [48] Lee JH, Kim H, Lee WH et al. Surface modification of chalcogenide glass for diamond-like-carbon coating. Appl Surf Sci 478, 802–805 (2019). doi: 10.1016/j.apsusc.2019.02.043

    CrossRef Google Scholar

    [49] Lin H, Xu ZQ, Cao GY et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci Appl 9, 137 (2020). doi: 10.1038/s41377-020-00374-9

    CrossRef Google Scholar

    [50] Zheng XR, Jia BH, Lin H et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun 6, 8433 (2015). doi: 10.1038/ncomms9433

    CrossRef Google Scholar

    [51] Wang HT, Hao CL, Lin H et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021). doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

    [52] Cao GY, Lin H, Jia BH. Broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting. Ultrafast Sci 3, 0018 (2023). doi: 10.34133/ultrafastscience.0018

    CrossRef Google Scholar

    [53] Fan QB, Wang YL, Liu MZ et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Opt Lett 43, 6005–6008 (2018). doi: 10.1364/OL.43.006005

    CrossRef Google Scholar

    [54] Xia CS, Liu MZ, Wang JM et al. A polarization-insensitive infrared broadband achromatic metalens consisting of all-silicon anisotropic microstructures. Appl Phys Lett 121, 161701 (2022). doi: 10.1063/5.0120717

    CrossRef Google Scholar

    [55] Wang YL, Zhang S, Liu MZ et al. Compact meta-optics infrared camera based on a polarization-insensitive metalens with a large field of view. Opt Lett 48, 4709–4712 (2023). doi: 10.1364/OL.499942

    CrossRef Google Scholar

    [56] Xu P, Li XC, Yang T et al. Long-infrared dual-wavelength linear-polarization-multiplexed confocal metalens based on an all-silicon dielectric. Opt Express 31, 26685–26696 (2023). doi: 10.1364/OE.494599

    CrossRef Google Scholar

    [57] Hu T, Wen L, Li H et al. Aberration-corrected hybrid metalens for longwave infrared thermal imaging. Nanophotonics 13, 3059–3066 (2024). doi: 10.1515/nanoph-2023-0918

    CrossRef Google Scholar

    [58] Basilio-Ortiz JC, Moreno I. Multilayer dielectric metalens. Opt Lett 47, 5333–5336 (2022). doi: 10.1364/OL.474974

    CrossRef Google Scholar

    [59] Basilio-Ortiz JC, Moreno I. All dielectric reflective metalens based on multilayer meta-atoms. Opt Lett 48, 5647–5650 (2023). doi: 10.1364/OL.505616

    CrossRef Google Scholar

    [60] Chen WT, Park JS, Marchioni J et al. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency. Nat Commun 14, 2544 (2023). doi: 10.1038/s41467-023-38185-2

    CrossRef Google Scholar

    [61] Yang MY, Shen X, Li ZP et al. High focusing efficiency metalens with large numerical aperture at terahertz frequency. Opt Lett 48, 4677–4680 (2023). doi: 10.1364/OL.498397

    CrossRef Google Scholar

    [62] Phan T, Sell D, Wang EW et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci Appl 8, 48 (2019). doi: 10.1038/s41377-019-0159-5

    CrossRef Google Scholar

    [63] Li SY, Lin HC, Hsu CW. High-efficiency high-numerical-aperture metalens designed by maximizing the efficiency limit. Optica 11, 454–459 (2024). doi: 10.1364/OPTICA.514907

    CrossRef Google Scholar

  • Supplementary information for Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint