Wang Z, Pan WK, He Y et al. Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces. Opto-Electron Sci 4, 240024 (2025). doi: 10.29026/oes.2025.240024
Citation: Wang Z, Pan WK, He Y et al. Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces. Opto-Electron Sci 4, 240024 (2025). doi: 10.29026/oes.2025.240024

Article Open Access

Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces

More Information
  • On-chip devices for generating pre-designed vectorial optical fields (VOFs) under surface wave (SW) excitations are highly desired in integrated photonics. However, conventional devices are usually of large footprints, low efficiencies, and limited wave-control capabilities. Here, we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations, and experimentally verify the concept in terahertz (THz) regime. We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams, and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with opposite circular polarizations, respectively. We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces, which, under SW excitations, can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference. As a proof of concept, we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excitation at ~0.4 THz. Experimental results agree well with full-wave simulations, collectively verifying the performance of our device. Our study paves the road to realizing highly integrated on-chip functional THz devices, which may find many applications in biological sensing, communications, displays, image multiplexing, and beyond.
  • 加载中
  • [1] Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937

    CrossRef Google Scholar

    [2] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [3] Bozhevolnyi SI, Volkov VS, Devaux E et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006). doi: 10.1038/nature04594

    CrossRef Google Scholar

    [4] Gorodetski Y, Niv A, Kleiner V et al. Observation of the spin-based plasmonic effect in nanoscale structures. Phys Rev Lett 101, 043903 (2008). doi: 10.1103/PhysRevLett.101.043903

    CrossRef Google Scholar

    [5] Zhao CL, Liu YM, Zhao YH et al. A reconfigurable plasmofluidic lens. Nat Commun 4, 2305 (2013).

    Google Scholar

    [6] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94

    CrossRef Google Scholar

    [7] Fang YR, Sun MT. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4, e294 (2015). doi: 10.1038/lsa.2015.67

    CrossRef Google Scholar

    [8] Guo XX, Ding YM, Chen X et al. Molding free-space light with guided wave–driven metasurfaces. Sci Adv 6, eabb4142 (2020).

    Google Scholar

    [9] Li T, Chen C, Xiao XJ et al. Revolutionary meta-imaging: from superlens to metalens. Photon Insights 2, R01 (2023). doi: 10.3788/PI.2023.R01

    CrossRef Google Scholar

    [10] Yamada I, Takano K, Hangyo M et al. Terahertz wire-grid polarizers with micrometer-pitch Al gratings. Opt Lett 34, 274–276 (2009). doi: 10.1364/OL.34.000274

    CrossRef Google Scholar

    [11] Scherger B, Jördens C, Koch M. Variable-focus terahertz lens. Opt Express 19, 4528–4528 (2011). doi: 10.1364/OE.19.004528

    CrossRef Google Scholar

    [12] Wei XL, Liu CM, Niu LT et al. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range. Appl Opt 54, 10641–10649 (2015).

    Google Scholar

    [13] Zia R, Schuller JA, Chandran A et al. Plasmonics: the next chip-scale technology. Mater Today 9, 20–27 (2006).

    Google Scholar

    [14] Nie SM, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Google Scholar

    [15] Kim S, Jin J, Kim YJ et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008). doi: 10.1038/nature07012

    CrossRef Google Scholar

    [16] Anker JN, Hall WP, Lyandres O et al. Biosensing with plasmonic nanosensors. Nat Mater 7, 442–453 (2008). doi: 10.1038/nmat2162

    CrossRef Google Scholar

    [17] Yu NF, Wang QJ, Kats MA et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat Mater 9, 730–735 (2010). doi: 10.1038/nmat2822

    CrossRef Google Scholar

    [18] Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics 6, 737–748 (2012). doi: 10.1038/nphoton.2012.244

    CrossRef Google Scholar

    [19] Wang JW, Sciarrino F, Laing A et al. Integrated photonic quantum technologies. Nat Photonics 14, 273–284 (2020). doi: 10.1038/s41566-019-0532-1

    CrossRef Google Scholar

    [20] Zhang H, Gu M, Jiang XD et al. An optical neural chip for implementing complex-valued neural network. Nat Commun 12, 457 (2021).

    Google Scholar

    [21] Lalanne P, Hugonin JP, Rodier JC. Theory of surface plasmon generation at nanoslit apertures. Phys Rev Lett 95, 263902 (2005). doi: 10.1103/PhysRevLett.95.263902

    CrossRef Google Scholar

    [22] López-Tejeira F, Rodrigo SG, Martín-Moreno L et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3, 324–328 (2007). doi: 10.1038/nphys584

    CrossRef Google Scholar

    [23] Li YZ, Zhang JX, Huang DD et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotechnol 12, 987–992 (2017). doi: 10.1038/nnano.2017.128

    CrossRef Google Scholar

    [24] Kim SJ, Kang JH, Mutlu M et al. Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting. Nat Commun 9, 316 (2018). doi: 10.1038/s41467-017-02496-y

    CrossRef Google Scholar

    [25] Xiong JH, Hsiang EL, He ZQ et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [26] Lezec HJ, Degiron A, Devaux E et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).

    Google Scholar

    [27] Shi HF, Du CL, Luo XG. Focal length modulation based on a metallic slit surrounded with grooves in curved depths. Appl Phys Lett 91, 093111 (2007). doi: 10.1063/1.2776875

    CrossRef Google Scholar

    [28] Kim S, Lim Y, Kim H et al. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl Phys Lett 92, 013103 (2008). doi: 10.1063/1.2828716

    CrossRef Google Scholar

    [29] Piao XJ, Kumar MS, Koo S et al. High-efficiency out of plane conversion and manipulation of Surface Plasmon waves. In Proceedings of the Digest of the 9th International Conference on Optical Internet 8800–8805 (IEEE, 2010); http://doi.org/10.1109/COIN.2010.5546551.

    Google Scholar

    [30] Ozaki M, Kato JI, Kawata S. Surface-plasmon holography with white-light illumination. Science 332, 218–220 (2011). doi: 10.1126/science.1201045

    CrossRef Google Scholar

    [31] Chen YH, Huang L, Gan L et al. Wavefront shaping of infrared light through a subwavelength hole. Light Sci Appl 1, e26 (2012).

    Google Scholar

    [32] Tang XM, Li L, Li T et al. Converting surface plasmon to spatial Airy beam by graded grating on metal surface. Opt Lett 38, 1733–1735 (2013). doi: 10.1364/OL.38.001733

    CrossRef Google Scholar

    [33] Chen J, Li T, Wang SM et al. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Lett 17, 5051–5055 (2017). doi: 10.1021/acs.nanolett.7b02295

    CrossRef Google Scholar

    [34] Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Google Scholar

    [35] Ni XJ, Emani NK, Kildishev AV et al. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012). doi: 10.1126/science.1214686

    CrossRef Google Scholar

    [36] Sun SL, He Q, Xiao SY et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 11, 426–431 (2012). doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [37] He Q, Sun SL, Xiao SY et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater 6, 1800415 (2018). doi: 10.1002/adom.201800415

    CrossRef Google Scholar

    [38] Sun SL, He Q, Hao JM et al. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics 11, 380–479 (2019).

    Google Scholar

    [39] Sun SL, Yang KY, Wang CM et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12, 6223–6229 (2012). doi: 10.1021/nl3032668

    CrossRef Google Scholar

    [40] Cui TJ, Qi MQ, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 3, e218 (2014). doi: 10.1038/lsa.2014.99

    CrossRef Google Scholar

    [41] Xie X, Pu MB, Jin JJ et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [42] Li X, Xiao SY, Cai BG et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt Lett 37, 4940–4942 (2012).

    Google Scholar

    [43] Chen XZ, Huang LL, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 3, 1198 (2012). doi: 10.1038/ncomms2207

    CrossRef Google Scholar

    [44] Aieta F, Kats MA, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494

    CrossRef Google Scholar

    [45] Wang SM, Wu PC, Su VC et al. Broadband achromatic optical metasurface devices. Nat Commun 8, 187 (2017). doi: 10.1038/s41467-017-00166-7

    CrossRef Google Scholar

    [46] Chen WT, Yang KW, Wang CM et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14, 225–230 (2014).

    Google Scholar

    [47] Zheng GX, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [48] Xiong B, Liu Y, Xu YH et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023). doi: 10.1126/science.ade5140

    CrossRef Google Scholar

    [49] Krasikov S, Tranter A, Bogdanov A et al. Intelligent metaphotonics empowered by machine learning. Opto-Electronic Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [50] Pors A, Nielsen MG, Bernardin T et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci Appl 3, e197 (2014).

    Google Scholar

    [51] Sun WJ, He Q, Sun SL et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl 5, e16003 (2016). doi: 10.1038/lsa.2016.3

    CrossRef Google Scholar

    [52] Duan JW, Guo HJ, Dong SH et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci Rep 7, 1354 (2017). doi: 10.1038/s41598-017-01664-w

    CrossRef Google Scholar

    [53] Wang Z, Li SQ, Zhang XQ et al. Excite spoof surface plasmons with tailored wavefronts using high‐efficiency terahertz metasurfaces. Adv Sci 7, 2000982 (2020).

    Google Scholar

    [54] Chen YZ, Zheng XY, Zhang XY et al. Efficient meta-couplers squeezing propagating light into on-chip subwavelength devices in a controllable way. Nano Lett 23, 3326–3333 (2023). doi: 10.1021/acs.nanolett.3c00310

    CrossRef Google Scholar

    [55] Pan WK, Wang Z, Chen YZ et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces. Nanophotonics 11, 2025–2036 (2022). doi: 10.1515/nanoph-2022-0006

    CrossRef Google Scholar

    [56] Fang B, Wang ZZ, Gao SL et al. Manipulating guided wave radiation with integrated geometric metasurface. Nanophotonics 11, 1923–1930 (2022). doi: 10.1515/nanoph-2021-0466

    CrossRef Google Scholar

    [57] Huang HQ, Overvig AC, Xu Y et al. Leaky-wave metasurfaces for integrated photonics. Nat Nanotechnol 18, 580–588 (2023).

    Google Scholar

    [58] Ji JT, Wang ZZ, Sun JC et al. Metasurface-enabled on-chip manipulation of higher-order poincaré sphere beams. Nano Lett 23, 2750–2757 (2023). doi: 10.1021/acs.nanolett.3c00021

    CrossRef Google Scholar

    [59] Fang B, Fang B, Fang B et al. Spin-decoupled meta-coupler empowered multiplexing and multifunction of guided wave radiation. Photonics Res 11, 2194–2201 (2023). doi: 10.1364/PRJ.503249

    CrossRef Google Scholar

    [60] Zhao KY, Ha YL, Guo YH et al. On-chip integrated metasurface empowered multi-channel multiplexed three-dimensional hologram. Adv Opt Mater 12, 2303009 (2024). doi: 10.1002/adom.202303009

    CrossRef Google Scholar

    [61] Luo WJ, Sun SL, Xu HX et al. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Phys Rev Appl 7, 044033 (2017). doi: 10.1103/PhysRevApplied.7.044033

    CrossRef Google Scholar

    [62] Luo WJ, Xiao SY, He Q et al. Photonic spin hall effect with nearly 100% efficiency. Adv Opt Mater 3, 1102–1108 (2015).

    Google Scholar

  • Supplementary information for Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint