Zhu ZB, Li YF, Wang JF et al. Reconfigurable origami chiral response for holographic imaging and information encryption. Opto-Electron Sci x, 240026 (2025). doi: 10.29026/oes.2025.240026
Citation: Zhu ZB, Li YF, Wang JF et al. Reconfigurable origami chiral response for holographic imaging and information encryption. Opto-Electron Sci x, 240026 (2025). doi: 10.29026/oes.2025.240026

Article Open Access

Reconfigurable origami chiral response for holographic imaging and information encryption

More Information
  • With the rapid development of holographic technology, metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic (EM) multifunctionality. However, traditional passive metasurfaces are severely limited by their lack of reconfigurability, hindering the realization of versatile holographic applications. Origami, an art form that mechanically induces spatial deformations, serves as a platform for multifunctional devices and has garnered significant attention in optics, physics, and materials science. The Miura-ori folding paradigm, characterized by its continuous reconfigurability in folded states, remains unexplored in the context of holographic imaging. Herein, we integrate the principles of Rosenfeld with L- and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution. Leveraging the continuously tunable nature of the Miura-ori's folded states, the chiral response of the metallic structures varies across different folding configurations, enabling distinct EM holographic imaging functionalities. In the planar state, holographic encryption is achieved. Under specific folding conditions and driven by spin circularly polarized (CP) waves at a particular frequency, multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity. Notably, the fabricated origami metasurface exhibits a large negative Poisson ratio, facilitating portability and deployment and offering novel avenues for spin-selective systems, camouflage, and information encryption.
  • 加载中
  • [1] Sun SL, Yang KY, Wang CM et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12, 6223–6229 (2012).

    Google Scholar

    [2] Liu XY, Chen MK, Chu CH et al. Underwater binocular meta-lens. ACS Photonics 10, 2382–2389 (2023).

    Google Scholar

    [3] Yu SX, Li L, Shi GM et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl Phys Lett 108, 241901 (2016). doi: 10.1063/1.4953786

    CrossRef Google Scholar

    [4] Chen MK, Liu XY, Wu YF et al. A meta-device for intelligent depth perception. Adv Mater 35, 2107465 (2023). doi: 10.1002/adma.202107465

    CrossRef Google Scholar

    [5] Nan T, Zhao H, Guo JY et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces. Opto-Electron Sci 3, 230052 (2024).

    Google Scholar

    [6] Landy NI, Sajuyigbe S, Mock JJ et al. Perfect metamaterial absorber. Phys Rev Lett 100, 207402 (2008). doi: 10.1103/PhysRevLett.100.207402

    CrossRef Google Scholar

    [7] Yifat Y, Eitan M, Iluz Z et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. Nano Lett 14, 2485–2490 (2014). doi: 10.1021/nl5001696

    CrossRef Google Scholar

    [8] Huang K, Dong ZG, Mei ST et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev 10, 500–509 (2016). doi: 10.1002/lpor.201500314

    CrossRef Google Scholar

    [9] Zhou HQ, Wang YT, Li XW et al. Switchable active phase modulation and holography encryption based on hybrid metasurfaces. Nanophotonics 9, 905–912 (2020). doi: 10.1515/nanoph-2019-0519

    CrossRef Google Scholar

    [10] Ding XM, Wang ZC, Hu GW et al. Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX 1, 16 (2020). doi: 10.1186/s43074-020-00016-8

    CrossRef Google Scholar

    [11] Naveed MA, Ansari MA, Kim I et al. Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsyst Nanoeng 7, 5 (2021). doi: 10.1038/s41378-020-00226-x

    CrossRef Google Scholar

    [12] Gao H, Fan XH, Wang YX, Liu YC, Wang XG et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [13] Kim J, Jeon D, Seong J et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano 16, 3546–3553 (2022).

    Google Scholar

    [14] Kang D, Heo H, Yang Y et al. Liquid crystal-integrated metasurfaces for an active photonic platform. Opto-Electron Adv 7, 230216 (2024). doi: 10.29026/oea.2024.230216

    CrossRef Google Scholar

    [15] Li X, Chen LW, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [16] Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [17] Liu YC, Xu K, Fan XH et al. Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates. Opto-Electron Adv 7, 230108 (2024).

    Google Scholar

    [18] Bao L, Ma Q, Wu RY et al. Programmable reflection–transmission shared-aperture metasurface for real-time control of electromagnetic waves in full space. Adv Sci 8, 2100149 (2021). doi: 10.1002/advs.202100149

    CrossRef Google Scholar

    [19] Zhang XG, Yu Q, Jiang WX et al. Polarization-controlled dual-programmable metasurfaces. Adv Sci 7, 1903382 (2020). doi: 10.1002/advs.201903382

    CrossRef Google Scholar

    [20] Lepeshov S, Krasnok A. Tunable phase-change metasurfaces. Nat Nanotechnol 16, 615–616 (2021). doi: 10.1038/s41565-021-00892-6

    CrossRef Google Scholar

    [21] Ding CC, Rui GH, Gu B et al. Phase-change metasurface with tunable and switchable circular dichroism. Opt Lett 46, 2525–2528 (2021).

    Google Scholar

    [22] Dong YB, Luan HT, Lin DJ et al. Laser-induced graphene hologram reconfiguration for countersurveillance multisecret sharing. Laser Photonics Rev 17, 2200805 (2023). doi: 10.1002/lpor.202200805

    CrossRef Google Scholar

    [23] Chen T, Bilal OR, Lang R et al. Autonomous deployment of a solar panel using elastic origami and distributed shape-memory-polymer actuators. Phys Rev Appl 11, 064069 (2019). doi: 10.1103/PhysRevApplied.11.064069

    CrossRef Google Scholar

    [24] Schenk M, Viquerat AD, Seffen KA et al. Review of inflatable booms for deployable space structures: packing and rigidization. J Spacecr Rockets 51, 762–778 (2014). doi: 10.2514/1.A32598

    CrossRef Google Scholar

    [25] Silverberg JL, Evans AA, Mcleod L et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014). doi: 10.1126/science.1252876

    CrossRef Google Scholar

    [26] Overvelde JTB, De Jong TA, Shevchenko Y et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nat Commun 7, 10929 (2016).

    Google Scholar

    [27] Filipov ET, Tachi T, Paulino GH. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc Natl Acad Sci USA 112, 12321–12326 (2015). doi: 10.1073/pnas.1509465112

    CrossRef Google Scholar

    [28] Lin ZW, Novelino LS, Wei HM et al. Folding at the microscale: enabling multifunctional 3D origami-architected metamaterials. Small 16, 2002229 (2020). doi: 10.1002/smll.202002229

    CrossRef Google Scholar

    [29] Zhai ZR, Wu LL, Jiang HQ. Mechanical metamaterials based on origami and kirigami. Appl Phys Rev 8, 041319 (2021). doi: 10.1063/5.0051088

    CrossRef Google Scholar

    [30] Kuribayashi K, Tsuchiya K, You Z et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater Sci Eng A 419, 131–137 (2006).

    Google Scholar

    [31] Cheng Q, Song ZM, Ma T et al. Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Lett 13, 4969–4974 (2013). doi: 10.1021/nl4030374

    CrossRef Google Scholar

    [32] Pesenti M, Masera G, Fiorito F. Exploration of adaptive origami shading concepts through integrated dynamic simulations. J Archit Eng 24, 04018022 (2018). doi: 10.1061/(ASCE)AE.1943-5568.0000323

    CrossRef Google Scholar

    [33] Wang ZJ, Jing LQ, Yao K et al. Origami-based reconfigurable metamaterials for tunable chirality. Adv Mater 29, 1700412 (2017). doi: 10.1002/adma.201700412

    CrossRef Google Scholar

    [34] Li M, Shen L, Jing LQ et al. Origami metawall: mechanically controlled absorption and deflection of light. Adv Sci 6, 1901434 (2019).

    Google Scholar

    [35] Zhu ZB, Wang H, Li YF et al. Origami-based metamaterials for dynamic control of wide-angle absorption in a reconfigurable manner. IEEE Trans Antennas Propag 70, 4558–4568 (2022). doi: 10.1109/TAP.2022.3140521

    CrossRef Google Scholar

    [36] Zhu ZB, Li YF, Qin Z et al. Miura origami based reconfigurable polarization converter for multifunctional control of electromagnetic waves. Photonics Res 12, 581–586 (2024). doi: 10.1364/PRJ.504027

    CrossRef Google Scholar

    [37] Pan RH, Liu Z, Zhu W et al. Asymmetrical chirality in 3D bended metasurface. Adv Funct Mater 31, 2100689 (2021). doi: 10.1002/adfm.202100689

    CrossRef Google Scholar

    [38] Liu K, Tachi T, Paulino GH. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces. Nat Commun 10, 4238 (2019).

    Google Scholar

    [39] Yang SY, Liu Z, Yang HF et al. Intrinsic chirality and multispectral spin-selective transmission in folded eta-shaped metamaterials. Adv Opt Mater 8, 1901448 (2020). doi: 10.1002/adom.201901448

    CrossRef Google Scholar

    [40] Frank B, Yin XH, Schäferling M et al. Large-area 3D chiral plasmonic structures. ACS Nano 7, 6321–6329 (2013). doi: 10.1021/nn402370x

    CrossRef Google Scholar

    [41] Zheng YL, Chen K, Yang WX et al. Kirigami reconfigurable gradient metasurface. Adv Funct Mater 32, 2107699 (2022). doi: 10.1002/adfm.202107699

    CrossRef Google Scholar

    [42] Yin XH, Schäferling M, Metzger B et al. Interpreting chiral nanophotonic spectra: the plasmonic born–Kuhn model. Nano Lett 13, 6238–6243 (2013).

    Google Scholar

    [43] Chen Y, Yang XD, Gao J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light Sci Appl 7, 84 (2018). doi: 10.1038/s41377-018-0086-x

    CrossRef Google Scholar

    [44] Kim J, Yang Y, Badloe T et al. Geometric and physical configurations of meta-atoms for advanced metasurface holography. InfoMat 3, 739–754 (2021). doi: 10.1002/inf2.12191

    CrossRef Google Scholar

    [45] Yang SY, Liu Z, Hu S et al. Spin-selective transmission in chiral folded metasurfaces. Nano Lett 19, 3432–3439 (2019). doi: 10.1021/acs.nanolett.8b04521

    CrossRef Google Scholar

    [46] Li BH, Li XW, Zhao RZ et al. Polarization multiplexing terahertz metasurfaces through spatial femtosecond laser-shaping fabrication. Adv Opt Mater 8, 2000136 (2020).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint