Citation: | Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 2017, 44(2): 129-139. doi: 10.3969/j.issn.1003-501X.2017.02.001 |
[1] | 罗先刚.亚波长电磁学[M].北京:科学出版社, 2016. |
[2] | Luo Xiangang. Subwavelength electromagnetics[J]. Frontiers of Optoelectronics, 2016, 9(2): 138-150. doi: 10.1007/s12200-016-0632-1 |
[3] | Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201. |
[4] | Hong Minghui. Metasurface wave in planar nano-photonics[J]. Science Bulletin, 2016, 61: 112-113. doi: 10.1007/s11434-015-0948-z |
[5] | Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782. doi: 10.1063/1.1760221 |
[6] | Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759 |
[7] | Munk B A. Metamaterials: critique and alternatives[M]. Hoboken: John Wiley & Sons, 2009. |
[8] | Grzegorczyk T M, Nikku M, Chen X D, et al. Refraction laws for anisotropic media and their application to left-handed metamaterials[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(4): 1443-1450. doi: 10.1109/TMTT.2005.845206 |
[9] | Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713 |
[10] | Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839 |
[11] | Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127. |
[12] | 孙树林, 何琼, 周磊.电磁超表面[J].物理, 2015, 44(6): 366- 376. Sun Shulin, He Qiong, Zhou Lei. Electromagnetic metasurfaces [J]. Physics, 2015, 44(6): 366-376. |
[13] | Minovich A E, Miroshnichenko A E, Bykov A Y, et al. Functional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews, 2015, 9(2): 195-213. |
[14] | Xu Yadong, Fu Yangyang, Chen Huanyang. Planar gradient metamaterials[J]. Nature Reviews Materials, 2016, 1(12): 16067. doi: 10.1038/natrevmats.2016.67 |
[15] | Lalanne P, Astilean S, Chavel P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083. doi: 10.1364/OL.23.001081 |
[16] | Smith D R, Mock J J, Starr A F, et al. Gradient index metamaterials[J]. Physical Review E, 2005, 71(3): 36609. doi: 10.1103/PhysRevE.71.036609 |
[17] | Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885. doi: 10.1038/srep19885 |
[18] | Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396 |
[19] | Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365 |
[20] | Bliokh K Y, Rodríguez-Fortuño F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808. doi: 10.1038/nphoton.2015.201 |
[21] | Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276. |
[22] | Anandan J. The geometric phase[J]. Nature, 1992, 360(6402): 307-313. doi: 10.1038/360307a0 |
[23] | Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi: 10.1021/acsphotonics.6b00564 |
[24] | Larouche S, Smith D R. Reconciliation of generalized refraction with diffraction theory[J]. Optics Letters, 2012, 37(12): 2391- 2393. doi: 10.1364/OL.37.002391 |
[25] | Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102 |
[26] | Ni X J, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. doi: 10.1126/science.aac9411 |
[27] | Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822. doi: 10.1038/srep09822 |
[28] | Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamaterials[J]. Nature Photonics, 2013, 7(12): 948-957. doi: 10.1038/nphoton.2013.243 |
[29] | 郭迎辉, 蒲明博, 马晓亮, 等.电磁超构材料色散调控研究进展[J].光电工程, 2017, 44(1): 3-22. Guo Yinghui, Pu Mingbo, Ma Xiaoliang, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3-22. |
[30] | Xu Ting, Zhao Yanhui, Ma Junxian, et al. Sub-diffraction-limited interference photolithography with metamaterials[J]. Optics Express, 2008, 16(18): 13579-13584. doi: 10.1364/OE.16.013579 |
[31] | Wang Changtao, Gao Ping, Tao Xing, et al. Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films[J]. Applied Physics Letters, 2013, 103(3): 031911. doi: 10.1063/1.4815924 |
[32] | Liang Gaofeng, Wang Changtao, Zhao Zeyu, et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography[J]. Advanced Optical Materials, 2015, 3(9): 1248-1256. doi: 10.1002/adom.v3.9 |
[33] | Liu Ling, Gao Ping, Liu Kaipeng, et al. Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials[J]. Materials Horizons, 2017, doi: 10.1039/C6MH 00535G. |
[34] | 王长涛, 赵泽宇, 高平, 等.表面等离子体超衍射光学光刻[J].科学通报, 2016, 61(6): 585-599. Wang Changtao, Zhao Zeyu, Gao Ping, et al. Surface plasmon lithography beyond the diffraction limit[J]. Chinese Science Bulletin, 2016, 61(6): 585-599. |
[35] | Moore D T. Gradient-index optics: a review[J]. Applied Optics, 1980, 19(7): 1035-1038. doi: 10.1364/AO.19.001035 |
[36] | Arai J, Okano F, Hoshino H, et al. Gradient-index lens-array method based on real-time integral photography for three-dimensional images[J]. Applied Optics, 1998, 37(11): 2034-2045. doi: 10.1364/AO.37.002034 |
[37] | Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907 |
[38] | Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780. doi: 10.1126/science.1126493 |
[39] | Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628 |
[40] | Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901 doi: 10.1103/PhysRevLett.101.203901 |
[41] | Wang Wei, Xing Hui, Fang Liang, et al. Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial[J]. Optics Express, 2008, 16(25): 21142-21148. doi: 10.1364/OE.16.021142 |
[42] | Han S, Xiong Y, Genov D, et al. Ray optics at a deep-subwavelength scale: a transformation optics approach[J]. Nano Letters, 2008, 8(12): 4243-4247. doi: 10.1021/nl801942x |
[43] | Ren Guowei, Wang Changtao, Yi Guangwei, et al. Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer[J]. Plasmonics, 2013, 8(2): 1065-1072. doi: 10.1007/s11468-013-9510-5 |
[44] | Liu Ling, Liu Kaipeng, Zhao Zeyu, et al. Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer[J]. RSC Advances, 2016, 6(98): 95973-95978. doi: 10.1039/C6RA17098F |
[45] | Sun J B, Xu T, Litchinitser N M. Experimental demonstration of demagnifying hyperlens[J]. Nano Letters, 2016, 16(12): 7905- 7909. doi: 10.1021/acs.nanolett.6b04175 |
[46] | Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129-132. doi: 10.1038/nmat2610 |
[47] | Ma Huifeng, Cui Tiejun. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 2010, 1(8): 124. doi: 10.1038/ncomms1126 |
[48] | Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106. doi: 10.1063/1.3184594 |
[49] | Sheng C, Liu H, Wang Y, et al. Trapping light by mimicking gravitational lensing[J]. Nature Photonics, 2013, 7(11): 902-906. doi: 10.1038/nphoton.2013.247 |
[50] | Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759. doi: 10.1364/OE.16.004753 |
[51] | 罗先刚, 徐挺, 杜春雷, 等. 一种包含纳米缝的金属膜透镜: 中国, ZL200710177752. 5[P]. 2008-4-9. |
[52] | Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase- change metasurface[J]. Scientific Reports, 2015, 5: 15020. doi: 10.1038/srep15020 |
[53] | Sun Hongbo. The mystical interlinks: Mechanics, religion or optics?[J]. Science China-Physics, Mechanics & Astronomy, 2016, 59: 614202. |
[54] | Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805- 18812. doi: 10.1039/C5NR05153C |
[55] | Pu Mingbo, Chen Po, Wang Changtao, et al. Broadband anomalous reflection based on low-Q gradient meta-surface[J]. AIP Advances, 2013, 3(5): 052136. doi: 10.1063/1.4809548 |
[56] | Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401. doi: 10.1103/PhysRevLett.110.197401 |
[57] | Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Advanced Optical Materials, 2016, 4(5): 659-663. doi: 10.1002/adom.v4.5 |
[58] | Verslegers L, Catrysse P B, Yu Z F, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238. doi: 10.1021/nl802830y |
[59] | Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as highly efficient and compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524 |
[60] | Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644 |
[61] | Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719. |
[62] | Goh X M, Lin L, Roberts A. Planar focusing elements using spatially varying near-resonant aperture arrays[J]. Optics Express, 2010, 18(11): 11683-11688. doi: 10.1364/OE.18.011683 |
[63] | Zhao Zeyu, Pu Mingbo, Gao Hui, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5: 15781. doi: 10.1038/srep15781 |
[64] | Wang Yanqin, Pu Mingbo, Zhang Zuojun, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Scientific Reports, 2015, 5: 17733. |
[65] | Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technology, 2017, 2(2), doi: 10.1002/admt.201600201. |
[66] | Hashemi H, Zhang B L, Joannopoulos J D, et al. Delay-bandwidth and delay-loss limitations for cloaking of large objects[J]. Physical Review Letters, 2010, 104(25): 253903. doi: 10.1103/PhysRevLett.104.253903 |
[67] | Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133-2135. doi: 10.1364/OL.37.002133 |
[68] | Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906. doi: 10.1063/1.4799162 |
[69] | Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434 |
[70] | Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2 |
[71] | Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens' surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820. doi: 10.1002/adom.v3.6 |
[72] | Arbabi E, Arbabi A, Kamali S M, et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms[J]. Optics Express, 2016, 24(16): 18468-18477. doi: 10.1364/OE.24.018468 |
[73] | Pan Wenbo, Huang Cheng, Chen Po, et al. A beam steering horn antenna using active frequency selective surface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6218-6223. doi: 10.1109/TAP.2013.2280592 |
[74] | Huang Cheng, Pan Wenbo, Ma Xiaoliang, et al. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801-4810. doi: 10.1109/TAP.2015.2479648 |
Abstract: The refraction and reflection are basic phenomena in the propagation of all kinds of waves, such as light waves, electromagnetic waves and acoustic waves, when they encounter the interface among different kinds of materials. Because of the rigorous limitation of classical laws, traditional optical components such as spherical lenses and parabolic mirrors must be designed with various non-planar geometric shapes to control the flow of light, which makes these devices bulky and heavy. During the last several hundred years, many efforts have been devoted to make optical components thin and lightweight. One particular example is the diffractive gratings and lenses, where the wavefront can be constructed by locally tuning the transmittance in a two-dimensional space. However, the diffractive devices are suffering from the low diffraction efficiency and large chromatic dispersion, making them difficult to be used in practical optical systems.
Recently, it is discovered that the traditional optical laws regarding refraction and reflection can be rewritten when artificially designed subwavelength arrays are fabricated on the interfaces, which are termed metasurfaces or two-dimensional metamaterials. Different from the 3D metamaterials, metasurfaces-based devices are much thinner and easier to fabricate, thus forming a natural candidate for planar optics. The revised laws in the subwavelength structured flat surfaces provide promising alternatives to achieve imaging, multi-physics decoupling, and holographic display. In particular, metasurface-based imaging is considered as the third generation of imaging techniques (the first and second generations are the refractive and diffractive approaches, respectively).
In this paper, we review the recent progresses in this emerging topic, including the refraction and reflection behavior of light in various materials configurations, the fundamental theories and practical applications. We show that plasmonic elements with local phase modulation ability have provided a crucial candidate to realize the generalized laws of refraction and reflection. Based on the short-wavelength effect of surface plasmon, these flat lenses can be much thinner than the vacuum wavelength. Besides the arbitrary refraction and reflection, it is shown that the new optical laws ensure that the wavefront can be arbitrarily tuned, which are critical to achieve beam shaping, stealth and high-purity holography. At the end of this review, the shortcomings of current researches are analyzed based on our recent results, with a look towards the future trends of the overall area.
The laws of refraction and reflection at the interfaces between two homogenious materials. (a) Normal refraction and reflection. (b) The refraction and reflection at the interface between double positive and double negative materials. (c) The refraction and reflection at the interface between normal material and birefringent crystal. (d) The abnormal refraction effect associated with hyperbolic materials[28].
Optical devices based on gradient materials. (a) Flat lens based on gradient index slab. (b) Flattened 3D Luneburg lens in the microwave band[47]. (c) Light propagation in artificial blackhole[48]. (d) Fabricated hyperlens designed for λ=365 nm[44]. (e) Hyperlens designed for λ=405 nm[45].
Deflectors based on phase wrapping. (a) 2D dielectric grating with varing sizes in adjacent unit cells[15]. (b) Gradient metamaterials[16].
Generalized law of refraction. (a) The local phase shift is introduced by the nanoslits array[17]. (b) The phase shift is produced by the V-shaped nanoantennas[9].
Flat lenses based on nanoslits array. (a) Schematic of the flat lens[17]. (b) Experimental demonstration of (a) in the visible range. From left to right: SEM image, experimental and simulated results[58]. (c) Fractal angular momentum generators based on deformed nanoslits[23]. (d) High-order Bessel beam generators based on catenary nanostructures[18, 59].
Generalized refraction law for plannar imaging. (a) SEM image of the metasurface objective[60]. Scale bar: 300 nm. (b) SEM image of the object "H" [60]. Scale bar: 10 μm. (c) Image of the object[60]. Scale bar: 10 μm. (d) Photograph of the metasurface-based telescope[3]. (e), (f) Focal spots for red light (left, λ=632.8 nm) and white (right) light[3].
Virtual shaping technologies based on arbitrary reflection. (a) Schematic of the skin cloak[26]. (b) Measurement of the cloaking performance[26]. (c) Sketch map of the virtual shaping device[27]. (d) Simulated radar cross section (RCS) reduction[27].
Metasurface holographic devices based on MLRR. (a) Schematic of the off-axis full-color holography[25]. (b) Holographic image of the China map[25]. (c) Holographic map of the Sun Phoenix[25]. (d) Schematic of the high-efficiency reflective hologram[70]. (e) SEM image of the reflective hologram[70]. (f) Diffraction efficiency of the device shown in (e) [70]. (g) SEM image of the infrared high-efficiency metasurface. (h) Holographic image of B-2 in the infrared band. (i) 3D holographic image of the F-22 in the visible band.
Light fields distribution and ray-tracing of typical metasurfaces with nonlinear phase distribution. (a) The focused light fields generated by an ideal metasurface lens. (b) Ray tracing of the ideal focusing lens, where denser lines mean stronger light intensity. (c) Reviewed light fields generated by a metasurface with quadratic phase. (d) Ray tracing of the quadratic lens.