Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 2017, 44(2): 129-139. doi: 10.3969/j.issn.1003-501X.2017.02.001
Citation: Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 2017, 44(2): 129-139. doi: 10.3969/j.issn.1003-501X.2017.02.001

The generalized laws of refraction and reflection

    Fund Project:
More Information
  • The refraction and reflection are basic phenomena in the propagation of all kinds of waves, such as light waves, electromagnetic waves and acoustic waves, when they encounter the interface between different kinds of materials. Recently, it is discovered that the traditional optical laws regarding refraction and reflection can be rewritten when artificially designed subwavelength arrays are fabricated on the interfaces. The revised laws provide promising alternatives to achieve imaging, multi-physics decoupling and holographic display. Here we review the recent progresses in this emerging topic, including the refraction and reflection behavior in various materials configurations, the fundamental theories and practical applications. Finally, based on our recent results, the shortcomings of current researches are analyzed with a look towards the future trends of the overall area.
  • 加载中
  • [1] 罗先刚.亚波长电磁学[M].北京:科学出版社, 2016.

    Google Scholar

    [2] Luo Xiangang. Subwavelength electromagnetics[J]. Frontiers of Optoelectronics, 2016, 9(2): 138-150. doi: 10.1007/s12200-016-0632-1

    CrossRef Google Scholar

    [3] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    Google Scholar

    [4] Hong Minghui. Metasurface wave in planar nano-photonics[J]. Science Bulletin, 2016, 61: 112-113. doi: 10.1007/s11434-015-0948-z

    CrossRef Google Scholar

    [5] Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782. doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [6] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [7] Munk B A. Metamaterials: critique and alternatives[M]. Hoboken: John Wiley & Sons, 2009.

    Google Scholar

    [8] Grzegorczyk T M, Nikku M, Chen X D, et al. Refraction laws for anisotropic media and their application to left-handed metamaterials[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(4): 1443-1450. doi: 10.1109/TMTT.2005.845206

    CrossRef Google Scholar

    [9] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [10] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [11] Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127.

    Google Scholar

    [12] 孙树林, 何琼, 周磊.电磁超表面[J].物理, 2015, 44(6): 366- 376.

    Google Scholar

    Sun Shulin, He Qiong, Zhou Lei. Electromagnetic metasurfaces [J]. Physics, 2015, 44(6): 366-376.

    Google Scholar

    [13] Minovich A E, Miroshnichenko A E, Bykov A Y, et al. Functional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews, 2015, 9(2): 195-213.

    Google Scholar

    [14] Xu Yadong, Fu Yangyang, Chen Huanyang. Planar gradient metamaterials[J]. Nature Reviews Materials, 2016, 1(12): 16067. doi: 10.1038/natrevmats.2016.67

    CrossRef Google Scholar

    [15] Lalanne P, Astilean S, Chavel P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083. doi: 10.1364/OL.23.001081

    CrossRef Google Scholar

    [16] Smith D R, Mock J J, Starr A F, et al. Gradient index metamaterials[J]. Physical Review E, 2005, 71(3): 36609. doi: 10.1103/PhysRevE.71.036609

    CrossRef Google Scholar

    [17] Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885. doi: 10.1038/srep19885

    CrossRef Google Scholar

    [18] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [19] Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365

    CrossRef Google Scholar

    [20] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808. doi: 10.1038/nphoton.2015.201

    CrossRef Google Scholar

    [21] Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276.

    Google Scholar

    [22] Anandan J. The geometric phase[J]. Nature, 1992, 360(6402): 307-313. doi: 10.1038/360307a0

    CrossRef Google Scholar

    [23] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [24] Larouche S, Smith D R. Reconciliation of generalized refraction with diffraction theory[J]. Optics Letters, 2012, 37(12): 2391- 2393. doi: 10.1364/OL.37.002391

    CrossRef Google Scholar

    [25] Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [26] Ni X J, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. doi: 10.1126/science.aac9411

    CrossRef Google Scholar

    [27] Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822. doi: 10.1038/srep09822

    CrossRef Google Scholar

    [28] Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamaterials[J]. Nature Photonics, 2013, 7(12): 948-957. doi: 10.1038/nphoton.2013.243

    CrossRef Google Scholar

    [29] 郭迎辉, 蒲明博, 马晓亮, 等.电磁超构材料色散调控研究进展[J].光电工程, 2017, 44(1): 3-22.

    Google Scholar

    Guo Yinghui, Pu Mingbo, Ma Xiaoliang, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3-22.

    Google Scholar

    [30] Xu Ting, Zhao Yanhui, Ma Junxian, et al. Sub-diffraction-limited interference photolithography with metamaterials[J]. Optics Express, 2008, 16(18): 13579-13584. doi: 10.1364/OE.16.013579

    CrossRef Google Scholar

    [31] Wang Changtao, Gao Ping, Tao Xing, et al. Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films[J]. Applied Physics Letters, 2013, 103(3): 031911. doi: 10.1063/1.4815924

    CrossRef Google Scholar

    [32] Liang Gaofeng, Wang Changtao, Zhao Zeyu, et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography[J]. Advanced Optical Materials, 2015, 3(9): 1248-1256. doi: 10.1002/adom.v3.9

    CrossRef Google Scholar

    [33] Liu Ling, Gao Ping, Liu Kaipeng, et al. Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials[J]. Materials Horizons, 2017, doi: 10.1039/C6MH 00535G.

    CrossRef Google Scholar

    [34] 王长涛, 赵泽宇, 高平, 等.表面等离子体超衍射光学光刻[J].科学通报, 2016, 61(6): 585-599.

    Google Scholar

    Wang Changtao, Zhao Zeyu, Gao Ping, et al. Surface plasmon lithography beyond the diffraction limit[J]. Chinese Science Bulletin, 2016, 61(6): 585-599.

    Google Scholar

    [35] Moore D T. Gradient-index optics: a review[J]. Applied Optics, 1980, 19(7): 1035-1038. doi: 10.1364/AO.19.001035

    CrossRef Google Scholar

    [36] Arai J, Okano F, Hoshino H, et al. Gradient-index lens-array method based on real-time integral photography for three-dimensional images[J]. Applied Optics, 1998, 37(11): 2034-2045. doi: 10.1364/AO.37.002034

    CrossRef Google Scholar

    [37] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907

    CrossRef Google Scholar

    [38] Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780. doi: 10.1126/science.1126493

    CrossRef Google Scholar

    [39] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [40] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901 doi: 10.1103/PhysRevLett.101.203901

    CrossRef Google Scholar

    [41] Wang Wei, Xing Hui, Fang Liang, et al. Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial[J]. Optics Express, 2008, 16(25): 21142-21148. doi: 10.1364/OE.16.021142

    CrossRef Google Scholar

    [42] Han S, Xiong Y, Genov D, et al. Ray optics at a deep-subwavelength scale: a transformation optics approach[J]. Nano Letters, 2008, 8(12): 4243-4247. doi: 10.1021/nl801942x

    CrossRef Google Scholar

    [43] Ren Guowei, Wang Changtao, Yi Guangwei, et al. Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer[J]. Plasmonics, 2013, 8(2): 1065-1072. doi: 10.1007/s11468-013-9510-5

    CrossRef Google Scholar

    [44] Liu Ling, Liu Kaipeng, Zhao Zeyu, et al. Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer[J]. RSC Advances, 2016, 6(98): 95973-95978. doi: 10.1039/C6RA17098F

    CrossRef Google Scholar

    [45] Sun J B, Xu T, Litchinitser N M. Experimental demonstration of demagnifying hyperlens[J]. Nano Letters, 2016, 16(12): 7905- 7909. doi: 10.1021/acs.nanolett.6b04175

    CrossRef Google Scholar

    [46] Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129-132. doi: 10.1038/nmat2610

    CrossRef Google Scholar

    [47] Ma Huifeng, Cui Tiejun. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 2010, 1(8): 124. doi: 10.1038/ncomms1126

    CrossRef Google Scholar

    [48] Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106. doi: 10.1063/1.3184594

    CrossRef Google Scholar

    [49] Sheng C, Liu H, Wang Y, et al. Trapping light by mimicking gravitational lensing[J]. Nature Photonics, 2013, 7(11): 902-906. doi: 10.1038/nphoton.2013.247

    CrossRef Google Scholar

    [50] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759. doi: 10.1364/OE.16.004753

    CrossRef Google Scholar

    [51] 罗先刚, 徐挺, 杜春雷, 等. 一种包含纳米缝的金属膜透镜: 中国, ZL200710177752. 5[P]. 2008-4-9.

    Google Scholar

    [52] Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase- change metasurface[J]. Scientific Reports, 2015, 5: 15020. doi: 10.1038/srep15020

    CrossRef Google Scholar

    [53] Sun Hongbo. The mystical interlinks: Mechanics, religion or optics?[J]. Science China-Physics, Mechanics & Astronomy, 2016, 59: 614202.

    Google Scholar

    [54] Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805- 18812. doi: 10.1039/C5NR05153C

    CrossRef Google Scholar

    [55] Pu Mingbo, Chen Po, Wang Changtao, et al. Broadband anomalous reflection based on low-Q gradient meta-surface[J]. AIP Advances, 2013, 3(5): 052136. doi: 10.1063/1.4809548

    CrossRef Google Scholar

    [56] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401. doi: 10.1103/PhysRevLett.110.197401

    CrossRef Google Scholar

    [57] Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Advanced Optical Materials, 2016, 4(5): 659-663. doi: 10.1002/adom.v4.5

    CrossRef Google Scholar

    [58] Verslegers L, Catrysse P B, Yu Z F, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238. doi: 10.1021/nl802830y

    CrossRef Google Scholar

    [59] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as highly efficient and compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524

    CrossRef Google Scholar

    [60] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [61] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.

    Google Scholar

    [62] Goh X M, Lin L, Roberts A. Planar focusing elements using spatially varying near-resonant aperture arrays[J]. Optics Express, 2010, 18(11): 11683-11688. doi: 10.1364/OE.18.011683

    CrossRef Google Scholar

    [63] Zhao Zeyu, Pu Mingbo, Gao Hui, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5: 15781. doi: 10.1038/srep15781

    CrossRef Google Scholar

    [64] Wang Yanqin, Pu Mingbo, Zhang Zuojun, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Scientific Reports, 2015, 5: 17733.

    Google Scholar

    [65] Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technology, 2017, 2(2), doi: 10.1002/admt.201600201.

    CrossRef Google Scholar

    [66] Hashemi H, Zhang B L, Joannopoulos J D, et al. Delay-bandwidth and delay-loss limitations for cloaking of large objects[J]. Physical Review Letters, 2010, 104(25): 253903. doi: 10.1103/PhysRevLett.104.253903

    CrossRef Google Scholar

    [67] Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133-2135. doi: 10.1364/OL.37.002133

    CrossRef Google Scholar

    [68] Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906. doi: 10.1063/1.4799162

    CrossRef Google Scholar

    [69] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434

    CrossRef Google Scholar

    [70] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [71] Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens' surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820. doi: 10.1002/adom.v3.6

    CrossRef Google Scholar

    [72] Arbabi E, Arbabi A, Kamali S M, et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms[J]. Optics Express, 2016, 24(16): 18468-18477. doi: 10.1364/OE.24.018468

    CrossRef Google Scholar

    [73] Pan Wenbo, Huang Cheng, Chen Po, et al. A beam steering horn antenna using active frequency selective surface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6218-6223. doi: 10.1109/TAP.2013.2280592

    CrossRef Google Scholar

    [74] Huang Cheng, Pan Wenbo, Ma Xiaoliang, et al. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801-4810. doi: 10.1109/TAP.2015.2479648

    CrossRef Google Scholar

  • Abstract: The refraction and reflection are basic phenomena in the propagation of all kinds of waves, such as light waves, electromagnetic waves and acoustic waves, when they encounter the interface among different kinds of materials. Because of the rigorous limitation of classical laws, traditional optical components such as spherical lenses and parabolic mirrors must be designed with various non-planar geometric shapes to control the flow of light, which makes these devices bulky and heavy. During the last several hundred years, many efforts have been devoted to make optical components thin and lightweight. One particular example is the diffractive gratings and lenses, where the wavefront can be constructed by locally tuning the transmittance in a two-dimensional space. However, the diffractive devices are suffering from the low diffraction efficiency and large chromatic dispersion, making them difficult to be used in practical optical systems.

    Recently, it is discovered that the traditional optical laws regarding refraction and reflection can be rewritten when artificially designed subwavelength arrays are fabricated on the interfaces, which are termed metasurfaces or two-dimensional metamaterials. Different from the 3D metamaterials, metasurfaces-based devices are much thinner and easier to fabricate, thus forming a natural candidate for planar optics. The revised laws in the subwavelength structured flat surfaces provide promising alternatives to achieve imaging, multi-physics decoupling, and holographic display. In particular, metasurface-based imaging is considered as the third generation of imaging techniques (the first and second generations are the refractive and diffractive approaches, respectively).

    In this paper, we review the recent progresses in this emerging topic, including the refraction and reflection behavior of light in various materials configurations, the fundamental theories and practical applications. We show that plasmonic elements with local phase modulation ability have provided a crucial candidate to realize the generalized laws of refraction and reflection. Based on the short-wavelength effect of surface plasmon, these flat lenses can be much thinner than the vacuum wavelength. Besides the arbitrary refraction and reflection, it is shown that the new optical laws ensure that the wavefront can be arbitrarily tuned, which are critical to achieve beam shaping, stealth and high-purity holography. At the end of this review, the shortcomings of current researches are analyzed based on our recent results, with a look towards the future trends of the overall area.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint