Zhao Qing, Huang Xiaoping, Lin En, et al. Advances of plasmonic nanolasers[J]. Opto-Electronic Engineering, 2017, 44(2): 140-151. doi: 10.3969/j.issn.1003-501X.2017.02.002
Citation: Zhao Qing, Huang Xiaoping, Lin En, et al. Advances of plasmonic nanolasers[J]. Opto-Electronic Engineering, 2017, 44(2): 140-151. doi: 10.3969/j.issn.1003-501X.2017.02.002

Advances of plasmonic nanolasers

    Fund Project:
More Information
  • Semiconductor lasers are widely used for applications in biology, information storage, photonics and medical therapeutics. With the development of the emerging area of nano-optics and nanophotonics, more compact lasers attract significant interest. As the cavity size is reduced with respect to the emission wavelength, interesting physical effects in electromagnetic cavities arise. To scale down the semiconductor lasers in all three dimensions plays an important role in the development of low-dimension, low-threshold, and ultrafast coherent light sources, as well as integrated nano-optoelectronic and plasmonic circuits. In this review, the overall formalism of mode gain and confinement factor in the metal–semiconductor plasmonic lasers was introduced firstly. In addition, an updated overview of the latest developments, particularly in plasmonic nanolasers using the metal-insulator-semiconductor (MIS) configuration and another related metal-cladded semiconductor microlasers was presented. In particular, it has been experimentally demonstrated that the use of plasmonic cavities based on MIS nanostructures can indeed break the diffraction limit in three dimensions. We also present some perspectives on the challenges and development trend for the plasmonic nanolasers. This review can provide useful guide for the research of plasmonic nanolasers.
  • 加载中
  • [1] Maier S A. Plasmonics: fundamentals and applications[M]. New York: Springer, 2007.

    Google Scholar

    [2] Samuel I D W, Turnbull G A. Organic semiconductor lasers[J]. Chemical Reviews, 2007, 107(4): 1272-1295. doi: 10.1021/cr050152i

    CrossRef Google Scholar

    [3] 张立德, 牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001: 51-67.

    Google Scholar

    [4] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91. doi: 10.1038/nphoton.2009.282

    CrossRef Google Scholar

    [5] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413. doi: 10.1038/nature08053

    CrossRef Google Scholar

    [6] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264): 629-632. doi: 10.1038/nature08364

    CrossRef Google Scholar

    [7] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. doi: 10.1038/nature01937

    CrossRef Google Scholar

    [8] Zhao Qing, Liang Gaofeng, Wang Changtao, et al. High resolution photolithography with sub-wavelength grating[J]. Applied Physics A, 2014, 115(1): 69-73.

    Google Scholar

    [9] Liang Gaofeng, Zhao Qing, Wang Changtao. Super-resolution imaging photolithography with subwavelength grating[C]. Proceedings of Asia-Pacific Conference on Near-Field Optics, 2013.

    Google Scholar

    [10] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899. doi: 10.1126/science.1060367

    CrossRef Google Scholar

    [11] Chang S W, Chuang S L. Fundamental formulation for plasmonic nanolasers[J]. IEEE Journal of Quantum Electronics, 2009, 45(8): 1014-1023. doi: 10.1109/JQE.2009.2017210

    CrossRef Google Scholar

    [12] Zia R, Selker M D, Catrysse P B, et al. Geometries and materials for subwavelength surface plasmon modes[J]. Journal of the Optical Society of America A, 2004, 21(12): 2442-2446. doi: 10.1364/JOSAA.21.002442

    CrossRef Google Scholar

    [13] Ding K, Hill M T, Liu Z C, et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature[J]. Optics Express, 2013, 21(4): 4728-4733. doi: 10.1364/OE.21.004728

    CrossRef Google Scholar

    [14] Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers[J]. Nature, 2003, 421(6920): 241-245. doi: 10.1038/nature01353

    CrossRef Google Scholar

    [15] Zhou W, Dridi M, Suh J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 2013, 8(7): 506-511. doi: 10.1038/nnano.2013.99

    CrossRef Google Scholar

    [16] Yu K, Lakhani A, Wu M C. Subwavelength metal-optic semiconductor nanopatch lasers[J]. Optics Express, 2010, 18(9): 8790-8799. doi: 10.1364/OE.18.008790

    CrossRef Google Scholar

    [17] Lu C Y, Chang S W, Chuang S L, et al. Low thermal impedance of substrate-free metal cavity surface-emitting microlasers[J]. IEEE Photonics Technology Letters, 2011, 23(15): 1031-1033. doi: 10.1109/LPT.2011.2132124

    CrossRef Google Scholar

    [18] Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities[J]. Nature Photonics, 2007, 1(10): 589-594. doi: 10.1038/nphoton.2007.171

    CrossRef Google Scholar

    [19] Bian Y S, Zheng Z, Liu Y, et al. Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement[J]. Optics Express, 2011, 19(23): 22417-22422. doi: 10.1364/OE.19.022417

    CrossRef Google Scholar

    [20] Bian Yusheng, Zheng Zheng, Liu Ya, et al. Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides[J]. IEEE Photonics Technology Letters, 2011, 23(13): 884-886. doi: 10.1109/LPT.2011.2141981

    CrossRef Google Scholar

    [21] Lu C Y, Chang S W, Chuang S L, et al. Metal-cavity surface-emitting microlaser at room temperature[J]. Applied Physics Letters, 2010, 96(25): 251101. doi: 10.1063/1.3455316

    CrossRef Google Scholar

    [22] Dong L F, Jiao J, Tuggle D W, et al. ZnO nanowires formed on tungsten substrates and their electron field emission properties[J]. Applied Physics Letters, 2003, 82(7): 1096-1098. doi: 10.1063/1.1554477

    CrossRef Google Scholar

    [23] Yu W D, Li X M, Gao X D. Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates[J]. Applied Physics Letters, 2004, 84(14): 2658-2660. doi: 10.1063/1.1695097

    CrossRef Google Scholar

    [24] Nezhad M P, Simic A, Bondarenko O, et al. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics, 2010, 4(6): 395-399. doi: 10.1038/nphoton.2010.88

    CrossRef Google Scholar

    [25] Ding K, Ning C Z. Metallic subwavelength-cavity semiconductor nanolasers[J]. Light: Science & Applications, 2012, 1(7): e20.

    Google Scholar

    [26] Hill M T, Marell M, Leong E S P, et al. Lasing in metal- insulator-metal sub-wavelength plasmonic waveguides[J]. Optics Express, 2009, 17(13): 11107-11112. doi: 10.1364/OE.17.011107

    CrossRef Google Scholar

    [27] Hill M T. Metal-insulator-metal waveguides with self aligned and electrically contacted thin semiconductor cores exhibiting high optical confinement and low loss[J]. Journal of Lightwave Technology, 2013, 31(15): 2540-2549. doi: 10.1109/JLT.2013.2269611

    CrossRef Google Scholar

    [28] Li D B, Ning C Z. Giant modal gain, amplified surface Plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure[J]. Physical Review B, 2009, 80(15): 153304. doi: 10.1103/PhysRevB.80.153304

    CrossRef Google Scholar

    [29] 李锋, 冯英霞.表面等离子体慢光波导传输特性分析[J].信息技术, 2013(5): 87-90.

    Google Scholar

    Li Feng, Feng Yingxia. Research on propagation properties surface plasmons slow light waveguide[J]. Information Technology, 2013(5): 87-90.

    Google Scholar

    [30] Khurgin J B, Sun G. Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence[J]. Optics Express, 2012, 20(14): 15309-15325. doi: 10.1364/OE.20.015309

    CrossRef Google Scholar

    [31] Peng Xiaoyan, Yang Boqian, Chu Jin, et al. Effects of nitrogen pressure during pulsed laser deposition on morphology and optical properties of N-doped ZnO nanostructures[J]. Surface Science, 2013, 609: 48-52. doi: 10.1016/j.susc.2012.11.002

    CrossRef Google Scholar

    [32] Gwo S, Shih C K. Semiconductor plasmonic nanolasers: current status and perspectives[J]. Reports on Progress in Physics, 2016, 79(8): 086501. doi: 10.1088/0034-4885/79/8/086501

    CrossRef Google Scholar

    [33] 宁存政.半导体纳米激光[J].物理学进展, 2011, 31(3): 145-160.

    Google Scholar

    Ning Cunzheng. Semiconductor nanolasers[J]. Progress in Physics, 2011, 31(3): 145-160.

    Google Scholar

    [34] Raether H. Surface plasmons on smooth and rough surfaces and on gratings[M]. New York: Springer-Verlag, 1988: 8.

    Google Scholar

    [35] Lee J H, Khajavikhan M, Simic A, et al. Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers[J]. Optics Express, 2011, 19(22): 21524-21531. doi: 10.1364/OE.19.021524

    CrossRef Google Scholar

    [36] 吕宏博. 表面等离子体波导在低阈值纳米激光器中的应用[D]. 北京: 北京邮电大学, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10013-1015584891.htm

    Google Scholar

    Lü Hongbo. Hybrid Plasmonic waveguides for low threshold nanolasers[D]. Beijing: Beijing University of Posts and Telecommunications, 2015.

    Google Scholar

    [37] Saxena D, Mokkapati S, Jagadish C. Semiconductor nanolasers [J]. IEEE Photonics Journal, 2012, 4(2): 582-585. doi: 10.1109/JPHOT.2012.2189201

    CrossRef Google Scholar

    [38] 刘镜, 刘娟, 王涌天, 等.亚波长金属光栅的表面等离子体激元共振特性[J].中国光学, 2011, 4(4): 363-368.

    Google Scholar

    Liu Jing, Liu Juan, Wang Yongtian, et al. Resonant properties of sub-wavelength metallic gratings[J]. Chinese Optics and Applied Optics Abstracts, 2011, 4(4): 363-368.

    Google Scholar

    [39] Maslov A V, Ning C Z. Size reduction of a semiconductor nanowire laser by using metal coating[J]. Proceedings of SPIE, 2007, 6468: 64680I.

    Google Scholar

    [40] Chu Sheng, Wang Guoping, Zhou Weihang, et al. Electrically pumped waveguide lasing from ZnO nanowires[J]. Nature Nanotechnology, 2011, 6(8): 506-510. doi: 10.1038/nnano.2011.97

    CrossRef Google Scholar

    [41] Milnes A G, Feucht D L. Heterojunctions and Metal-semi conductor Junctions[M]. New York: Academic Press, 1972.

    Google Scholar

    [42] Ma Xiangyang, Pan Jingwei, Chen Peiliang, et al. Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si[J]. Optics Express, 2009, 17(16): 14426- 14433. doi: 10.1364/OE.17.014426

    CrossRef Google Scholar

    [43] Lu Y J, Kim J, Chen H Y, et al. Plasmonic nanolaser using epitaxially grown silver film[J]. Science, 2012, 337(6093): 450-453. doi: 10.1126/science.1223504

    CrossRef Google Scholar

    [44] Zhang Ye, Jia Hongbo, Wang Rongming, et al. Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate[J]. Applied Physics Letters, 2003, 83(22): 4631-4633. doi: 10.1063/1.1630849

    CrossRef Google Scholar

    [45] Gargas D J, Moore M C, Ni A, et al. Whispering gallery mode lasing from zinc oxide hexagonal nanodisks[J]. ACS Nano, 2010, 4(6): 3270-3276. doi: 10.1021/nn9018174

    CrossRef Google Scholar

    [46] Hwang D K, Kang S H, Lim J H, et al. p-ZnO/n-GaN heterostructure ZnO light-emitting diodes[J]. Applied Physics Letters, 2005, 86(22): 222101. doi: 10.1063/1.1940736

    CrossRef Google Scholar

    [47] Huang Hong, Zhao Qing, Hong Kunquan, et al. Optical and electrical properties of N-doped ZnO heterojunction photodiode[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 57: 113-117. doi: 10.1016/j.physe.2013.10.038

    CrossRef Google Scholar

    [48] 黄洪, 赵青, 焦蛟, 等.深亚波长约束的表面等离子体纳米激光器研究[J].物理学报, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201

    CrossRef Google Scholar

    Huang Hong, Zhao Qing, Jiao Jiao, et al. Study of plasmonic nanolaser based on the deep subwavelength scale[J]. Acta Physica Sinica, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201

    CrossRef Google Scholar

    [49] Huang Xiaoping, Wang Peng, Lin En, et al. Fabrication of the glass microlens arrays and the collimating property on nanolaser[J]. Applied Physics A, 2016, 122(7): 649. doi: 10.1007/s00339-016-0182-9

    CrossRef Google Scholar

    [50] Huang Xiaoping, Liu Youliang, Wang Peng, et al. Optically pumped lasing and electroluminescence in ZnO/GaN nano- heterojunction array devices[J]. Applied Physics A, 2015, 121(3): 1203-1209. doi: 10.1007/s00339-015-9490-8

    CrossRef Google Scholar

    [51] Liu Shenggang, Zhang Ping, Liu Weihao, et al. Surface polariton Cherenkov light radiation source [J]. Physical Review Letters, 2012, 109(15): 153902. doi: 10.1103/PhysRevLett.109.153902

    CrossRef Google Scholar

    [52] 杨青, 丁晔, 戴威, 等.半导体纳米线和氧化硅微光纤环型结复合结构激光器[J].激光与光电子进展, 2010, 47(3): 03SC08.

    Google Scholar

    [53] 王德, 李学千.半导体激光器的最新进展及其应用现状[J].光学精密工程, 2001, 9(3): 279-283.

    Google Scholar

    Wang De, Li Xueqian. New progress in semiconductor lasers and their applications[J]. Optics and Precision Engineering, 2001, 9(3): 279-283.

    Google Scholar

  • Abstract: Semiconductor lasers are widely used for applications in biology, information storage, photonics and medical therapeutics. Along with the emerging area of nano-optics and nanophotonics, more compact lasers with size miniaturization attract significant interest. Last decades, many researchers tried to investigate the miniaturization technology of photon laser. The aiming is to obtain higher density devices integrated on smaller semiconductor chip. As the cavity size is reduced with respect to the emission wavelength, interesting physical effects, unique to electromagnetic cavities, arise. So, to scale down the semiconductor lasers in all three dimensions plays an important role in the developing of low-dimension, low-threshold, and ultrafast coherent light sources, as well as integrated nano-optoelectronic and plasmonic circuits. For this purpose, the nanolasers and smaller plasmonic nanolasers are developed during the last years. However, for the conventional semiconductor laser using dielectric cavity oscillator (photon cavity), the noticeable obstacle from diffraction limit confines the feature sizes of the nanodevices all the time, and makes them unable to get down to half wavelength level. These years, the invention of plasmonic nanolaser, where the light is enhanced by stimulated emission based on surface plasmon, can break through the bottleneck of optical diffraction limit and give out light with subwavelength scale. In this review, above all, the principle of cavity used in laser and the theory of the modal gain are illustrated generally. Besides, the important properties and the technical characters of the plasmonic nanolasers are introduced briefly. Then, the overall research progress of the plasmonic nanolasers are presented, which is explained by some typical plasmonic nanolasers, such as, surface palsmon-optical mode hybrid nanolaser, metal-dielectric heterogenic cavity plasmonic nanolaser, metal-insulator-semiconductor (MIS) subwavelength plasmonic nanolaser are introduced by turn. In addition, an updated overview of the latest developments, particularly in plasmonic nanolasers using the MIS configuration and other related metal-cladded semiconductor microlasers is presented. In particular, it has been experimentally demonstrated that the use of plasmonic cavities based on MIS nanostructures can indeed break the diffraction limit in all three dimensions. The research group proposed a new plasmonic nanolaser based on semiconductor nanowire/air spacer/metal film composited structure. This structure can get modes coupling between the surface plasmon on the metal and the high gain nanowire, which makes the enhancement effect increased obviously. It is shown that the structure can confine the output optical field to subwavength scale, and keep low transmission loss and high ability of the confinement. In this review, the experimental results are presented in detail. In the end, we give a contrast about the parameters and results for the new achievement in palsmonic nanolasers research area. Based on the recent development of the plasmonic nanolaser, we conclude about the developing trend. We also give some perspectives on the challenges and development trend for the plasmonic nanolasers. This review can provide useful guide for the research of plasmonic nanolasers.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint