Citation: | Zhao Qing, Huang Xiaoping, Lin En, et al. Advances of plasmonic nanolasers[J]. Opto-Electronic Engineering, 2017, 44(2): 140-151. doi: 10.3969/j.issn.1003-501X.2017.02.002 |
[1] | Maier S A. Plasmonics: fundamentals and applications[M]. New York: Springer, 2007. |
[2] | Samuel I D W, Turnbull G A. Organic semiconductor lasers[J]. Chemical Reviews, 2007, 107(4): 1272-1295. doi: 10.1021/cr050152i |
[3] | 张立德, 牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001: 51-67. |
[4] | Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91. doi: 10.1038/nphoton.2009.282 |
[5] | Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413. doi: 10.1038/nature08053 |
[6] | Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264): 629-632. doi: 10.1038/nature08364 |
[7] | Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. doi: 10.1038/nature01937 |
[8] | Zhao Qing, Liang Gaofeng, Wang Changtao, et al. High resolution photolithography with sub-wavelength grating[J]. Applied Physics A, 2014, 115(1): 69-73. |
[9] | Liang Gaofeng, Zhao Qing, Wang Changtao. Super-resolution imaging photolithography with subwavelength grating[C]. Proceedings of Asia-Pacific Conference on Near-Field Optics, 2013. |
[10] | Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899. doi: 10.1126/science.1060367 |
[11] | Chang S W, Chuang S L. Fundamental formulation for plasmonic nanolasers[J]. IEEE Journal of Quantum Electronics, 2009, 45(8): 1014-1023. doi: 10.1109/JQE.2009.2017210 |
[12] | Zia R, Selker M D, Catrysse P B, et al. Geometries and materials for subwavelength surface plasmon modes[J]. Journal of the Optical Society of America A, 2004, 21(12): 2442-2446. doi: 10.1364/JOSAA.21.002442 |
[13] | Ding K, Hill M T, Liu Z C, et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature[J]. Optics Express, 2013, 21(4): 4728-4733. doi: 10.1364/OE.21.004728 |
[14] | Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers[J]. Nature, 2003, 421(6920): 241-245. doi: 10.1038/nature01353 |
[15] | Zhou W, Dridi M, Suh J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 2013, 8(7): 506-511. doi: 10.1038/nnano.2013.99 |
[16] | Yu K, Lakhani A, Wu M C. Subwavelength metal-optic semiconductor nanopatch lasers[J]. Optics Express, 2010, 18(9): 8790-8799. doi: 10.1364/OE.18.008790 |
[17] | Lu C Y, Chang S W, Chuang S L, et al. Low thermal impedance of substrate-free metal cavity surface-emitting microlasers[J]. IEEE Photonics Technology Letters, 2011, 23(15): 1031-1033. doi: 10.1109/LPT.2011.2132124 |
[18] | Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities[J]. Nature Photonics, 2007, 1(10): 589-594. doi: 10.1038/nphoton.2007.171 |
[19] | Bian Y S, Zheng Z, Liu Y, et al. Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement[J]. Optics Express, 2011, 19(23): 22417-22422. doi: 10.1364/OE.19.022417 |
[20] | Bian Yusheng, Zheng Zheng, Liu Ya, et al. Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides[J]. IEEE Photonics Technology Letters, 2011, 23(13): 884-886. doi: 10.1109/LPT.2011.2141981 |
[21] | Lu C Y, Chang S W, Chuang S L, et al. Metal-cavity surface-emitting microlaser at room temperature[J]. Applied Physics Letters, 2010, 96(25): 251101. doi: 10.1063/1.3455316 |
[22] | Dong L F, Jiao J, Tuggle D W, et al. ZnO nanowires formed on tungsten substrates and their electron field emission properties[J]. Applied Physics Letters, 2003, 82(7): 1096-1098. doi: 10.1063/1.1554477 |
[23] | Yu W D, Li X M, Gao X D. Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates[J]. Applied Physics Letters, 2004, 84(14): 2658-2660. doi: 10.1063/1.1695097 |
[24] | Nezhad M P, Simic A, Bondarenko O, et al. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics, 2010, 4(6): 395-399. doi: 10.1038/nphoton.2010.88 |
[25] | Ding K, Ning C Z. Metallic subwavelength-cavity semiconductor nanolasers[J]. Light: Science & Applications, 2012, 1(7): e20. |
[26] | Hill M T, Marell M, Leong E S P, et al. Lasing in metal- insulator-metal sub-wavelength plasmonic waveguides[J]. Optics Express, 2009, 17(13): 11107-11112. doi: 10.1364/OE.17.011107 |
[27] | Hill M T. Metal-insulator-metal waveguides with self aligned and electrically contacted thin semiconductor cores exhibiting high optical confinement and low loss[J]. Journal of Lightwave Technology, 2013, 31(15): 2540-2549. doi: 10.1109/JLT.2013.2269611 |
[28] | Li D B, Ning C Z. Giant modal gain, amplified surface Plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure[J]. Physical Review B, 2009, 80(15): 153304. doi: 10.1103/PhysRevB.80.153304 |
[29] | 李锋, 冯英霞.表面等离子体慢光波导传输特性分析[J].信息技术, 2013(5): 87-90. Li Feng, Feng Yingxia. Research on propagation properties surface plasmons slow light waveguide[J]. Information Technology, 2013(5): 87-90. |
[30] | Khurgin J B, Sun G. Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence[J]. Optics Express, 2012, 20(14): 15309-15325. doi: 10.1364/OE.20.015309 |
[31] | Peng Xiaoyan, Yang Boqian, Chu Jin, et al. Effects of nitrogen pressure during pulsed laser deposition on morphology and optical properties of N-doped ZnO nanostructures[J]. Surface Science, 2013, 609: 48-52. doi: 10.1016/j.susc.2012.11.002 |
[32] | Gwo S, Shih C K. Semiconductor plasmonic nanolasers: current status and perspectives[J]. Reports on Progress in Physics, 2016, 79(8): 086501. doi: 10.1088/0034-4885/79/8/086501 |
[33] | 宁存政.半导体纳米激光[J].物理学进展, 2011, 31(3): 145-160. Ning Cunzheng. Semiconductor nanolasers[J]. Progress in Physics, 2011, 31(3): 145-160. |
[34] | Raether H. Surface plasmons on smooth and rough surfaces and on gratings[M]. New York: Springer-Verlag, 1988: 8. |
[35] | Lee J H, Khajavikhan M, Simic A, et al. Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers[J]. Optics Express, 2011, 19(22): 21524-21531. doi: 10.1364/OE.19.021524 |
[36] |
吕宏博. 表面等离子体波导在低阈值纳米激光器中的应用[D]. 北京: 北京邮电大学, 2015. |
[37] | Saxena D, Mokkapati S, Jagadish C. Semiconductor nanolasers [J]. IEEE Photonics Journal, 2012, 4(2): 582-585. doi: 10.1109/JPHOT.2012.2189201 |
[38] | 刘镜, 刘娟, 王涌天, 等.亚波长金属光栅的表面等离子体激元共振特性[J].中国光学, 2011, 4(4): 363-368. Liu Jing, Liu Juan, Wang Yongtian, et al. Resonant properties of sub-wavelength metallic gratings[J]. Chinese Optics and Applied Optics Abstracts, 2011, 4(4): 363-368. |
[39] | Maslov A V, Ning C Z. Size reduction of a semiconductor nanowire laser by using metal coating[J]. Proceedings of SPIE, 2007, 6468: 64680I. |
[40] | Chu Sheng, Wang Guoping, Zhou Weihang, et al. Electrically pumped waveguide lasing from ZnO nanowires[J]. Nature Nanotechnology, 2011, 6(8): 506-510. doi: 10.1038/nnano.2011.97 |
[41] | Milnes A G, Feucht D L. Heterojunctions and Metal-semi conductor Junctions[M]. New York: Academic Press, 1972. |
[42] | Ma Xiangyang, Pan Jingwei, Chen Peiliang, et al. Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si[J]. Optics Express, 2009, 17(16): 14426- 14433. doi: 10.1364/OE.17.014426 |
[43] | Lu Y J, Kim J, Chen H Y, et al. Plasmonic nanolaser using epitaxially grown silver film[J]. Science, 2012, 337(6093): 450-453. doi: 10.1126/science.1223504 |
[44] | Zhang Ye, Jia Hongbo, Wang Rongming, et al. Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate[J]. Applied Physics Letters, 2003, 83(22): 4631-4633. doi: 10.1063/1.1630849 |
[45] | Gargas D J, Moore M C, Ni A, et al. Whispering gallery mode lasing from zinc oxide hexagonal nanodisks[J]. ACS Nano, 2010, 4(6): 3270-3276. doi: 10.1021/nn9018174 |
[46] | Hwang D K, Kang S H, Lim J H, et al. p-ZnO/n-GaN heterostructure ZnO light-emitting diodes[J]. Applied Physics Letters, 2005, 86(22): 222101. doi: 10.1063/1.1940736 |
[47] | Huang Hong, Zhao Qing, Hong Kunquan, et al. Optical and electrical properties of N-doped ZnO heterojunction photodiode[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 57: 113-117. doi: 10.1016/j.physe.2013.10.038 |
[48] | 黄洪, 赵青, 焦蛟, 等.深亚波长约束的表面等离子体纳米激光器研究[J].物理学报, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201 Huang Hong, Zhao Qing, Jiao Jiao, et al. Study of plasmonic nanolaser based on the deep subwavelength scale[J]. Acta Physica Sinica, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201 |
[49] | Huang Xiaoping, Wang Peng, Lin En, et al. Fabrication of the glass microlens arrays and the collimating property on nanolaser[J]. Applied Physics A, 2016, 122(7): 649. doi: 10.1007/s00339-016-0182-9 |
[50] | Huang Xiaoping, Liu Youliang, Wang Peng, et al. Optically pumped lasing and electroluminescence in ZnO/GaN nano- heterojunction array devices[J]. Applied Physics A, 2015, 121(3): 1203-1209. doi: 10.1007/s00339-015-9490-8 |
[51] | Liu Shenggang, Zhang Ping, Liu Weihao, et al. Surface polariton Cherenkov light radiation source [J]. Physical Review Letters, 2012, 109(15): 153902. doi: 10.1103/PhysRevLett.109.153902 |
[52] | 杨青, 丁晔, 戴威, 等.半导体纳米线和氧化硅微光纤环型结复合结构激光器[J].激光与光电子进展, 2010, 47(3): 03SC08. |
[53] | 王德, 李学千.半导体激光器的最新进展及其应用现状[J].光学精密工程, 2001, 9(3): 279-283. Wang De, Li Xueqian. New progress in semiconductor lasers and their applications[J]. Optics and Precision Engineering, 2001, 9(3): 279-283. |
Abstract: Semiconductor lasers are widely used for applications in biology, information storage, photonics and medical therapeutics. Along with the emerging area of nano-optics and nanophotonics, more compact lasers with size miniaturization attract significant interest. Last decades, many researchers tried to investigate the miniaturization technology of photon laser. The aiming is to obtain higher density devices integrated on smaller semiconductor chip. As the cavity size is reduced with respect to the emission wavelength, interesting physical effects, unique to electromagnetic cavities, arise. So, to scale down the semiconductor lasers in all three dimensions plays an important role in the developing of low-dimension, low-threshold, and ultrafast coherent light sources, as well as integrated nano-optoelectronic and plasmonic circuits. For this purpose, the nanolasers and smaller plasmonic nanolasers are developed during the last years. However, for the conventional semiconductor laser using dielectric cavity oscillator (photon cavity), the noticeable obstacle from diffraction limit confines the feature sizes of the nanodevices all the time, and makes them unable to get down to half wavelength level. These years, the invention of plasmonic nanolaser, where the light is enhanced by stimulated emission based on surface plasmon, can break through the bottleneck of optical diffraction limit and give out light with subwavelength scale. In this review, above all, the principle of cavity used in laser and the theory of the modal gain are illustrated generally. Besides, the important properties and the technical characters of the plasmonic nanolasers are introduced briefly. Then, the overall research progress of the plasmonic nanolasers are presented, which is explained by some typical plasmonic nanolasers, such as, surface palsmon-optical mode hybrid nanolaser, metal-dielectric heterogenic cavity plasmonic nanolaser, metal-insulator-semiconductor (MIS) subwavelength plasmonic nanolaser are introduced by turn. In addition, an updated overview of the latest developments, particularly in plasmonic nanolasers using the MIS configuration and other related metal-cladded semiconductor microlasers is presented. In particular, it has been experimentally demonstrated that the use of plasmonic cavities based on MIS nanostructures can indeed break the diffraction limit in all three dimensions. The research group proposed a new plasmonic nanolaser based on semiconductor nanowire/air spacer/metal film composited structure. This structure can get modes coupling between the surface plasmon on the metal and the high gain nanowire, which makes the enhancement effect increased obviously. It is shown that the structure can confine the output optical field to subwavength scale, and keep low transmission loss and high ability of the confinement. In this review, the experimental results are presented in detail. In the end, we give a contrast about the parameters and results for the new achievement in palsmonic nanolasers research area. Based on the recent development of the plasmonic nanolaser, we conclude about the developing trend. We also give some perspectives on the challenges and development trend for the plasmonic nanolasers. This review can provide useful guide for the research of plasmonic nanolasers.
The working principle of the nanowire cavity. (a) The diagram of the Fabry–Pérot nanocavity. (b) The distributions of the modes in nanowire dielectric waveguide laser and nanowire-metal coated cavity plasmonic laser[14].
Plasmonic-optical hybrid modes nanolaser. (a) Principle diagram and its scanning electron microscope (SEM) picture inserted. (b) Distribution of the mode between the nanowire and the metal layer[33].
The dispersion curves of the dielectric waveguide and Ag film coated-semiconductor waveguide with R=70 nm[39].
(a), (b) Schematic of the metal coated semiconductor heterogeneous plasmonic laser. (c)~(e) The modes simulation with three-dimensional structure[42].
Schematic of the light pumped metal-dielectric-metal subwavelength laser. (a) Diagram of the laser structure. (b) Numerical mode distribution[24].
(a) Principle diagram of the arrayed nanowires palsmonic laser. (b)~(d) Its SEM pictures[50].
The emission spectra of the plasmonic nanolaser (a1)~ (a4) with and (b1)~(b4) without metal-dielectric layers at room temperature. The pumping light intensity is from 2 mW/cm2 to 10 mW/cm2 with spacing of 2.5 mW/cm2 [50].
The interior intensity distributions of the nanowire cavity. (a) Single ZnO nanowire; (b) Single ZnO nanowire with SiO2 and Ag sandwiched structure[50].
(a) SEM picture, (b) pumping current and (c) electroluminescence spectra of the semiconductor heterogeneous laser[50].
Electroluminescence spots of the semiconductor heterogeneous laser. The pumping electric current is (a) 25 mA, (b) 30 mA, (c) 50 mA, (d) 80 mA, (e) 100 mA, and (f)
(a) The schematic of the focusing collimated microlens. (b) SEM picture of the nanowires. (c), (d) its working principle diagram[49].