Wang Wei, Zhang Hong. Strong coupling and ultrafast dynamics in organic semiconductor/metal hybrid nanostructures[J]. Opto-Electronic Engineering, 2017, 44(2): 161-171. doi: 10.3969/j.issn.1003-501X.2017.02.004
Citation: Wang Wei, Zhang Hong. Strong coupling and ultrafast dynamics in organic semiconductor/metal hybrid nanostructures[J]. Opto-Electronic Engineering, 2017, 44(2): 161-171. doi: 10.3969/j.issn.1003-501X.2017.02.004

Strong coupling and ultrafast dynamics in organic semiconductor/metal hybrid nanostructures

    Fund Project:
More Information
  • Active plasmonics, as an important branch of Plasmonics, is growing rapidly over the last decades. The main principle of active plasmonics is to combine surface plasmon polaritons (SPPs) with 'active' materials to compenstate intrinsic weak optical nonlinearities and short propagation lengths of SPPs, so that external manipulation and coherent control of SPPs can be realized. Here, we give a brief review of the studies in the area of active plasmonics. In particular, we focus on hybrid J-aggregate/metal nanostructures consisting of J-aggregate excitons and surface plasmon polaritons supported by metallic nanostructures. Two experimental methods: chrip-compensated spectral interferometry and nonlinear pump-probe spectroscopy are introduced. The strong coupling between J-aggregate excitons and SPPs is studied in detail by probing both the static optical properties and ultrasfast dynamics of the strongly coupled X-SPP systems. The results reveal that two different energy transfer channels: a coherent resonant dipole-dipole interaction and an incoherent exchange of photons, are coexisting in the hybrid system. Coherent energy exchange, that is, Rabi oscillations between the excitonic and the SPP systems in real time are also investigated. It is found that coherent X-SPP population transfer induces transient oscillations in exciton density, leading to a periodic modulation of the normal mode splitting and thus optical nonlinearity on a 10 fs timescale.
  • 加载中
  • [1] Guebrou S A, Symonds C, Homeyer E, et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons [J]. Physical Review Letters, 2012, 108(6): 066401. doi: 10.1103/PhysRevLett.108.066401

    CrossRef Google Scholar

    [2] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511. doi: 10.1038/nature04594

    CrossRef Google Scholar

    [3] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641-648. doi: 10.1038/nphoton.2007.223

    CrossRef Google Scholar

    [4] Maier S A, Kik P G, Atwater H A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J]. Nature Materials, 2003, 2(4): 229-232. doi: 10.1038/nmat852

    CrossRef Google Scholar

    [5] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91. doi: 10.1038/nphoton.2009.282

    CrossRef Google Scholar

    [6] Tang D L, Wang C T, Zhao Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.

    Google Scholar

    [7] Ma Renmin, Oulton R F, Sorger V J, et al. Room-temperature sub-diffraction-limited Plasmon laser by total internal reflection[J]. Nature Materials, 2011, 10(2): 110-113. doi: 10.1038/nmat2919

    CrossRef Google Scholar

    [8] Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging: sensitivity of Plasmon response to size, shape, and metal composition[J]. The Journal of Physical Chemistry B, 2006, 110(39): 19220-19225. doi: 10.1021/jp062536y

    CrossRef Google Scholar

    [9] Kneipp K, Wang Yang, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters, 1997, 78(9): 1667-1670. doi: 10.1103/PhysRevLett.78.1667

    CrossRef Google Scholar

    [10] Nie Shuming, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106. doi: 10.1126/science.275.5303.1102

    CrossRef Google Scholar

    [11] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 1999, 54(1-2): 3-15. doi: 10.1016/S0925-4005(98)00321-9

    CrossRef Google Scholar

    [12] Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and biophysics[J]. Journal of Physics: Condensed Matter, 2002, 14(18): R597-R624. doi: 10.1088/0953-8984/14/18/202

    CrossRef Google Scholar

    [13] Andrew P, Barnes W L. Energy transfer across a metal film mediated by surface plasmon polaritons[J]. Science, 2004, 306(5698): 1002-1005. doi: 10.1126/science.1102992

    CrossRef Google Scholar

    [14] Andrew P, Kitson S C, Barnes W L. Surface-plasmon energy gaps and photoabsorption[J]. Journal of Modern Optics, 1997, 44(2): 395-406. doi: 10.1080/09500349708241879

    CrossRef Google Scholar

    [15] Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 2011, 10(12): 911-921. doi: 10.1038/nmat3151

    CrossRef Google Scholar

    [16] Smith E J, Liu Zhaowei, Mei Yongfeng, et al. Combined surface Plasmon and classical waveguiding through metamaterial fiber design[J]. Nano Letters, 2010, 10(1): 1-5. doi: 10.1021/nl900550j

    CrossRef Google Scholar

    [17] Wang Wei, Vasa P, Pomraenke R, et al. Interplay between strong coupling and radiative damping of excitons and surface Plasmon polaritons in hybrid nanostructures[J]. ACS Nano, 2014, 8(1): 1056-1064. doi: 10.1021/nn405981k

    CrossRef Google Scholar

    [18] Dintinger J, Robel I, Kamat P V, et al. Terahertz all-optical molecule-Plasmon modulation[J]. Advanced Materials, 2006, 18(13): 1645-1648. doi: 10.1002/(ISSN)1521-4095

    CrossRef Google Scholar

    [19] MacDonald K F, Sámson Z L, Stockman M I, et al. Ultrafast active plasmonics[J]. Nature Photonics, 2009, 3(1): 55-58. doi: 10.1038/nphoton.2008.249

    CrossRef Google Scholar

    [20] Vasa P, Pomraenke R, Cirmi G, et al. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures[J]. ACS Nano, 2010, 4(12): 7559-7565. doi: 10.1021/nn101973p

    CrossRef Google Scholar

    [21] Chang D E, Sørensen A S, Demler E A, et al. A single-photon transistor using nanoscale surface plasmons[J]. Nature Physics, 2007, 3(11): 807-812. doi: 10.1038/nphys708

    CrossRef Google Scholar

    [22] Bergman D J, Stockman M I. Surface Plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 2003, 90(2): 027402. doi: 10.1103/PhysRevLett.90.027402

    CrossRef Google Scholar

    [23] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460(7259): 1110- 1112. doi: 10.1038/nature08318

    CrossRef Google Scholar

    [24] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264): 629-632. doi: 10.1038/nature08364

    CrossRef Google Scholar

    [25] Vasa P, Pomraenke R, Schwieger S, et al. Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures[J]. Physical Review Letters, 2008, 101(11): 116801. doi: 10.1103/PhysRevLett.101.116801

    CrossRef Google Scholar

    [26] Gómez D E, Vernon K C, Mulvaney P, et al. Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals[J]. Nano Letters, 2010, 10(1): 274-278. doi: 10.1021/nl903455z

    CrossRef Google Scholar

    [27] Hakala T K, Toppari J J, Kuzyk A, et al. Vacuum Rabi splitting and strong-coupling dynamics for surface-Plasmon polaritons and rhodamine 6G molecules[J]. Physical Review Letters, 2009, 103(5): 053602. doi: 10.1103/PhysRevLett.103.053602

    CrossRef Google Scholar

    [28] Väkeväinen A I, Moerland R J, Rekola H T, et al. Plasmonic surface lattice resonances at the strong coupling regime[J]. Nano Letters, 2014, 14(4): 1721-1727. doi: 10.1021/nl4035219

    CrossRef Google Scholar

    [29] Cade N I, Ritman-Meer T, Richards D. Strong coupling of localized plasmons and molecular excitons in nanostructured silver films[J]. Physical Review B, 2009, 79(24): 241404. doi: 10.1103/PhysRevB.79.241404

    CrossRef Google Scholar

    [30] Rodriguez S R K, Rivas J G. Surface lattice resonances strongly coupled to rhodamine 6G excitons: tuning the Plasmon-exciton-polariton mass and composition[J]. Optics Express, 2013, 21(22): 27411-27421. doi: 10.1364/OE.21.027411

    CrossRef Google Scholar

    [31] Shi L, Hakala T K, Rekola H T, et al. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes[J]. Physical Review Letters, 2014, 112(15): 153002. doi: 10.1103/PhysRevLett.112.153002

    CrossRef Google Scholar

    [32] Schwartz T, Hutchison J A, Genet C, et al. Reversible switching of ultrastrong light-molecule coupling[J]. Physical Review Letters, 2011, 106(19): 196405. doi: 10.1103/PhysRevLett.106.196405

    CrossRef Google Scholar

    [33] Valmorra F, Bröll M, Schwaiger S, et al. Strong coupling between surface plasmon polariton and laser dye rhodamine 800[J]. Applied Physics Letters, 2011, 99(5): 051110. doi: 10.1063/1.3619845

    CrossRef Google Scholar

    [34] Baieva S V, Hakala T K, Toppari J J. Strong coupling between surface plasmon polaritons and sulforhodamine 101 dye[J]. Nanoscale Research Letters, 2012, 7(1): 191. doi: 10.1186/1556-276X-7-191

    CrossRef Google Scholar

    [35] Dintinger J, Klein S, Bustos F, et al. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays[J]. Physical Review B, 2005, 71(3): 035424. doi: 10.1103/PhysRevB.71.035424

    CrossRef Google Scholar

    [36] Bellessa J, Bonnand C, Plenet J C, et al. Strong coupling between surface plasmons and excitons in an organic semiconductor[J]. Physical Review Letters, 2004, 93(3): 036404. doi: 10.1103/PhysRevLett.93.036404

    CrossRef Google Scholar

    [37] Sugawara Y, Kelf T A, Baumberg J J, et al. Strong coupling between localized plasmons and organic excitons in metal nanovoids[J]. Physical Review Letters, 2006, 97(26): 266808. doi: 10.1103/PhysRevLett.97.266808

    CrossRef Google Scholar

    [38] Schlather A E, Large N, Urban A S, et al. Near-Field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers[J]. Nano Letters, 2013, 13(7): 3281-3286. doi: 10.1021/nl4014887

    CrossRef Google Scholar

    [39] Vasa P, Wang Wei, Pomraenke R, et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates[J]. Nature Photonics, 2013, 7(2): 128-132. doi: 10.1038/nphoton.2012.340

    CrossRef Google Scholar

    [40] Fidder H, Terpstra J, Wiersma D A. Dynamics of frenkel excitons in disordered molecular aggregates[J]. The Journal of Chemical Physics, 1991, 94(10): 6895-6907. doi: 10.1063/1.460220

    CrossRef Google Scholar

    [41] van Burgel M, Wiersma D A, Duppen K. The dynamics of one-dimensional excitons in liquids[J]. The Journal of Chemical Physics, 1995, 102(1): 20-33. doi: 10.1063/1.469393

    CrossRef Google Scholar

    [42] Froehly C, Lacourt A, Viénot J C. Time impulse response and time frequency response of optical pupils.: experimental confirmations and applications[J]. Nouvelle Revue d'Optique, 1973, 4(4): 183-196. doi: 10.1088/0335-7368/4/4/301

    CrossRef Google Scholar

    [43] Piasecki J, Colombeau B, Vampouille M, et al. Nouvelle méthode de mesure de la réponse impulsionnelle des fibres optiques[J]. Applied Optics, 1980, 19(22): 3749-3755. doi: 10.1364/AO.19.003749

    CrossRef Google Scholar

    [44] Reynaud F, Salin F, Barthelemy A. Measurement of phase shifts introduced by nonlinear optical phenomena on subpicosecond pulses[J]. Optics Letters, 1989, 14(5): 275-277. doi: 10.1364/OL.14.000275

    CrossRef Google Scholar

    [45] Scherer N F, Carlson R J, Matro A, et al. Fluorescence-detected wave packet interferometry: time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses[J]. The Journal of Chemical Physics, 1991, 95(3): 1487-1511. doi: 10.1063/1.461064

    CrossRef Google Scholar

    [46] Tokunaga E, Terasaki A, Kobayashi T. Induced phase modulation of chirped continuum pulses studied with a femtosecond frequency-domain interferometer[J]. Optics Letters, 1993, 18(5): 370-372. doi: 10.1364/OL.18.000370

    CrossRef Google Scholar

    [47] Geindre J P, Audebert P, Rousse A, et al. Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma[J]. Optics Letters, 1994, 19(23): 1997-1999. doi: 10.1364/OL.19.001997

    CrossRef Google Scholar

    [48] DeVoe R G, Brewer R G. Observation of superradiant and subradiant spontaneous emission of two trapped ions[J]. Physical Review Letters, 1996, 76(12): 2049-2052. doi: 10.1103/PhysRevLett.76.2049

    CrossRef Google Scholar

    [49] Hettich C, Schmitt C, Zitzmann J, et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules[J]. Science, 2002, 298(5592): 385-389. doi: 10.1126/science.1075606

    CrossRef Google Scholar

    [50] Akram U, Ficek Z, Swain S. Decoherence and coherent population transfer between two coupled systems[J]. Physical Review A, 2000, 62(1): 013413. doi: 10.1103/PhysRevA.62.013413

    CrossRef Google Scholar

    [51] Schmid S I, Evers J. Interplay of vacuum-mediated inter-and intra-atomic couplings in a pair of atoms[J]. Physical Review A, 2010, 81(6): 063805. doi: 10.1103/PhysRevA.81.063805

    CrossRef Google Scholar

    [52] Dahmen C, Schmidt B, von Plessen G. Radiation damping in metal nanoparticle pairs[J]. Nano Letters, 2007, 7(2): 318-322. doi: 10.1021/nl062377u

    CrossRef Google Scholar

    [53] Chen Y N, Chuu D S, Brandes T. Current detection of superradiance and induced entanglement of double quantum dot excitons[J]. Physical Review Letters, 2003, 90(16): 166802. doi: 10.1103/PhysRevLett.90.166802

    CrossRef Google Scholar

    [54] Hübner M, Kuhl J, Stroucken T, et al. Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures[J]. Physical Review Letters, 1996, 76(22): 4199-4202. doi: 10.1103/PhysRevLett.76.4199

    CrossRef Google Scholar

    [55] Ropers C, Park D J, Stibenz G, et al. Femtosecond light transmission and subradiant damping in plasmonic crystals[J]. Physical Review Letters, 2005, 94(11): 113901. doi: 10.1103/PhysRevLett.94.113901

    CrossRef Google Scholar

    [56] Wang Hui, Brandl D W, Le Fei, et al. Nanorice: a hybrid plasmonic nanostructure[J]. Nano Letters, 2006, 6(4): 827-832. doi: 10.1021/nl060209w

    CrossRef Google Scholar

    [57] Choi W B, Chung D S, Kang J H, et al. Fully sealed, high-brightness carbon-nanotube field-emission display[J]. Applied Physics Letters, 1999, 75(20): 3129-3131. doi: 10.1063/1.125253

    CrossRef Google Scholar

    [58] Sonnefraud Y, Verellen N, Sobhani H, et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities[J]. ACS Nano, 2010, 4(3): 1664-1670. doi: 10.1021/nn901580r

    CrossRef Google Scholar

    [59] Luk'yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707-715. doi: 10.1038/nmat2810

    CrossRef Google Scholar

    [60] Sermage B, Long S, Abram I, et al. Time-resolved spontaneous emission of excitons in a microcavity: behavior of the individual exciton-photon mixed states[J]. Physical Review B, 1996, 53(24): 16516-16523. doi: 10.1103/PhysRevB.53.16516

    CrossRef Google Scholar

    [61] Bloch J, Marzin J Y. Photoluminescence dynamics of cavity polaritons under resonant excitation in the picosecond range[J]. Physical Review B, 1997, 56(4): 2103-2108. doi: 10.1103/PhysRevB.56.2103

    CrossRef Google Scholar

    [62] Baumberg J J, Armitage A, Skolnick M S, et al. Suppressed polariton scattering in semiconductor microcavities[J]. Physical Review Letters, 1998, 81(3): 661-664. doi: 10.1103/PhysRevLett.81.661

    CrossRef Google Scholar

    [63] Tassone F, Piermarocchi C, Savona V, et al. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons [J]. Physical Review B, 1997, 56(12): 7554-7563. doi: 10.1103/PhysRevB.56.7554

    CrossRef Google Scholar

  • Abstract: Metallic nanostructures can support the strongly confined interface waves: surface plasmon polaritons (SPPs). SPPs have recently been used in a variety of applications due to their abilities to guide light in the scale of nanometer. Whereas, intrinsic weak optical nonlinearities and short propagation lengths of SPPs hinder their applications in novel active plasmonic devices.

    One promising solution is to couple SPPs to nonlinear optical resonances, such as excitons (Xs) in molecular or semiconducting nanostructures. Consequently, hybrid nanostructures containing J-aggregate molecules and metallic nanostructures have attracted considerable interest. In these systems, vacuum field fluctuations lead to a coherent exchange of energy between ensembles of excitons and plasmons and the formation of new hybrid polariton states. Strong coupling between Xs and SPPs enables an efficient transfer of the strong optical nonlinearities of the excitonic emitters to the passive plasmonic nanostructures on the ultrashort time scale of femtosecond.

    Here, we give a brief review of our studies in the area of active plasmonics. We focus on hybrid J-aggregate/metal nanostructures consisting of J-aggregate excitons and surface plasmon polaritons supported by metallic nanogroove arrays. We first introduce two experimental methods used in our study: chrip-compensated spectral interferometry and nonlinear pump-probe spectroscopy. The strong coupling between J-aggregate excitons and SPPs is studied in detail by probing both the static optical properties and ultrafast dynamics of the strongly coupled X-SPP systems. We show that two different energy transfer channels: a coherent resonant dipole-dipole interaction and an incoherent exchange of photons, are coexisting in the hybrid system. The interplay between both pathways results in a pronounced modification of the radiative damping due to the formation of super- and subradiant polariton states.

    We also investigate the coherent energy exchange, Rabi oscillations between the excitonic and the SPP systems in real time. Using nonlinear pump-probe spectroscopy, coherent polariton dynamics of the hybrid X-SPP systems is studied. It is found that the optical response of the individual resonances is drastically altered by the optical dipole coupling between excitons and SPPs. Coherent X-SPP population transfer induces transient oscillations in exciton density, leading to a periodic modulation of the normal mode splitting and thus optical nonlinearity in a 10 fs timescale.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint