Wang Wei, Sommer Ephraim, De Sio Antonietta, et al. Field‐level characterization of strong coupling between excitons and surface plasmon polaritons in J‐aggregate/metal hybrid nanostructures[J]. Opto-Electronic Engineering, 2017, 44(2): 202-208. doi: 10.3969/j.issn.1003-501X.2017.02.009
Citation: Wang Wei, Sommer Ephraim, De Sio Antonietta, et al. Field‐level characterization of strong coupling between excitons and surface plasmon polaritons in J‐aggregate/metal hybrid nanostructures[J]. Opto-Electronic Engineering, 2017, 44(2): 202-208. doi: 10.3969/j.issn.1003-501X.2017.02.009

Field‐level characterization of strong coupling between excitons and surface plasmon polaritons in J‐aggregate/metal hybrid nanostructures

More Information
  • White-light broadband chirp-compensated spectral interferometry is applied to fully probe the optical response of strongly coupled excitons (Xs) and surface plasmon polaritons (SPPs) in J-aggregate/metal hybrid nanostructures at field level. Under impulsive excitation, amplitude and spectral phase of the sample reflectivity are measured with high precision and the time structure of the electric field emitted by the hybrid modes of the nanostructures is accurately reconstructed. Quantitative description of strong X-SPP coupling is precisely obtained by fitting both measured spectra and phases simultaneously to a Fano lineshape model.

  • 加载中
  • [1] Guebrou S A, Symonds C, Homeyer E, et al. Coherent Emission from a Disordered Organic Semiconductor Induced by Strong Coupling with Surface Plasmons[J]. Physical Review Letters, 2012, 108(6): 066401. doi: 10.1103/PhysRevLett.108.066401

    CrossRef Google Scholar

    [2] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508–511. doi: 10.1038/nature04594

    CrossRef Google Scholar

    [3] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641–648. doi: 10.1038/nphoton.2007.223

    CrossRef Google Scholar

    [4] Maier S A, Kik P G, Atwater H A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J]. Nature Materials, 2003, 2(4): 229–232. doi: 10.1038/nmat852

    CrossRef Google Scholar

    [5] Stockman M I. Nanoplasmonics: past, present, and glimpse into future[J]. Optics Express, 2011, 19(22): 22029–22106. doi: 10.1364/OE.19.022029

    CrossRef Google Scholar

    [6] Abb M, Albella P, Aizpurua J, et al. All-optical control of a single plasmonic nanoantenna-ITO hybrid[J]. Nano Letters, 2011, 11(6): 2457–2463. doi: 10.1021/nl200901w

    CrossRef Google Scholar

    [7] Dintinger J, Robel I, Kamat P V, et al. Terahertz all-optical molecule-plasmon modulation[J]. Advanced Materials, 2006, 18(13): 1645–1648. doi: 10.1002/(ISSN)1521-4095

    CrossRef Google Scholar

    [8] MacDonald K F, Sámson Z L, Stockman M I, et al. Ultrafast active plasmonics[J]. Nature Photonics, 2009, 3(1): 55–58. doi: 10.1038/nphoton.2008.249

    CrossRef Google Scholar

    [9] Schwartz T, Hutchison J A, Genet C, et al. Reversible switching of ultrastrong light-molecule coupling[J]. Physical Review Letters, 2011, 106(19): 196405. doi: 10.1103/PhysRevLett.106.196405

    CrossRef Google Scholar

    [10] Vasa P, Pomraenke R, Cirmi G, et al. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures[J]. Acs Nano, 2010, 4(12): 7559–7565. doi: 10.1021/nn101973p

    CrossRef Google Scholar

    [11] Argyropoulos C, Chen P Y, Monticone F, et al. Nonlinear Plasmonic cloaks to realize giant all-optical scattering switching[J]. Physical Review Letters, 2012, 108(26): 263905. doi: 10.1103/PhysRevLett.108.263905

    CrossRef Google Scholar

    [12] Lu H, Liu X M, Wang L R, et al. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator[J]. Optics Express, 2011, 19(4): 2910–2915. doi: 10.1364/OE.19.002910

    CrossRef Google Scholar

    [13] Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots[J]. Nature Photonics, 2007, 1(7): 402–406. doi: 10.1038/nphoton.2007.95

    CrossRef Google Scholar

    [14] Pala R A, Shimizu K T, Melosh N A, et al. A nonvolatile plasmonic switch employing photochromic molecules[J]. Nano Letters, 2008, 8(5): 1506–1510. doi: 10.1021/nl0808839

    CrossRef Google Scholar

    [15] Valev V K, Baumberg J J, Sibilia C, et al. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook[J]. Advanced Materials, 2013, 25(18): 2517–2534. doi: 10.1002/adma.201205178

    CrossRef Google Scholar

    [16] Chang D E, S rensen A S, Demler E A, et al. A single-photon transistor using nanoscale surface plasmons[J]. Nature Physics, 2007, 3(11): 807–812. doi: 10.1038/nphys708

    CrossRef Google Scholar

    [17] Hwang J, Pototschnig M, Lettow R, et al. A single-molecule optical transistor[J].Nature, 2009, 460(7251): 76–80. doi: 10.1038/nature08134

    CrossRef Google Scholar

    [18] Bellessa J, Bonnand C, Plenet J C, et al. Strong coupling between surface plasmons and excitons in an organic semiconductor[J]. Physical Review Letters, 2004, 93(3): 036404. doi: 10.1103/PhysRevLett.93.036404

    CrossRef Google Scholar

    [19] Symonds C, Bonnand C, Plenet J C, et al. Particularities of sur face plasmon-exciton strong coupling with large Rabi splitting[J]. New Journal of Physics, 2008, 10(6): 065017. doi: 10.1088/1367-2630/10/6/065017

    CrossRef Google Scholar

    [20] Hakala T K, Toppari J J, Kuzyk A, et al. Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules[J]. Physical Review Letters, 2009, 103(5): 053602. doi: 10.1103/PhysRevLett.103.053602

    CrossRef Google Scholar

    [21] Fofang N T, Grady N K, Fan Z Y, et al. Plexciton Dynamics: Exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonllinearity[J]. Nano Letters, 2011, 11(4): 1556–1560. doi: 10.1021/nl104352j

    CrossRef Google Scholar

    [22] Zengin G, Johansson G, Johansson P, et al. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates[J]. Scientific Reports, 2013, 3: 3074. doi: 10.1038/srep03074

    CrossRef Google Scholar

    [23] Schlather A E, Large N, Urban A S, et al. Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers[J]. Nano Letters, 2013, 13(7): 3281–3286. doi: 10.1021/nl4014887

    CrossRef Google Scholar

    [24] Balci S, Kocabas C. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons[J]. Optics Letters, 2015, 40(14): 3424–3427. doi: 10.1364/OL.40.003424

    CrossRef Google Scholar

    [25] Vasa P, Wang W, Pomraenke R, et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates[J]. Nature Photonics, 2013, 7(2): 128–132. doi: 10.1038/nphoton.2012.340

    CrossRef Google Scholar

    [26] Wang W, Vasa P, Pomraenke R, et al. Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures[J].ACS Nano, 2014, 8(1): 1056–1064. doi: 10.1021/nn405981k

    CrossRef Google Scholar

    [27] Vasa P, Wang W, Pomraenke R, et al. Optical stark effects in J-aggregate-metal hybrid nanostructures exhibiting a strong exciton-surface-plasmon-polariton interaction[J]. Physical Review Letters, 2015, 114(3): 036802. doi: 10.1103/PhysRevLett.114.036802

    CrossRef Google Scholar

    [28] Reynaud F, Salin F, Barthelemy A. Measurement of phase shifts introduced by nonlinear optical phenomena on subpicosecond pulses[J]. Optics Letters, 1989, 14(5): 275–277. doi: 10.1364/OL.14.000275

    CrossRef Google Scholar

    [29] Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy[J]. Journal of the Optical Society of America B, 1995, 12(12): 2467–2474. doi: 10.1364/JOSAB.12.002467

    CrossRef Google Scholar

    [30] Ropers C, Park D J, Stibenz G, et al. Femtosecond light transmission and subradiant damping in plasmonic crystals[J]. Physical Review Letters, 2005, 94(11): 113901. doi: 10.1103/PhysRevLett.94.113901

    CrossRef Google Scholar

    [31] Rewitz C, Keitzl T, Tuchscherer P, et al. Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry[J]. Nano Letters, 2012, 12(1): 45–49. doi: 10.1021/nl202864n

    CrossRef Google Scholar

    [32] Rajendran S K, Wang W, Brida D, et al. Direct evidence of Rabi oscillations and antiresonance in a strongly coupled organic microcavity[J]. Physical Review B, 2015, 91(20): 201305. doi: 10.1103/PhysRevB.91.201305

    CrossRef Google Scholar

    [33] Ceccarelli S, Wenus J, Skolnick M S, et al. Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities[J]. Superlattices and Microstructures, 2007, 41(5–6): 289–292. doi: 10.1016/j.spmi.2007.03.003

    CrossRef Google Scholar

    [34] Jurna M, Garbacik E T, Korterik J P, et al. Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-stokes raman scattering[J]. Analytical Chemistry, 2010, 82(18): 7656–7659. doi: 10.1021/ac101453s

    CrossRef Google Scholar

  • Abstract: Metallic nanostructures have highly interesting optical properties. When illuminating light on them, surface plasmon polaritons (SPP) can be induced due to the coupling of the electromagnetic fields to collective charge density oscillations near the metal surface. SPPs have recently been used in a variety of new applications due to their abilities to guide light on the scale of nanometer. However, most of these emerging applications are limited by the ultrashort lifetime of SPP and the corresponding short propagation length caused by the strong ohmic loss of metal and radiative damping within the nanostructures. Moreover, SPP is generally a photon-like optical excitation showing intrinsically weak nonlinearities, which hinders active nanoplasmonic device fabrication, such as all-optical switching or information processing.

    A promising way to compensate losses and provide missing nonlinearity of SPPs is to couple SPPs to nonlinear optical resonances, such as excitons (Xs) in molecular or semiconducting nanostructures. Consequently, hybrid nanostructures containing J-aggregate molecules and metallic nanostructures have attracted considerable interest. Strong coupling between Xs and SPPs enables an efficient transfer of the strong optical nonlinearities of the excitonic emitters to the passive plasmonic nanostructures on the ultrashort time scale of femtosecond.

    Here, we demonstrate a field-level characterization of the optical response of J-aggregate/metal hybrid nanostructures by white-light broadband chirp-compensated spectral interferometry. We show that both the amplitude and spectral phase of the strongly coupled X-SPP system can be measured with high precision by compensating the chirp in both arms of the interferometer. A quantitative description of both the excitonic resonance and the hybrid X-SPP polariton response is obtained by fitting the measured amplitudes and spectral phases simultaneously to a Fano lineshape model. We find that the resonance of the majority of J-aggregated molecules which are not coupled to SPPs is homogeneously broadened. We also demonstrate accurate reconstruction of the time structure of the electric field emitted by the hybrid nanostructures, corresponding to polarization oscillations with short damping time shorter than 100 fs.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint