Citation: | Chen JF, Li ZY. Configurable topological beam splitting via antichiral gyromagnetic photonic crystal. Opto-Electron Sci 1, 220001 (2022). doi: 10.29026/oes.2022.220001 |
[1] | Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys 82, 3045–3067 (2010). doi: 10.1103/RevModPhys.82.3045 |
[2] | Lu L, Joannopoulos JD, Soljačić M. Topological photonics. Nat Photon 8, 821–829 (2014). doi: 10.1038/nphoton.2014.248 |
[3] | Ozawa T, Price HM, Amo A, Goldman N, Hafezi M et al. Topological photonics. Rev Mod Phys 91, 015006 (2019). doi: 10.1103/RevModPhys.91.015006 |
[4] | Wang HF, Gupta SK, Xie BY, Lu MH. Topological photonic crystals: a review. Front Optoelectron 13, 50–72 (2020). doi: 10.1007/s12200-019-0949-7 |
[5] | Chen JF, Liang WY, Li ZY. Progress of topological photonic state in magneto-optical photonic crystal. Acta Optic Sin 41, 0823015 (2021). doi: 10.3788/AOS202141.0823015 |
[6] | Zhai ZZ, Wang MJ, Wu BY. Polarization regulation characteristics of reflected waves at the interface of double topological insulators. Opto-Electron Eng 48, 200102 (2021). doi: 10.12086/oee.2021.200102 |
[7] | Yan M, Lu JY, Li F, Deng WY, Huang XQ et al. On-chip valley topological materials for elastic wave manipulation. Nat Mater 17, 993–998 (2018). doi: 10.1038/s41563-018-0191-5 |
[8] | Luo L, Wang HX, Lin ZK, Jiang B, Wu Y et al. Observation of a phononic higher-order Weyl semimetal. Nat Mater 20, 794–799 (2021). doi: 10.1038/s41563-021-00985-6 |
[9] | Yang YT, Lu JY, Yan M, Huang XQ, Deng WY et al. Hybrid-order topological insulators in a phononic crystal. Phys Rev Lett 126, 156801 (2021). doi: 10.1103/PhysRevLett.126.156801 |
[10] | Zhang YB, Liu H, Cheng H, Tian JG, Chen SQ. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv 3, 200002 (2020). doi: 10.29026/oea.2020.200002 |
[11] | Süsstrunk R, Huber SD. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015). doi: 10.1126/science.aab0239 |
[12] | Wu JE, Huang XQ, Lu JY, Wu Y, Deng WY et al. Observation of corner states in second-order topological electric circuits. Phys Rev B 102, 104109 (2020). doi: 10.1103/PhysRevB.102.104109 |
[13] | Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014). doi: 10.1038/nature13915 |
[14] | Haldane FDM, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys Rev Lett 100, 013904 (2008). doi: 10.1103/PhysRevLett.100.013904 |
[15] | Wang Z, Chong YD, Joannopoulos JD, Soljačić M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). doi: 10.1038/nature08293 |
[16] | Fu JX, Liu RJ, Li ZY. Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces. Appl Phys Lett 97, 041112 (2010). doi: 10.1063/1.3470873 |
[17] | Poo Y, Wu RX, Lin ZF, Yang Y, Chan CT. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys Rev Lett 106, 093903 (2011). doi: 10.1103/PhysRevLett.106.093903 |
[18] | Jia HW, Zhang RX, Gao WL, Guo QH, Yang B et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science 363, 148–151 (2019). doi: 10.1126/science.aau7707 |
[19] | Ma SJ, Bi YG, Guo QH, Yang B, You OB et al. Linked Weyl surfaces and Weyl arcs in photonic metamaterials. Science 373, 572–576 (2021). doi: 10.1126/science.abi7803 |
[20] | Rechtsman MC, Zeuner JM, Plotnik Y, Lumer Y, Podolsky D et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013). doi: 10.1038/nature12066 |
[21] | He L, Addison Z, Jin JC, Mele EJ, Johnson SG et al. Floquet Chern insulators of light. Nat Commun 10, 4194 (2019). doi: 10.1038/s41467-019-12231-4 |
[22] | Smirnova D, Leykam D, Chong YD, Kivshar Y. Nonlinear topological photonics. Appl Phys Rev 7, 021306 (2020). doi: 10.1063/1.5142397 |
[23] | Lu J, He L, Addison Z, Mele EJ, Zhen B. Floquet topological phases in one-dimensional nonlinear photonic crystals. Phys Rev Lett 126, 113901 (2021). doi: 10.1103/PhysRevLett.126.113901 |
[24] | Abbaszadeh H, Fruchart M, van Saarloos W, Vitelli V. Liquid-crystal-based topological photonics. Proc Nat Acad Sci USA 118, e2020525118 (2021). doi: 10.1073/pnas.2020525118 |
[25] | Zhao H, Xiao XD, Wu TW, Midya B, Longhi S et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019). doi: 10.1126/science.aay1064 |
[26] | Guo QH, Jiang TS, Zhang RY, Zhang L, Zhang ZQ et al. Experimental observation of non-Abelian topological charges and edge states. Nature 594, 195–200 (2021). doi: 10.1038/s41586-021-03521-3 |
[27] | Lustig E, Weimann S, Plotnik Y, Lumer Y, Bandres MA et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019). doi: 10.1038/s41586-019-0943-7 |
[28] | Lu CC, Wang CY, Xiao M, Zhang ZQ, Chan CT. Topological rainbow concentrator based on synthetic dimension. Phys Rev Lett 126, 113902 (2021). doi: 10.1103/PhysRevLett.126.113902 |
[29] | Bahari B, Ndao A, Vallini F, Amili AE, Fainman Y et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017). doi: 10.1126/science.aao4551 |
[30] | Harari G, Bandres MA, Lumer Y, Rechtsman MC, Chong YD et al. Topological insulator laser: theory. Science 359, eaar4003 (2018). doi: 10.1126/science.aar4003 |
[31] | Bandres MA, Wittek S, Harari G, Parto M, Ren JH et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018). doi: 10.1126/science.aar4005 |
[32] | Shao ZK, Chen HZ, Wang S, Mao XR, Yang ZQ et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat Nanotechnol 15, 67–72 (2020). doi: 10.1038/s41565-019-0584-x |
[33] | Zeng YQ, Chattopadhyay U, Zhu BF, Qiang B, Li JH et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020). doi: 10.1038/s41586-020-1981-x |
[34] | Lin H, Lu L. Dirac-vortex topological photonic crystal fibre. Light Sci Appl 9, 202 (2020). doi: 10.1038/s41377-020-00432-2 |
[35] | Chen Y, He XT, Cheng YJ, Qiu HY, Feng LT et al. Topologically protected valley-dependent quantum photonic circuits. Phys Rev Lett 126, 230503 (2021). doi: 10.1103/PhysRevLett.126.230503 |
[36] | Chen JF, Liang WY, Li ZY. Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals. Phys Rev B 99, 014103 (2019). doi: 10.1103/PhysRevB.99.014103 |
[37] | Chen JF, Liang WY, Li ZY. Switchable slow light rainbow trapping and releasing in strongly coupling topological photonic systems. Photon Res 7, 1075–1080 (2019). doi: 10.1364/PRJ.7.001075 |
[38] | Chen JF, Liang WY, Li ZY. Broadband dispersionless topological slow light. Opt Lett 45, 4964–4967 (2020). doi: 10.1364/OL.401650 |
[39] | Shi FL, Cao Y, Chen XD, Liu JW, Chen WJ et al. Distortionless pulse transmission in valley photonic crystal slab waveguide. Phys Rev Appl 15, 024002 (2021). doi: 10.1103/PhysRevApplied.15.024002 |
[40] | Chen JF, Liang WY, Li ZY. Antichiral one-way edge states in a gyromagnetic photonic crystal. Phys Rev B 101, 214102 (2020). doi: 10.1103/PhysRevB.101.214102 |
[41] | Zhou PH, Liu GG, Yang YH, Hu YH, Ma SL et al. Observation of photonic antichiral edge states. Phys Rev Lett 125, 263603 (2020). doi: 10.1103/PhysRevLett.125.263603 |
[42] | Mandal S, Ge R, Liew TCH. Antichiral edge states in an exciton polariton strip. Phys Rev B 99, 115423 (2019). doi: 10.1103/PhysRevB.99.115423 |
[43] | Wang C, Zhang L, Zhang PP, Song JT, Li YX. Influence of antichiral edge states on Andreev reflection in graphene-superconductor junction. Phys Rev B 101, 045407 (2020). doi: 10.1103/PhysRevB.101.045407 |
[44] | Denner MM, Lado JL, Zilberberg O. Antichiral states in twisted graphene multilayers. Phys Rev Res 2, 043190 (2020). doi: 10.1103/PhysRevResearch.2.043190 |
[45] | Bhowmick D, Sengupta P. Antichiral edge states in Heisenberg ferromagnet on a honeycomb lattice. Phys Rev B 101, 195133 (2020). doi: 10.1103/PhysRevB.101.195133 |
[46] | Yu LT, Xue HR, Zhang BL. Antichiral edge states in an acoustic resonator lattice with staggered air flow. J Appl Phys 129, 235103 (2021). doi: 10.1063/5.0050645 |
[47] | Yang YT, Zhu DJ, Hang ZH, Chong YD. Observation of antichiral edge states in a circuit lattice. Sci China Phys Mech Astron 64, 257011 (2021). doi: 10.1007/s11433-021-1675-0 |
[48] | Zhang XM, Zhou YY, Sun XC, Zhang XJ, Lu MH et al. Reconfigurable light imaging in photonic higher-order topological insulators. Nanomaterials 12, 819 (2022). doi: 10.3390/nano12050819 |
[49] | Poo Y, Wu RX, Liu SY, Yang Y, Lin ZF et al. Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance. Appl Phys Lett 101, 081912 (2012). doi: 10.1063/1.4747810 |
[50] | Gao Z, Gao F, Zhang BL. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal. Appl Phys Lett 108, 041105 (2016). doi: 10.1063/1.4940906 |
[51] | Zhang L, Yang YH, He MJ, Wang HX, Yang ZJ et al. Valley kink states and topological channel intersections in substrate-integrated photonic circuitry. Laser Photonics Rev 13, 1900159 (2019). doi: 10.1002/lpor.201900159 |
[52] | Yang YT, Xu YF, Xu T, Wang HX, Jiang JH et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys Rev Lett 120, 217401 (2018). doi: 10.1103/PhysRevLett.120.217401 |
[53] | He C, Chen XL, Lu MH, Li XF, Wan WW et al. Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal. Appl Phys Lett 96, 111111 (2010). doi: 10.1063/1.3358386 |
[54] | Liu SY, Lu WL, Lin ZF, Chui ST. Molding reflection from metamaterials based on magnetic surface plasmons. Phys Rev B 84, 045425 (2011). doi: 10.1103/PhysRevB.84.045425 |
Supplementary information for Configurable topological beam splitting via antichiral gyromagnetic photonic crystal |
Schematic illustration of antichiral gyromagnetic photonic crystal. GPC1 and GPC2 are oppositely magnetized, and their interface is marked by a blue dotted line. The white stars and arrows are the sources and the transport directions of edge states, and white cross indicates that the waveguide does not support any transmission. Only TE polarization (where electric field is parallel to z direction) is considered.
Construction of antichiral gyromagnetic photonic crystal. (a) Schematic illustration of antichiral GPC. The antichiral GPC possesses the zigzag and armchair edges along the x and y directions respectively. (b) First Brillouin zone of honeycomb lattice. (c) Nonmagnetized GPC. The nonmagnetic gyromagnetic cylinders are marked as the gray circles. The frequencies of Dirac points at K and K' points are 8.85 GHz. (d) Uniformly magnetized GPC. All gyromagnetic cylinders are applied with external magnetic fields along +z (red) directions. The green region is the complete bandgap ranging from 9.10 to 9.40 GHz. (e) Compound magnetized GPC. Two sublattices A and B are applied with external magnetic fields along –z (blue) and +z (red) directions respectively. The frequency of Dirac points (red points) at K and K' points is 9.10 GHz and 9.40 GHz respectively.
Single antichiral gyromagnetic photonic crystal possessing zigzag and armchair edges. (a) Experimental setup. (b) Projected band structure along zigzag edge. (c) Eigenmodal field profiles in panel (b). (d) Calculated electric field distribution. (e) Unprocessed transmission data at zigzag edge in simulation. (f–g) Unprocessed transmission data measured at upper and lower zigzag edges respectively in experiment.
Band structure and transport behavior along armchair edge. (a) Projected band structure. (b) Eigenmodal field profiles in (a). (c) Electric field distribution of edge states propagating along zigzag-armchair waveguide. (d) Electric field distribution of edge states propagating along armchair waveguide. In simulations, the green and yellow boundaries are set as scattering boundary conditions and perfect electric conductors respectively. The excitation frequency is 9.30 GHz. (e) Unprocessed transmission data calculated at the right armchair edge in simulation. (f) Unprocessed transmission data measured at the right armchair edge in experiment.
Compound antichiral GPC supporting bidirectionally radiating one-way edge states. (a) A clear look at the fabricated sample with the first and second layers removed. (b–c) Simulation results of without and with metallic obstacles (yellow cylinders) respectively. The excitation frequency is 9.30 GHz. Unprocessed transmission data measured at four one-way waveguide channels (d–g) without and (h–k) with metallic obstacles.
Variable-ratio topological beam splitting. (a–c) Electric field distributions in simulation. The excitation frequency is 9.30 GHz. (d–f) Unprocessed transmission data measured of S31 and S21 parameters. (g) Normalized transmission data of S31 and S21 parameters in (d-f).