Citation: | Liu Y L, Dong Z, Chen Y H, et al. Research advances of partially coherent beams with novel coherence structures: engineering and applications[J]. Opto-Electron Eng, 2022, 49(11): 220178. doi: 10.12086/oee.2022.220178 |
[1] | Forbes A, De Oliveira M, Dennis M R. Structured light[J]. Nat Photonics, 2021, 15(4): 253−262. doi: 10.1038/s41566-021-00780-4 |
[2] | Dorrah A H, Capasso F. Tunable structured light with flat optics[J]. Science, 2022, 376(6591): eabi6860. doi: 10.1126/science.abi6860 |
[3] | Cox M A, Mphuthi N, Nape I, et al. Structured light in turbulence[J]. IEEE J Sel Top Quantum Electron, 2021, 27(2): 7500521. doi: 10.1109/JSTQE.2020.3023790 |
[4] | Yang Y J, Ren Y X, Chen M Z, et al. Optical trapping with structured light: a review[J]. Adv Photonics, 2021, 3(3): 034001. doi: 10.1117/1.AP.3.3.034001 |
[5] | Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999. |
[6] | Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Opt Lett, 2007, 32(8): 979−981. doi: 10.1364/OL.32.000979 |
[7] | Durnin J, Miceli Jr J J, Eberly J H. Diffraction-free beams[J]. Phys Rev Lett, 1987, 58(15): 1499−1501. doi: 10.1103/PhysRevLett.58.1499 |
[8] | Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185−8189. doi: 10.1103/PhysRevA.45.8185 |
[9] | Simon R, Mukunda N. Twisted gaussian schell-model beams[J]. J Opt Soc America A, 1993, 10(1): 95−109. doi: 10.1364/JOSAA.10.000095 |
[10] | Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photonics, 2009, 1(1): 1−57. doi: 10.1364/AOP.1.000001 |
[11] | Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 2012, 6(7): 488−496. doi: 10.1038/nphoton.2012.138 |
[12] | Kaushal H, Jain V K, Kar S. Free Space Optical Communication[M]. New Delhi: Springer, 2017. |
[13] | Torres J P, Torner L. Twisted Photons: Applications of Light with Orbital Angular Momentum[M]. Weinheim: John Wiley & Sons, 2011. |
[14] | Dholakia K, Čižmár T. Shaping the future of manipulation[J]. Nat Photonics, 2011, 5(6): 335−342. doi: 10.1038/nphoton.2011.80 |
[15] | Shirai T, Setälä T, Friberg A T. Temporal ghost imaging with classical non-stationary pulsed light[J]. J Opt Soc Am B, 2010, 27(12): 2549−2555. doi: 10.1364/JOSAB.27.002549 |
[16] | Goodman J W. Speckle Phenomena in Optics: Theory and Applications[M]. Englewood: Roberts & Co., 2007. |
[17] | Broky J, Siviloglou G A, Dogariu A, et al. Self-healing properties of optical Airy beams[J]. Opt Express, 2008, 16(17): 12880−12891. doi: 10.1364/OE.16.012880 |
[18] | Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media[M]. Bellingham, Wash. : SPIE Press, 2005. |
[19] | Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material[J]. Nat Commun, 2010, 1(1): 81. doi: 10.1038/ncomms1078. |
[20] | Mandel L, Wolf E. Optical Coherence and Quantum Optics[M]. Cambridge: Cambridge University Press, 1995. doi: 10.1017/CBO9781139644105. |
[21] | Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Phys Lett A, 2003, 312(5–6): 263−267. doi: 10.1016/S0375-9601(03)00684-4 |
[22] | Gbur G, Visser T D. The structure of partially coherent fields[J]. Prog Opt, 2010, 55: 285−341. doi: 10.1016/B978-0-444-53705-8.00005-9 |
[23] | Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Phys Rev Lett, 1984, 53(11): 1057−1060. doi: 10.1103/PhysRevLett.53.1057 |
[24] | Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian Schell beam[J]. J Opt Soc America A, 2003, 20(5): 856−866. doi: 10.1364/JOSAA.20.000856 |
[25] | Chen Y H, Norrman A, Ponomarenko S A, et al. Optical coherence and electromagnetic surface waves[J]. Prog Opt, 2020, 65: 105−172. doi: 10.1016/bs.po.2019.11.001 |
[26] | Gbur G, Visser T D. Young’s interference experiment: past, present, and future[J]. Prog Opt, 2022, 67: 275−343. doi: 10.1016/bs.po.2022.01.003 |
[27] | Young T. XIV. An account of some cases of the production of colours, not hitherto described[J]. Philos Trans R Soc London, 1802, 92: 387−397. doi: 10.1098/rstl.1802.0016 |
[28] | Zernike F. The concept of degree of coherence and its application to optical problems[J]. Physica, 1938, 5(8): 785−795. doi: 10.1016/S0031-8914(38)80203-2 |
[29] | Friberg A T, Sudol R J. Propagation parameters of Gaussian Schell-model beams[J]. Opt Commun, 1982, 41(6): 383−387. doi: 10.1016/0030-4018(82)90161-4 |
[30] | Wolf E. Introduction to the Theory of Coherence and Polarization of Light[M]. Cambridge: Cambridge University Press, 2007. |
[31] | Friberg A T, Wolf E. Relationships between the complex degrees of coherence in the space–time and in the space–frequency domains[J]. Opt Lett, 1995, 20(6): 623−625. doi: 10.1364/OL.20.000623 |
[32] | Gori F. Matrix treatment for partially polarized, partially coherent beams[J]. Opt Lett, 1998, 23(4): 241−243. doi: 10.1364/OL.23.000241 |
[33] | Deschamps J, Courjon D, Bulabois J. Gaussian Schell-model sources: an example and some perspectives[J]. J Opt Soc Am, 1983, 73(3): 256−261. doi: 10.1364/JOSA.73.000256 |
[34] | Collett E, Wolf E. Is complete spatial coherence necessary for the generation of highly directional light beams?[J]. Opt Lett, 1978, 2(2): 27−29. doi: 10.1364/OL.2.000027 |
[35] | Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Phys Rev E, 2005, 71(5): 056607. doi: 10.1103/PhysRevE.71.056607 |
[36] | Zhao C L, Cai Y J. Trapping two types of particles using a focused partially coherent elegant Laguerre–Gaussian beam[J]. Opt Lett, 2011, 36(12): 2251−2253. doi: 10.1364/OL.36.002251 |
[37] | Gori F, Guattari G, Padovani C. Modal expansion for J0-correlated Schell-model sources[J]. Opt Commun, 1987, 64(4): 311−316. doi: 10.1016/0030-4018(87)90242-2 |
[38] | Palma C, Borghi R, Cincotti G. Beams originated by J0-correlated Schell-model planar sources[J]. Opt Commun, 1996, 125(1–3): 113−121. doi: 10.1016/0030-4018(95)00752-0 |
[39] | Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Opt Lett, 2007, 32(24): 3531−3533. doi: 10.1364/OL.32.003531 |
[40] | Gori F, Ramírez-Sánchez V, Santarsiero M, et al. On genuine cross-spectral density matrices[J]. J Opt A Pure Appl Opt, 2009, 11(8): 085706. doi: 10.1088/1464-4258/11/8/085706 |
[41] | Cai Y J, Chen Y H, Yu J Y, et al. Generation of partially coherent beams[J]. Prog Opt, 2017, 62: 157−223. doi: 10.1016/bs.po.2016.11.001 |
[42] | Cai Y J, Chen Y H, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited][J]. J Opt Soc America A, 2014, 31(9): 2083−2096. doi: 10.1364/JOSAA.31.002083 |
[43] | Wang F, Liang C H, Yuan Y S, et al. Generalized multi-Gaussian correlated Schell-model beam: from theory to experiment[J]. Opt Express, 2014, 22(19): 23456−23464. doi: 10.1364/OE.22.023456 |
[44] | Chen Y H, Liu L, Wang F, et al. Elliptical Laguerre-Gaussian correlated Schell-model beam[J]. Opt Express, 2014, 22(11): 13975−13987. doi: 10.1364/OE.22.013975 |
[45] | Chen Y H, Wang F, Zhao C L, et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam[J]. Opt Express, 2014, 22(5): 5826−5838. doi: 10.1364/OE.22.005826 |
[46] | Liu X L, Yu J Y, Cai Y J, et al. Propagation of optical coherence lattices in the turbulent atmosphere[J]. Opt Lett, 2016, 41(18): 4182−4185. doi: 10.1103/PhysRevA.89.013801 |
[47] | Chen Y H, Cai Y J. Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam[J]. Opt Lett, 2014, 39(9): 2549−2552. doi: 10.1364/OL.39.002549 |
[48] | Liang C H, Wang F, Liu X L, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry[J]. Opt Lett, 2014, 39(4): 769−772. doi: 10.1364/OL.39.000769 |
[49] | Liang C H, Zhu X L, Mi C K, et al. High-quality partially coherent Bessel beam array generation[J]. Opt Lett, 2018, 43(13): 3188−3191. doi: 10.1364/OL.43.003188 |
[50] | Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations[J]. Opt Lett, 2011, 36(20): 4104−4106. doi: 10.1364/OL.36.004104 |
[51] | Lajunen H, Saastamoinen T. Non-uniformly correlated partially coherent pulses[J]. Opt Express, 2013, 21(1): 190−195. doi: 10.1364/OE.21.000190 |
[52] | Ding C L, Koivurova M, Turunen J, et al. Self-focusing of a partially coherent beam with circular coherence[J]. J Opt Soc AmericaA, 2017, 34(8): 1441−1447. doi: 10.1364/JOSAA.34.001441 |
[53] | Yu J Y, Cai Y J, Gbur G. Rectangular Hermite non-uniformly correlated beams and its propagation properties[J]. Opt Express, 2018, 26(21): 27894−27906. doi: 10.1364/OE.26.027894 |
[54] | Yu J Y, Zhu X L, Lin S Q, et al. Vector partially coherent beams with prescribed non-uniform correlation structure[J]. Opt Lett, 2020, 45(13): 3824−3827. doi: 10.1364/OL.397316 |
[55] | Zhu X L, Wang F, Zhao C L, et al. Experimental realization of dark and antidark diffraction-free beams[J]. Opt Lett, 2019, 44(9): 2260−2263. doi: 10.1364/OL.44.002260 |
[56] | Zhu X L, Yu J Y, Chen Y H, et al. Experimental synthesis of random light sources with circular coherence by digital micro-mirror device[J]. Appl Phys Lett, 2020, 117(12): 121102. doi: 10.1063/5.0024283 |
[57] | Zhu X L, Yu J Y, Wang F, et al. Synthesis of vector nonuniformly correlated light beams by a single digital mirror device[J]. Opt Lett, 2021, 46(12): 2996−2999. doi: 10.1364/OL.428508 |
[58] | Zhu S J, Chen Y H, Wang J, et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization[J]. Opt Express, 2015, 23(26): 33099−33115. doi: 10.1364/OE.23.033099 |
[59] | Chen Y H, Gu J X, Wang F, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Phys Rev A, 2015, 91(1): 013823. doi: 10.1103/PhysRevA.91.013823 |
[60] | Korotkova O, Gbur G. Applications of optical coherence theory[J]. Prog Opt, 2020, 65: 43−104. doi: 10.1016/bs.po.2019.11.004 |
[61] | Korotkova O. Light propagation in a turbulent ocean[J]. Prog Opt, 2019, 64: 1−43. doi: 10.1016/bs.po.2018.09.001 |
[62] | Wang F, Liu X L, Cai Y J. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review)[J]. Prog Electromagn Res, 2015, 150: 123−143. doi: 10.2528/PIER15010802 |
[63] | Wang F, Chen Y H, Liu X L, et al. Self-reconstruction of partially coherent light beams scattered by opaque obstacles[J]. Opt Express, 2016, 24(21): 23735−23746. doi: 10.1364/OE.24.023735 |
[64] | Goodman J W. Statistical Optics[M]. New York: John Wiley & Sons, 1985. |
[65] | Wan L P, Zhao D M. Controllable rotating Gaussian Schell-model beams[J]. Opt Lett, 2019, 44(4): 735−738. doi: 10.1364/OL.44.000735 |
[66] | Wan L P, Zhao D M. Generalized partially coherent beams with nonseparable phases[J]. Opt Lett, 2019, 44(19): 4714−4717. doi: 10.1364/OL.44.004714 |
[67] | Zhou Y J, Zhu W T, Zhao D M. Twisted sinc-correlation Schell-model beams[J]. Opt Express, 2022, 30(2): 1699−1707. doi: 10.1364/OE.450254 |
[68] | Wang H Y, Peng X F, Zhang H, et al. Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum[J]. Nanophotonics, 2022, 11(4): 689−696. doi: 10.1515/nanoph-2021-0432 |
[69] | Lin R, Yu H C, Zhu X L, et al. The evolution of spectral intensity and orbital angular momentum of twisted Hermite Gaussian Schell model beams in turbulence[J]. Opt Express, 2020, 28(5): 7152−7164. doi: 10.1364/OE.387443 |
[70] | Chen Y H, Ponomarenko S A, Cai Y J. Self-steering partially coherent beams[J]. Sci Rep, 2017, 7(1): 39957. doi: 10.1038/srep39957 |
[71] | Mao H D, Chen Y H, Liang C H, et al. Self-steering partially coherent vector beams[J]. Opt Express, 2019, 27(10): 14353−14368. doi: 10.1364/OE.27.014353 |
[72] | Sun B Y, Huang Z F, Zhu X L, et al. Random source for generating Airy-like spectral density in the far field[J]. Opt Express, 2020, 28(5): 7182−7196. doi: 10.1364/OE.388507 |
[73] | Zhu Y M, Dong Z, Wang F, et al. Compact generation of robust Airy beam pattern with spatial coherence engineering[J]. Opt Lett, 2022, 47(11): 2846−2849. doi: 10.1364/OL.460191 |
[74] | Chen Y H, Wang F, Liu L, et al. Generation and propagation of a partially coherent vector beam with special correlation functions[J]. Phys Rev A, 2014, 89(1): 013801. doi: 10.1103/PhysRevA.89.013801. |
[75] | Peng X F, Wang H Y, Liu L, et al. Self-reconstruction of twisted Laguerre-Gaussian Schell-model beams partially blocked by an opaque obstacle[J]. Opt Express, 2020, 28(21): 31510−31523. doi: 10.1364/OE.408357 |
[76] | Wang F, Lv H, Chen Y H, et al. Three modal decompositions of Gaussian Schell-model sources: comparative analysis[J]. Opt Express, 2021, 29(19): 29676−29689. doi: 10.1364/OE.435767 |
[77] | Martínez-Herrero R, Mejías P M, Gori F. Genuine cross-spectral densities and pseudo-modal expansions[J]. Opt Lett, 2009, 34(9): 1399−1401. doi: 10.1364/OL.34.001399 |
[78] | Martínez-Herrero R, Mejías P M. Elementary-field expansions of genuine cross-spectral density matrices[J]. Opt Lett, 2009, 34(15): 2303−2305. doi: 10.1364/OL.34.002303 |
[79] | Yang S C, Ponomarenko S A, Chen Z Z. Coherent pseudo-mode decomposition of a new partially coherent source class[J]. Opt Lett, 2015, 40(13): 3081−3084. doi: 10.1364/OL.40.003081 |
[80] | Prahl S A, Fischer D G, Duncan D D. Monte Carlo Green's function formalism for the propagation of partially coherent light[J]. J Opt Soc America A, 2009, 26(7): 1533−1543. doi: 10.1364/JOSAA.26.001533 |
[81] | Wang F, Korotkova O. Convolution approach for beam propagation in random media[J]. Opt Lett, 2016, 41(7): 1546−1549. doi: 10.1364/OL.41.001546 |
[82] | Zeng J, Liu X L, Wang F, et al. Partially coherent fractional vortex beam[J]. Opt Express, 2018, 26(21): 26830−26844. doi: 10.1364/OE.26.026830 |
[83] | Zeng J, Liang C H, Wang H Y, et al. Partially coherent radially polarized fractional vortex beam[J]. Opt Express, 2020, 28(8): 11493−11513. doi: 10.1364/OE.390922 |
[84] | Voelz D, Xiao X F, Korotkova O. Numerical modeling of Schell-model beams with arbitrary far-field patterns[J]. Opt Lett, 2015, 40(3): 352−355. doi: 10.1364/OL.40.000352 |
[85] | Hyde IV M W, Basu S, Voelz D G, et al. Experimentally generating any desired partially coherent Schell-model source using phase-only control[J]. J Appl Phys, 2015, 118(9): 093102. doi: 10.1063/1.4929811 |
[86] | Hyde IV M W, Bose-Pillai S, Voelz D G, et al. Generation of vector partially coherent optical sources using phase-only spatial light modulators[J]. Phys Rev Appl, 2016, 6(6): 064030. doi: 10.1103/PhysRevApplied.6.064030 |
[87] | Hyde IV M W, Bose-Pillai S R, Wood R A. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror[J]. Appl Phys Lett, 2017, 111(10): 101106. doi: 10.1063/1.4994669 |
[88] | Hyde M W, Xiao X F, Voelz D G. Generating electromagnetic nonuniformly correlated beams[J]. Opt Lett, 2019, 44(23): 5719−5722. doi: 10.1364/OL.44.005719 |
[89] | Hyde IV M W, Bose-Pillai S, Xiao X, et al. A fast and efficient method for producing partially coherent sources[J]. J Opt, 2017, 19(2): 025601. doi: 10.1088/2040-8986/19/2/025601 |
[90] | Lin S Q, Wang C, Zhu X L, et al. Propagation of radially polarized Hermite non-uniformly correlated beams in a turbulent atmosphere[J]. Opt Express, 2020, 28(19): 27238−27249. doi: 10.1364/OE.402021 |
[91] | Wang F, Cai Y J, He S L. Experimental observation of coincidence fractional Fourier transform with a partially coherent beam[J]. Opt Express, 2006, 14(16): 6999−7004. doi: 10.1364/OE.14.006999 |
[92] | Wang F, Cai Y J. Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics[J]. J Opt Soc America A, 2007, 24(7): 1937−1944. doi: 10.1364/JOSAA.24.001937 |
[93] | Huang Z F, Chen Y H, Wang F, et al. Measuring complex degree of coherence of random light fields with generalized Hanbury Brown–Twiss experiment[J]. Phys Rev Appl, 2020, 13(4): 044042. doi: 10.1103/PhysRevApplied.13.044042 |
[94] | Dong Z, Huang Z F, Chen Y H, et al. Measuring complex correlation matrix of partially coherent vector light via a generalized hanbury brown–twiss experiment[J]. Opt Express, 2020, 28(14): 20634−20644. doi: 10.1364/OE.398185 |
[95] | Wang Z Y, Lu X Y, Huang W R, et al. Measuring the complete complex correlation matrix of a partially coherent vector beam via self-referencing holography[J]. Appl Phys Lett, 2021, 119(11): 111101. doi: 10.1063/5.0061838 |
[96] | Lu X Y, Shao Y F, Zhao C L, et al. Noniterative spatially partially coherent diffractive imaging using pinhole array mask[J]. Adv Photonics, 2019, 1(1): 016005. doi: 10.1117/1.AP.1.1.016005 |
[97] | Partanen H, Turunen J, Tervo J. Coherence measurement with digital micromirror device[J]. Opt Lett, 2014, 39(4): 1034−1037. doi: 10.1364/OL.39.001034 |
[98] | Mejía Y, González A I. Measuring spatial coherence by using a mask with multiple apertures[J]. Opt Commun, 2007, 273(2): 428−434. doi: 10.1016/j.optcom.2007.01.009 |
[99] | Divitt S, Lapin Z J, Novotny L. Measuring coherence functions using non-parallel double slits[J]. Opt Express, 2014, 22(7): 8277−8290. doi: 10.1364/OE.22.008277 |
[100] | Brown R H, Twiss R Q. LXXIV. A new type of interferometer for use in radio astronomy[J]. Philos Mag, 1954, 45(366): 663−682. doi: 10.1080/14786440708520475 |
[101] | Chen Y H, Wang F, Cai Y J. Partially coherent light beam shaping via complex spatial coherence structure engineering[J]. Adv Phys X, 2022, 7(1): 2009742. doi: 10.1080/23746149.2021.2009742 |
[102] | Yu J Y, Huang Y, Wang F, et al. Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere[J]. Opt Express, 2019, 27(19): 26676−26688. doi: 10.1364/OE.27.026676 |
[103] | Liu Y L, Lin R, Wang F, et al. Propagation properties of Laguerre-Gaussian Schell-model beams with a twist phase[J]. J Quant Spectrosc Radiat Transf, 2021, 264: 107556. doi: 10.1016/j.jqsrt.2021.107556 |
[104] | Gu Y L, Gbur G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence[J]. J Opt Soc America A, 2010, 27(12): 2621−2629. doi: 10.1364/JOSAA.27.002621 |
[105] | Yuan Y S, Liu X L, Wang F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Opt Commun, 2013, 305: 57−65. doi: 10.1016/j.optcom.2013.04.076 |
[106] | Korotkova O, Avramov-Zamurovic S, Nelson C, et al. Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence[J]. Proc SPIE, 2014, 9224: 92240M. doi: 10.1117/12.2062601 |
[107] | Yu J Y, Wang F, Liu L, et al. Propagation properties of Hermite non-uniformly correlated beams in turbulence[J]. Opt Express, 2018, 26(13): 16333−16343. doi: 10.1364/OE.26.016333 |
[108] | Gu Y L, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence[J]. Opt Lett, 2013, 38(9): 1395−1397. doi: 10.1364/OL.38.001395 |
[109] | Gu Y L, Korotkova O, Gbur G. Scintillation of nonuniformly polarized beams in atmospheric turbulence[J]. Opt Lett, 2009, 34(15): 2261−2263. doi: 10.1364/OL.34.002261 |
[110] | Wang F, Cai Y J, Eyyuboğlu H T, et al. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere[J]. Opt Lett, 2012, 37(2): 184−186. doi: 10.1364/OL.37.000184 |
[111] | Liu X L, Shen Y, Liu L, et al. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam[J]. Opt Lett, 2013, 38(24): 5323−5326. doi: 10.1364/OL.38.005323 |
[112] | Tong Z S, Korotkova O. Beyond the classical Rayleigh limit with twisted light[J]. Opt Lett, 2012, 37(13): 2595−2597. doi: 10.1364/OL.37.002595 |
[113] | Liang C H, Wu G F, Wang F, et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources[J]. Opt Express, 2017, 25(23): 28352−28362. doi: 10.1364/OE.25.028352 |
[114] | Liang C H, Monfared Y E, Liu X, et al. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit[J]. Chin Opt Lett, 2021, 19(5): 052601. doi: 10.3788/COL202119.052601 |
[115] | Jin Y, Wang H Y, Liu L, et al. Orientation-selective sub-Rayleigh imaging with spatial coherence lattices[J]. Opt Express, 2022, 30(6): 9548−9561. doi: 10.1364/OE.454782 |
[116] | Shen Y C, Sun H, Peng D M, et al. Optical image reconstruction in 4f imaging system: role of spatial coherence structure engineering[J]. Appl Phys Lett, 2021, 118(18): 181102. doi: 10.1063/5.0046288 |
[117] | Shao Y F, Lu X Y, Konijnenberg S, et al. Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography[J]. Opt Express, 2018, 26(4): 4479−4490. doi: 10.1364/OE.26.004479 |
[118] | Lu X Y, Wang Z Y, Zhang S X, et al. Microscopic phase reconstruction of cervical exfoliated cell under partially coherent illumination[J]. J Biophotonics, 2021, 14(1): e202000401. doi: 10.1002/jbio.202000401 |
[119] | Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination[J]. Nat Photonics, 2012, 6(6): 355−359. doi: 10.1038/nphoton.2012.90 |
[120] | Zhu X L, Yao H N, Yu J Y, et al. Inverse design of a spatial filter in edge enhanced imaging[J]. Opt Lett, 2020, 45(9): 2542−2545. doi: 10.1364/OL.391429 |
[121] | Batarseh M, Sukhov S, Shen Z, et al. Passive sensing around the corner using spatial coherence[J]. Nat Commun, 2018, 9(1): 3629. doi: 10.1038/s41467-018-05985-w |
[122] | Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding[J]. Opt Lett, 1995, 20(7): 767−769. doi: 10.1364/OL.20.000767 |
[123] | Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain[J]. Opt Lett, 2000, 25(12): 887−889. doi: 10.1364/OL.25.000887 |
[124] | Wu J J, Xie Z W, Liu Z J, et al. Multiple-image encryption based on computational ghost imaging[J]. Opt Commun, 2016, 359: 38−43. doi: 10.1016/j.optcom.2015.09.039 |
[125] | Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nat Commun, 2012, 3(1): 998. doi: 10.1038/ncomms2006 |
[126] | Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nat Photonics, 2020, 14(2): 102−108. doi: 10.1038/s41566-019-0560-x |
[127] | Chen Y H, Ponomarenko S A, Cai Y J. Experimental generation of optical coherence lattices[J]. Appl Phys Lett, 2016, 109(6): 061107. doi: 10.1063/1.4960966 |
[128] | Peng D M, Huang Z F, Liu Y L, et al. Optical coherence encryption with structured random light[J]. PhotoniX, 2021, 2(1): 6. doi: 10.1186/s43074-021-00027-z |
[129] | Lin W, Wen Y H, Chen Y J, et al. Resilient free-space image transmission with helical beams[J]. Phys Rev Appl, 2019, 12(4): 044058. doi: 10.1103/PhysRevApplied.12.044058 |
[130] | Fienup J R. Phase retrieval algorithms: a comparison[J]. Appl Opt, 1982, 21(15): 2758−2769. doi: 10.1364/AO.21.002758 |
[131] | Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Opt Lett, 1978, 3(1): 27−29. doi: 10.1364/OL.3.000027 |
[132] | Liu Y L, Chen Y H, Wang F, et al. Robust far-field imaging by spatial coherence engineering[J]. Opto-Electron Adv, 2021, 4(12): 210027. doi: 10.29026/oea.2021.210027 |
[133] | Liu Y L, Zhang X, Dong Z, et al. Robust far-field optical image transmission with structured random light beams[J]. Phys Rev Appl, 2022, 17(2): 024043. doi: 10.1103/PhysRevApplied.17.024043 |
[134] | Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Opt Express, 2000, 7(2): 77−87. doi: 10.1364/OE.7.000077 |
[135] | Zhao Y Q, Zhan Q W, Zhang Y L, et al. Creation of a three-dimensional optical chain for controllable particle delivery[J]. Opt Lett, 2005, 30(8): 848−850. doi: 10.1364/OL.30.000848 |
[136] | Wang H F, Shi L P, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nat Photonics, 2008, 2(8): 501−505. doi: 10.1038/nphoton.2008.127 |
[137] | Chen W B, Zhan Q W. Three-dimensional focus shaping with cylindrical vector beams[J]. Opt Commun, 2006, 265(2): 411−417. doi: 10.1016/j.optcom.2006.04.066 |
[138] | Zhan Q W, Leger J R. Focus shaping using cylindrical vector beams[J]. Opt Express, 2002, 10(7): 324−331. doi: 10.1364/OE.10.000324 |
[139] | Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams[J]. Opt Express, 2010, 18(10): 10828−10833. doi: 10.1364/OE.18.010828 |
[140] | Li M M, Yan S H, Liang Y S, et al. Transverse spinning of particles in highly focused vector vortex beams[J]. Phys Rev A, 2017, 95(5): 053802. doi: 10.1103/PhysRevA.95.053802 |
[141] | Xue Y X, Wang Y S, Zhou S C, et al. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam[J]. J Opt Soc America A, 2018, 35(6): 953−958. doi: 10.1364/JOSAA.35.000953 |
[142] | Zhang L, Qiu X D, Zeng L W, et al. Multiple trapping using a focused hybrid vector beam[J]. Chin Phys B, 2019, 28(9): 094202. doi: 10.1088/1674-1056/ab33ef |
[143] | Novotny L, Beversluis M R, Youngworth K S, et al. Longitudinal field modes probed by single molecules[J]. Phys Rev Lett, 2001, 86(23): 5251−5254. doi: 10.1103/PhysRevLett.86.5251 |
[144] | Segawa S, Kozawa Y, Sato S. Resolution enhancement of confocal microscopy by subtraction method with vector beams[J]. Opt Lett, 2014, 39(11): 3118−3121. doi: 10.1364/OL.39.003118 |
[145] | Dubey A K, Yadava V. Laser beam machining—a review[J]. Int J Mach Tools Manuf, 2008, 48(6): 609−628. doi: 10.1016/j.ijmachtools.2007.10.017 |
[146] | Tsibidis G D, Skoulas E, Stratakis E. Ripple formation on nickel irradiated with radially polarized femtosecond beams[J]. Opt Lett, 2015, 40(22): 5172−5175. doi: 10.1364/OL.40.005172 |
[147] | Zhu Z Y, Janasik M, Fyffe A, et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams[J]. Nat Commun, 2021, 12(1): 1666. doi: 10.1038/s41467-021-21793-1 |
[148] | Zhu S J, Wang J, Liu X L, et al. Generation of arbitrary radially polarized array beams by manipulating correlation structure[J]. Appl Phys Lett, 2016, 109(16): 161904. doi: 10.1063/1.4965705 |
[149] | Tong R H, Dong Z, Chen Y H, et al. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence[J]. Opt Express, 2020, 28(7): 9713−9727. doi: 10.1364/OE.386187 |
Optical coherence, as a fundamental resource in all areas of optical physics, plays a vital role in understanding interference, propagation, scattering, imaging, light-matter interactions, and other fundamental characteristics from classical to quantum optical wave fields. The theory of optical coherence is the most powerful tool to describe the statistical characters of random light beams (also named partially coherent beams). In the space-frequency domain, the spatial coherence property of a partially coherent light beam is characterized by a two-point spectral degree of coherence that is a normalized version of the cross-spectral density function. Nowadays, the degree of coherence has been viewed as a novel degree of freedom for the structured partially coherent light beams, which is akin to the deterministic properties, such as the amplitude, phase, and polarization of a fully coherent structured light beam. Due to the fundamental difference between the two-point degree of coherence of partially coherent light and the one-point deterministic features of fully coherent light, the partially coherent beams with customized spatial coherence have shown many unique properties and been found to be more advantageous in particular applications. By simply adjusting the spatial coherence width of the degree of coherence for a partially coherent beam can help reduce the turbulence-induced signal distortion in free-space optical communications and resist the speckle noise in optical imaging. Only recently, it has been found that not only the spatial coherence width but also the spatial coherence distribution of the degree of coherence can be customized, which has enabled a host of novel physical effects, including beam’s self-shaping, self-reconstruction, and self-focusing, and has aroused many important potential applications. In this paper, we review the fundamental theory and efficient experimental protocols for tailoring the spatial coherence structure of the degree of coherence for the partially coherent light beams. The differences and the advantages between the two strategies for producing the partially coherent beams with nonconventional spatial coherence structures are discussed. Meanwhile, we mainly focus on the applications of the spatial coherence structure engineering in coherence-based optical encryption, robust optical imaging, sub-Rayleigh imaging, robust far-field information transfer, and high-quality beam shaping. It is found that the spatial coherence structure engineering provides an efficient degree of freedom for the manipulation of structured light and paves the way for resisting the side effects induced by random fluctuations of complex media. We prospect that the spatial coherence engineering protocols can be extended to the temporal domain or even to the spatiotemporal domain and will find broader applications for light manipulations and light-matter interactions.
Schematic diagram of light field coherence structure engineering and applications
Generation of partially coherent beams with prescribed coherence structure (a) from incoherent to partially coherent beams[41]; (b) Coherence-modal representation (CMR), pseudo-modal representation (PMR), random-modal representation (RMR) [76]
Experimental setup for generating of partially coherent beams. (a) Experimental realization of partially coherent beams via dynamic scattering medium (rotating ground-glass disk)[44]; (b)~(d) Experimental realization of partially coherent beams via mode superposition by using Monte Carlo[89], and spatial light modulator (SLM) [90], digital micro-mirror device (DMD) [57]
Measurement of spatial coherence structure of partially coherent beams. (a) Via Young’s interferometry with two holes[27]; (b) Via intensity-intensity correlation[91]; (c) Via generalized Hanbury Brown-Twiss experiment[93]; (d) Via self-referencing holography[96]
Applications of novel coherence structures engineering of light field in beam shaping. (a) Self-splitting of a focused Hermite Gaussian correlated beam[59]; (b) Optical cage formation with a focused Laguerre Gaussian correlated[47]; (c) Radially polarized beam array generation[101]; (d) Self-reconstruction of the partially coherent beams[63] ; (e) Self-steering of a phase-engineering of the partially coherent beams[71]; (f) Self-focusing and Self-steering of the non-uniform partially coherent beams[50-51]
Applications of novel coherence structures engineering of light field in turbulence. (a) Schematic for the propagation of light beams through turbulence atmosphere[102]; (b) Scintillation index of multi Gaussian Schell-model beams propagation in turbulence[105]; (c) The evolution of the intensity of the Radially polarization Gaussian Schell model (GSM) (RPPC) beam in turbulence, and the radially polarized Hermite non-uniformly correlated (RPHNUC) beams upon propagation in turbulence with different mode orders m = 0 and m = 1[90]; (d) The on-axis scintillation of the GSM beams, PCB with vortex phase and partially coherent radially polarization (PCRP) with and without vortex phase for different transverse coherence width[107]
Applications of novel coherence structures engineering of light field in overcoming the classical Rayleigh diffraction limit. (a) Schematic diagram of the telecentric imaging system[113]; (b) Results of the imaging of the target under the partially coherent beams with prescribed coherence structure[113]; (c) Experimental setup for the orientation-selective sub-Rayleigh imaging with the spatial coherence lattice[115]; (d) Experimental sub-Rayleigh imaging results of the target image under the illumination of the partially coherent beam with three kinds of spatial coherence lattice[115]
Applications of novel coherence structures engineering of light field in complex optical imaging. (a) Robust optical imaging with the special correlated partially coherent beams[116]; (b) Moving targets tracking through scattering media via the complex spatial coherence structure[93]; (c) The imaging of the phase object with the complex spatial coherence structure by self-reference holography[117]; (d) The microscopic phase imaging[118]
Applications of novel coherence structures engineering of light field in optical encryption. (a) Schematic diagram of the optical encryption and decryption through the manipulation of the spatial coherence structure; (b) Results of the decryption of the original encryption image from the measured cross-spectral density function with correct decryption key; (c) The robustness of the optical imaging encryption and decryption in turbulence via the measurement of the spatial coherence structure[128]
Applications of novel coherence structures engineering of light field in the robust far-field information transmission. (a) A schematic of the principle for far-field optical image transmission with a structured random light beam[133]; (b) Experimental setup for robust far-field imaging in free space as well as in turbulent atmosphere[132]; (c) Results of the reconstructed image in turbulence with different strength[132]; (d) Results for the modulus of the spatial degree of coherence in the focal plane and the corresponding results for the recovered image with the presence of the obstacle in the transmission link[133]
Applications of novel coherence structures engineering in vector light field. (a) Shaping of the far-field intensity and state of polarization[83]; (b) Generation of the far-field arbitrary array beams[148]; (c) An optical cage is derived around the focal region[148]; (d) Shaping of longitudinal spectral density in the tight focusing system[149]; (e) Recovery of the polarization state of the field hidden behind a scattering media[94]