Ye K T, Li D P, Sun X W, et al. Research progress of quantum dot micro display technology[J]. Opto-Electron Eng, 2022, 49(12): 220008. doi: 10.12086/oee.2022.220008
Citation: Ye K T, Li D P, Sun X W, et al. Research progress of quantum dot micro display technology[J]. Opto-Electron Eng, 2022, 49(12): 220008. doi: 10.12086/oee.2022.220008

Research progress of quantum dot micro display technology

    Fund Project: National Natural Science Foundation of China (62122034, 61875082)
More Information
  • The quantum dot is a kind of semiconductor nanocrystal with quantum confinement effect, which attracts a lot of attention due to the excellent optoelectronic properties and has been widely used in the display area. The quantum dot become one of the core materials of display with several advantages including the high luminance efficiency, tunable emission wavelength, narrow FWHM and low-cost solution fabrication. Micro display technology is applied in the near eye display scenario with small effective display area (diagonal < 1 inch). Recently, the rising of VR/AR application scenarios require micro display technology with higher luminance, higher pixel density, and full color display. In this paper, we review the current progress of the quantum dot in micro display from photoluminescence and electroluminescence technique routes. The chances and challenges of the quantum dot in micro display are also summarized.
  • 加载中
  • [1] Cheng D W, Wang Q W, Liu Y, et al. Design and manufacture AR head-mounted displays: A review and outlook[J]. Light Adv Manuf, 2021, 2(3): 24. doi: 10.37188/lam.2021.024

    CrossRef Google Scholar

    [2] Algorri J F, Del Pozo V U, Sańchez-Pena J M, et al. An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display[J]. J Disp Technol, 2014, 10(9): 713−720. doi: 10.1109/JDT.2014.2313143

    CrossRef Google Scholar

    [3] Huang Y G, Hsiang E L, Deng M Y, et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives[J]. Light Sci Appl, 2020, 9: 105. doi: 10.1038/s41377-020-0341-9

    CrossRef Google Scholar

    [4] Lee V W, Twu N, Kymissis I. Micro-LED technologies and applications[J]. Inf Disp, 2016, 32(6): 16−23.

    Google Scholar

    [5] Wu T Z, Sher C W, Lin Y, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Appl Sci, 2018, 8(9): 1557. doi: 10.3390/app8091557

    CrossRef Google Scholar

    [6] Huang Y G, Tan G J, Gou F W, et al. Prospects and challenges of mini-LED and micro-LED displays[J]. J Soc Inf Disp, 2019, 27(7): 387−401. doi: 10.1002/jsid.760

    CrossRef Google Scholar

    [7] Liu Z J, Lin C H, Hyun B R, et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light Sci Appl, 2020, 9: 83. doi: 10.1038/s41377-020-0268-1

    CrossRef Google Scholar

    [8] Bera D, Qian L, Tseng T K, et al. Quantum dots and their multimodal applications: a review[J]. Materials, 2010, 3(4): 2260−2345. doi: 10.3390/ma3042260

    CrossRef Google Scholar

    [9] Vasudevan D, Gaddam R R, Trinchi A, et al. Core–shell quantum dots: properties and applications[J]. J Alloys Compd, 2015, 636: 395−404. doi: 10.1016/j.jallcom.2015.02.102

    CrossRef Google Scholar

    [10] Dai X L, Deng Y Z, Peng X G, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization[J]. Adv Mater, 2017, 29(14): 1607022. doi: 10.1002/adma.201607022

    CrossRef Google Scholar

    [11] Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nat Nanotechnol, 2014, 9(9): 687−692. doi: 10.1038/nnano.2014.149

    CrossRef Google Scholar

    [12] Wang H C, Bao Z, Tsai H Y, et al. Perovskite quantum dots and their application in light-emitting diodes[J]. Small, 2018, 14(1): 1702433. doi: 10.1002/smll.201702433

    CrossRef Google Scholar

    [13] Van Le Q, Hong K, Jang H W, et al. Halide perovskite quantum dots for light-emitting diodes: properties, synthesis, applications, and outlooks[J]. Adv Electron Mater, 2018, 4(12): 1800335. doi: 10.1002/aelm.201800335

    CrossRef Google Scholar

    [14] Chen D Q, Chen X. Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications[J]. J Mater Chem C, 2019, 7(6): 1413−1446. doi: 10.1039/C8TC05545A

    CrossRef Google Scholar

    [15] Miao Y F, Ke Y, Wang N N, et al. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency[J]. Nat Commun, 2019, 10(1): 3624. doi: 10.1038/s41467-019-11567-1

    CrossRef Google Scholar

    [16] Supran G J, Shirasaki Y, Song K W, et al. QLEDs for displays and solid-state lighting[J]. MRS Bull, 2013, 38(9): 703−711. doi: 10.1557/mrs.2013.181

    CrossRef Google Scholar

    [17] Zhu R D, Luo Z Y, Chen H W, et al. Realizing Rec. 2020 color gamut with quantum dot displays[J]. Opt Express, 2015, 23(18): 23680−23693. doi: 10.1364/OE.23.023680

    CrossRef Google Scholar

    [18] Liu Z J, Hyun B R, Sheng Y J, et al. Micro-light-emitting diodes based on InGaN materials with quantum dots[J]. Adv Mater Technol, 2022, 7(6): 2101189. doi: 10.1002/admt.202101189

    CrossRef Google Scholar

    [19] Fan X T, Wu T Z, Liu B, et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism[J]. Opto-Electron Adv, 2021, 4(4): 210022. doi: 10.29026/oea.2021.210022

    CrossRef Google Scholar

    [20] Nasirzadeh K, Nazarian S, Hayat S M G. Inorganic nanomaterials: a brief overview of the applications and developments in sensing and drug delivery[J]. J Appl Biotechnol Rep, 2016, 3(2): 395−402.

    Google Scholar

    [21] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nat Photonics, 2014, 8(7): 506−514. doi: 10.1038/nphoton.2014.134

    CrossRef Google Scholar

    [22] Hong N H. Introduction to nanomaterials: basic properties, synthesis, and characterization[M]//Hong N H. Nano-Sized Multifunctional Materials. Amsterdam: Elsevier, 2019: 1–19.

    Google Scholar

    [23] Feng F, Zhang K, Liu Y B, et al. AlGaN-based deep-UV micro-LED array for quantum dots converted display with ultra-wide color gamut[J]. IEEE Electron Device Lett, 2022, 43(1): 60−63. doi: 10.1109/LED.2021.3130750

    CrossRef Google Scholar

    [24] Singh M, Haverinen H M, Dhagat P, et al. Inkjet printing-process and its applications[J]. Adv Mater, 2010, 22(6): 673−685. doi: 10.1002/adma.200901141

    CrossRef Google Scholar

    [25] Lan L H, Zou J H, Jiang C B, et al. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Front Optoelectron, 2017, 10(4): 329−352. doi: 10.1007/s12200-017-0765-x

    CrossRef Google Scholar

    [26] Liu Y, Li F S, Xu Z W, et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique[J]. ACS Appl Mater Interfaces, 2017, 9(30): 25506−25512. doi: 10.1021/acsami.7b05381

    CrossRef Google Scholar

    [27] Yang P H, Zhang L, Kang D J, et al. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays[J]. Adv Opt Mater, 2020, 8(1): 1901429. doi: 10.1002/adom.201901429

    CrossRef Google Scholar

    [28] Hu Z P, Yin Y M, Ali M U, et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays[J]. Nanoscale, 2020, 12(3): 2103−2110. doi: 10.1039/C9NR09086J

    CrossRef Google Scholar

    [29] Zheng C B, Zheng X, Feng C, et al. High-brightness perovskite quantum dot light-emitting devices using inkjet printing[J]. Org Electron, 2021, 93: 106168. doi: 10.1016/j.orgel.2021.106168

    CrossRef Google Scholar

    [30] Han H V, Lin H Y, Lin C C, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology[J]. Opt Express, 2015, 23(25): 32504−32515. doi: 10.1364/OE.23.032504

    CrossRef Google Scholar

    [31] Lin H Y, Sher C W, Hsieh D H, et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold[J]. Photonics Res, 2017, 5(5): 411−416. doi: 10.1364/PRJ.5.000411

    CrossRef Google Scholar

    [32] Li Y, Chen Z W, Liang D, et al. Coffee-stain-free perovskite film for efficient printed light-emitting diode[J]. Adv Opt Mater, 2021, 9(17): 2100553. doi: 10.1002/adom.202100553

    CrossRef Google Scholar

    [33] Gao A J, Yan J, Wang Z J, et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing[J]. Nanoscale, 2020, 12(4): 2569−2577. doi: 10.1039/C9NR09651E

    CrossRef Google Scholar

    [34] Chen S W H, Shen C C, Wu T Z, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer[J]. Photonics Res, 2019, 7(4): 416−422. doi: 10.1364/PRJ.7.000416

    CrossRef Google Scholar

    [35] Li H G, Duan Y Q, Shao Z L, et al. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film[J]. Adv Mater Technol, 2020, 5(10): 2000401. doi: 10.1002/admt.202000401

    CrossRef Google Scholar

    [36] Park J S, Kyhm J, Kim H H, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display[J]. Nano Lett, 2016, 16(11): 6946−6953. doi: 10.1021/acs.nanolett.6b03007

    CrossRef Google Scholar

    [37] Mei W H, Zhang Z Q, Zhang A D, et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach[J]. Nano Res, 2020, 13(9): 2485−2491. doi: 10.1007/s12274-020-2883-9

    CrossRef Google Scholar

    [38] Kim H M, Ryu M, Cha J H J, et al. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display[J]. J Soc Inf Disp, 2019, 27(6): 347−353. doi: 10.1002/jsid.782

    CrossRef Google Scholar

    [39] Li X H, Kundaliya D, Tan Z J, et al. Projection lithography patterned high-resolution quantum dots/thiol-ene photo-polymer pixels for color down conversion[J]. Opt Express, 2019, 27(21): 30864−30874. doi: 10.1364/OE.27.030864

    CrossRef Google Scholar

    [40] Zhao B X, Zhang X L, Bai X, et al. Surface modification toward luminescent and stable silica-coated quantum dots color filter[J]. Sci China Mater, 2019, 62(10): 1463−1469. doi: 10.1007/s40843-019-9435-7

    CrossRef Google Scholar

    [41] Cho H, Pan J A, Wu H Q, et al. Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange[J]. Adv Mater, 2020, 32(46): 2003805. doi: 10.1002/adma.202003805

    CrossRef Google Scholar

    [42] Yang J, Hahm D, Kim K, et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking[J]. Nat Commun, 2020, 11(1): 2874. doi: 10.1038/s41467-020-16652-4

    CrossRef Google Scholar

    [43] Zhao J Y, Chen L X, Li D Z, et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition[J]. Nat Commun, 2021, 12(1): 4603. doi: 10.1038/s41467-021-24931-x

    CrossRef Google Scholar

    [44] Li Y, Tao J, Wang Q, et al. Microfluidics-based quantum dot color conversion layers for full-color micro-LED display[J]. Appl Phys Lett, 2021, 118(17): 173501. doi: 10.1063/5.0047854

    CrossRef Google Scholar

    [45] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692−3696. doi: 10.1021/nl5048779

    CrossRef Google Scholar

    [46] Stoumpos C C, Kanatzidis M G. Halide perovskites: poor man's high-performance semiconductors[J]. Adv Mater, 2016, 28(28): 5778−5793. doi: 10.1002/adma.201600265

    CrossRef Google Scholar

    [47] Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers[J]. Adv Mater, 2016, 28(32): 6804−6834. doi: 10.1002/adma.201600669

    CrossRef Google Scholar

    [48] Li Z T, Cao K, Li J S, et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure[J]. Opto-Electron Adv, 2021, 4(2): 200019. doi: 10.29026/oea.2021.200019

    CrossRef Google Scholar

    [49] Shi L F, Meng L H, Jiang F, et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns[J]. Adv Funct Mater, 2019, 29(37): 1903648. doi: 10.1002/adfm.201903648

    CrossRef Google Scholar

    [50] Zhan W J, Meng L H, Shao C D, et al. In situ patterning perovskite quantum dots by direct laser writing fabrication[J]. ACS Photonics, 2021, 8(3): 765−770. doi: 10.1021/acsphotonics.1c00118

    CrossRef Google Scholar

    [51] Jia S Q, Li G Y, Liu P, et al. Highly luminescent and stable green quasi-2D perovskite-embedded polymer sheets by inkjet printing[J]. Adv Funct Mater, 2020, 30(24): 1910817. doi: 10.1002/adfm.201910817

    CrossRef Google Scholar

    [52] Huang X J, Guo Q Y, Yang D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nat Photonics, 2020, 14(2): 82−88. doi: 10.1038/s41566-019-0538-8

    CrossRef Google Scholar

    [53] Sun K, Tan D Z, Fang X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022, 375(6578): 307−310. doi: 10.1126/science.abj2691

    CrossRef Google Scholar

    [54] Moon H, Lee C, Lee W, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications[J]. Adv Mater, 2019, 31(34): 1804294. doi: 10.1002/adma.201804294

    CrossRef Google Scholar

    [55] Chang J H, Park P, Jung H, et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes[J]. ACS Nano, 2018, 12(10): 10231−10239. doi: 10.1021/acsnano.8b03386

    CrossRef Google Scholar

    [56] Chen S, Cao W R, Liu T L, et al. On the degradation mechanisms of quantum-dot light-emitting diodes[J]. Nat Commun, 2019, 10(1): 765. doi: 10.1038/s41467-019-08749-2

    CrossRef Google Scholar

    [57] Rhee S, Kim K, Roh J, et al. Recent progress in high-luminance quantum dot light-emitting diodes[J]. Curr Opt Photonics, 2020, 4(3): 161−173.

    Google Scholar

    [58] Sun Y Z, Su Q, Zhang H, et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes[J]. ACS Nano, 2019, 13(10): 11433−11442. doi: 10.1021/acsnano.9b04879

    CrossRef Google Scholar

    [59] Jia S Q, Tang H D, Ma J R, et al. High performance inkjet-printed quantum-dot light-emitting diodes with high operational stability[J]. Adv Opt Mater, 2021, 9(22): 2101069. doi: 10.1002/adom.202101069

    CrossRef Google Scholar

    [60] Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nat Photonics, 2011, 5(3): 176−182. doi: 10.1038/nphoton.2011.12

    CrossRef Google Scholar

    [61] Nam T W, Kim M, Wang Y M, et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution[J]. Nat Commun, 2020, 11(1): 3040. doi: 10.1038/s41467-020-16865-7

    CrossRef Google Scholar

    [62] Meng T T, Zheng Y T, Zhao D L, et al. Ultrahigh-resolution quantum-dot light-emitting diodes[J]. Nat Photonics, 2022, 16(4): 297−303. doi: 10.1038/s41566-022-00960-w

    CrossRef Google Scholar

    [63] Tokito S, Tsutsui T, Taga Y. Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions[J]. J Appl Phys, 1999, 86(5): 2407−2411. doi: 10.1063/1.371068

    CrossRef Google Scholar

    [64] Genco A, Giordano G, Carallo S, et al. High quality factor microcavity OLED employing metal-free electrically active Bragg mirrors[J]. Org Electron, 2018, 62: 174−180. doi: 10.1016/j.orgel.2018.07.034

    CrossRef Google Scholar

    [65] Wang M S, Lin J, Hsiao Y C, et al. Investigating underlying mechanism in spectral narrowing phenomenon induced by microcavity in organic light emitting diodes[J]. Nat Commun, 2019, 10(1): 1614. doi: 10.1038/s41467-019-09585-0

    CrossRef Google Scholar

    [66] Chen L N, Qin Z Y, Chen S M. Ultrahigh resolution pixelated top-emitting quantum-dot light-emitting diodes enabled by color-converting cavities[J]. Small Methods, 2022, 6(1): 2101090. doi: 10.1002/smtd.202101090

    CrossRef Google Scholar

    [67] Joo W J, Kyoung J, Esfandyarpour M, et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch[J]. Science, 2020, 370(6515): 459−463. doi: 10.1126/science.abc8530

    CrossRef Google Scholar

    [68] Wu L J, Liu W Y, Lu Z Z, et al. 72-1: Invited Paper: realizing long lifetime blue quantum dots light emitting diodes (QLEDs) through quantum dot structure tailoring[J]. SID Symp Dig Tech Pap, 2020, 51(1): 1071−1074. doi: 10.1002/sdtp.14059

    CrossRef Google Scholar

    [69] Won Y H, Cho O, Kim T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J]. Nature, 2019, 575(7784): 634−638. doi: 10.1038/s41586-019-1771-5

    CrossRef Google Scholar

    [70] Kim T, Kim K H, Kim S, et al. Efficient and stable blue quantum dot light-emitting diode[J]. Nature, 2020, 586(7829): 385−389. doi: 10.1038/s41586-020-2791-x

    CrossRef Google Scholar

    [71] Chao W C, Chiang T H, Liu Y C, et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility[J]. Commun Mater, 2021, 2(1): 96. doi: 10.1038/s43246-021-00203-5

    CrossRef Google Scholar

  • Quantum dot is a kind of semiconductor nanocrystal with a quantum confinement effect. Recently, quantum dots have been applied for display due to their advantages including high photoluminescent efficiency, tunable emission wavelength, narrow emission spectrum, and low-cost solution process. In this paper, we focus on the application of quantum dots in microdisplay. With the rising near-eye display demands such as AR/VR, the realization of full color, high efficiency, and high luminance microdisplay attracts many attentions. However, the realization of the target microdisplay is difficult due to the high-cost mass transfer technology in micro-LED and the insufficient luminance in micro-OLED. Here, the photoluminescent (PL) and electroluminescent (EL) quantum dots can provide new routes for microdisplay. For PL, quantum dots can work as color conversion material for micro-LED. The multiple-time mass transfer can be avoided with the combination of red and green quantum dots and blue micro-LED. Meanwhile, the color gamut can be improved due to the narrow FWHM of quantum dot emission. For EL, RGB quantum dots can work as an emission layer in QLED, and the RGB micro-QLED can be applied for microdisplay directly with a compact and high-efficiency system. Compared with OLED, the QLED can realize higher luminance due to the inherent stability of the inorganic quantum dot, which is more suitable for AR display requiring high luminance. The patterning of quantum dot layer is the first step for the application in microdisplay. For both PL and EL applications, a high pixel density, high pixel uniformity, high pixel consistency, and low-cost patterning method is required. For the quantum dot color conversion layer in PL application, a high optical density is required for the sufficient absorption of the blue light. For the quantum dot emission layer in EL application, the uniform and small roughness surface quantum dot layer is required with few damages to the quantum dots to ensure the good performance of QLED devices. There are several patterning methods have been reported for quantum dots including inkjet printing, photolithography, transfer printing, electrophoretic deposition, in situ fabrication, and optical micro cavity. However, it is still challenging to find a perfect patterning method for the quantum dot layer. For PL application, the stability of quantum dot under long time high-intensity blue light excitation is a big problem due to the photoinduced quenching and oxidation. For EL application, compared with red and green QLED, the peak luminance, efficiency, and lifetime of blue QLED needs to be further improved by optimizing the blue quantum dots and device structure to satisfy the requirement of the display application.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint