Zhang WL, Çakıroğlu O, Al-Enizi A, Nafady A, Gan XT et al. Solvent-free fabrication of broadband WS2 photodetectors on paper. Opto-Electron Adv 6, 220101 (2023). doi: 10.29026/oea.2023.220101
Citation: Zhang WL, Çakıroğlu O, Al-Enizi A, Nafady A, Gan XT et al. Solvent-free fabrication of broadband WS2 photodetectors on paper. Opto-Electron Adv 6, 220101 (2023). doi: 10.29026/oea.2023.220101

Article Open Access

Solvent-free fabrication of broadband WS2 photodetectors on paper

More Information
  • Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics. Herein, we integrate semiconducting devices on cellulose paper substrate through a simple abrasion technique that yields high-performance photodetectors. A solvent-free WS2 film deposited on paper favors an effective electron-hole separation and hampers recombination. The as-prepared paper-based WS2 photodetectors exhibit a sensitive photoresponse over a wide spectral range spanning from ultraviolet (365 nm) to near-infrared (940 nm). Their responsivity value reaches up to ~270 mA W−1 at 35 V under a power density of 35 mW cm−2. A high performance photodetector was achieved by controlling the environmental exposure as the ambient oxygen molecules were found to decrease the photoresponse and stability of the WS2 photodetector. Furthermore, we have built a spectrometer using such a paper-based WS2 device as the photodetecting component to illustrate its potential application. The present work could promote the development of cost-effective disposable photodetection devices.
  • 加载中
  • [1] Zhang Y, Zhang LN, Cui K, Ge SG, Cheng X et al. Flexible electronics based on micro/nanostructured paper. Adv Mater 30, 1801588 (2018). doi: 10.1002/adma.201801588

    CrossRef Google Scholar

    [2] Xu YD, Fei QH, Page M, Zhao GG, Ling Y et al. Paper-based wearable electronics. iScience 24, 102736 (2021). doi: 10.1016/j.isci.2021.102736

    CrossRef Google Scholar

    [3] Liu JP, Yang C, Wu HY, Lin ZY, Zhang ZX et al. Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment. Energy Environ Sci 7, 3674–3682 (2014). doi: 10.1039/C4EE01995D

    CrossRef Google Scholar

    [4] Ha D, Fang ZQ, Zhitenev NB. Paper in electronic and optoelectronic devices. Adv Electron Mater 4, 1700593 (2018). doi: 10.1002/aelm.201700593

    CrossRef Google Scholar

    [5] Mazaheri A, Lee M, Van Der Zant HSJ, Frisenda R, Castellanos-Gomez A. MoS2-on-paper optoelectronics: drawing photodetectors with van der Waals semiconductors beyond graphite. Nanoscale 12, 19068–19074 (2020). doi: 10.1039/D0NR02268C

    CrossRef Google Scholar

    [6] Yan WJ, Fuh HR, Lv YH, Chen KQ, Tsai TY et al. Giant gauge factor of Van der Waals material based strain sensors. Nat Commun 12, 2018 (2021). doi: 10.1038/s41467-021-22316-8

    CrossRef Google Scholar

    [7] Cai WF, Wang JY, He YM, Liu S, Xiong QH et al. Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction. Nano-Micro Lett 13, 74 (2021). doi: 10.1007/s40820-020-00584-1

    CrossRef Google Scholar

    [8] Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28, 1801834 (2018). doi: 10.1002/adfm.201801834

    CrossRef Google Scholar

    [9] Miranda I, Souza A, Sousa P, Ribeiro J, Castanheira EMS et al. Properties and applications of PDMS for biomedical engineering: a review. J Funct Biomater 13, 2 (2022). doi: 10.3390/jfb13010002

    CrossRef Google Scholar

    [10] Jung YH, Chang TH, Zhang HL, Yao CH, Zheng QF et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6, 7170 (2015). doi: 10.1038/ncomms8170

    CrossRef Google Scholar

    [11] Liu HC, Jian RR, Chen HB, Tian XL, Sun CL et al. Application of biodegradable and biocompatible nanocomposites in electronics: current status and future directions. Nanomaterials 9, 950 (2019). doi: 10.3390/nano9070950

    CrossRef Google Scholar

    [12] Zhu PH, Kuang YD, Wei Y, Li F, Ou HJ et al. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem Eng J 404, 127105 (2021). doi: 10.1016/j.cej.2020.127105

    CrossRef Google Scholar

    [13] Gao L, Zhu CX, Li L, Zhang CW, Liu JH et al. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl Mater Interfaces 11, 25034–25042 (2019). doi: 10.1021/acsami.9b07465

    CrossRef Google Scholar

    [14] Jiang Z, Liu DS, Li CH, Liu HZ, Zou JH et al. Signature of p-type semiconductor features in paper-based back gate metal-organic framework thin-film transistors. Appl Phys Lett 117, 093303 (2020). doi: 10.1063/5.0010929

    CrossRef Google Scholar

    [15] Martins R, Gaspar D, Mendes MJ, Pereira L, Martins J et al. Papertronics: multigate paper transistor for multifunction applications. Appl Mater Today 12, 402–414 (2018). doi: 10.1016/j.apmt.2018.07.002

    CrossRef Google Scholar

    [16] Kim I, Jeon H, Kim D, You J, Kim D. All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 53, 975–981 (2018). doi: 10.1016/j.nanoen.2018.09.060

    CrossRef Google Scholar

    [17] Mao YC, Zhang N, Tang YJ, Wang M, Chao MJ et al. A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 9, 14499–14505 (2017). doi: 10.1039/C7NR05222G

    CrossRef Google Scholar

    [18] Brunetti F, Operamolla A, Castro-Hermosa S, Lucarelli G, Manca V et al. Printed solar cells and energy storage devices on paper substrates. Adv Funct Mater 29, 1806798 (2019). doi: 10.1002/adfm.201806798

    CrossRef Google Scholar

    [19] Barr MC, Rowehl JA, Lunt RR, Xu JJ, Wang AN et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater 23, 3500–3505 (2011). doi: 10.1002/adma.201101263

    CrossRef Google Scholar

    [20] Zhang YZ, Wang Y, Cheng T, Lai WY, Pang H et al. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev 44, 5181–5199 (2015). doi: 10.1039/C5CS00174A

    CrossRef Google Scholar

    [21] Ko Y, Kwon M, Bae WK, Lee B, Lee SW et al. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun 8, 536 (2017). doi: 10.1038/s41467-017-00550-3

    CrossRef Google Scholar

    [22] Pataniya PM, Sumesh CK. WS2 nanosheet/graphene heterostructures for paper-based flexible photodetectors. ACS Appl Nano Mater 3, 6935–6944 (2020). doi: 10.1021/acsanm.0c01276

    CrossRef Google Scholar

    [23] Zhang Y, Xu WX, Xu XJ, Yang W, Li SY et al. Low-cost writing method for self-powered paper-based UV photodetectors utilizing Te/TiO2 and Te/ZnO heterojunctions. Nanoscale Horiz 4, 452–456 (2019). doi: 10.1039/C8NH00401C

    CrossRef Google Scholar

    [24] Fang HJ, Li JW, Ding J, Sun Y, Li Q et al. An origami perovskite photodetector with spatial recognition ability. ACS Appl Mater Interfaces 9, 10921–10928 (2017). doi: 10.1021/acsami.7b02213

    CrossRef Google Scholar

    [25] Cai S, Zuo CL, Zhang JY, Liu H, Fang XS. A paper-based wearable photodetector for simultaneous UV intensity and dosage measurement. Adv Funct Mater 31, 2100026 (2021). doi: 10.1002/adfm.202100026

    CrossRef Google Scholar

    [26] Kannichankandy D, Pataniya PM, Zankat CK, Tannarana M, Pathak VM et al. Paper based organic–inorganic hybrid photodetector for visible light detection. Appl Surf Sci 524, 146589 (2020). doi: 10.1016/j.apsusc.2020.146589

    CrossRef Google Scholar

    [27] Xie C, Yan F. Flexible photodetectors based on novel functional materials. Small 13, 1701822 (2017). doi: 10.1002/smll.201701822

    CrossRef Google Scholar

    [28] Jiang X, Chen F, Zhao SC, Su WT. Recent progress in the CVD growth of 2D vertical heterostructures based on transition-metal dichalcogenides. CrystEngComm 23, 8239–8254 (2021). doi: 10.1039/D1CE01289D

    CrossRef Google Scholar

    [29] Nan HY, Zhou RW, Gu XF, Xiao SQ, Ostrikov K. Recent advances in plasma modification of 2D transition metal dichalcogenides. Nanoscale 11, 19202–19213 (2019). doi: 10.1039/C9NR05522C

    CrossRef Google Scholar

    [30] Huo NJ, Yang SX, Wei ZM, Li SS, Xia JB et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci Rep 4, 5209 (2014). doi: 10.1038/srep05209

    CrossRef Google Scholar

    [31] Nutting D, Felix JF, Tillotson E, Shin DW, De Sanctis A et al. Heterostructures formed through abraded van der Waals materials. Nat Commun 11, 3047 (2020). doi: 10.1038/s41467-020-16717-4

    CrossRef Google Scholar

    [32] Lee M, Mazaheri A, Van Der Zant HSJ, Frisenda R, Castellanos-Gomez A. Drawing WS2 thermal sensors on paper substrates. Nanoscale 12, 22091–22096 (2020). doi: 10.1039/D0NR06036D

    CrossRef Google Scholar

    [33] Matatagui D, Cruz C, Carrascoso F, Al-Enizi AM, Nafady A et al. Eco-friendly disposable WS2 paper sensor for sub-ppm NO2 detection at room temperature. Nanomaterials 12, 1213 (2022). doi: 10.3390/nano12071213

    CrossRef Google Scholar

    [34] Zhang WL, Frisenda R, Zhao QH, Carrascoso F, Al-Enizi AM et al. Paper-supported WS2 strain gauges. Sens Actuators A Phys 332, 113204 (2021). doi: 10.1016/j.sna.2021.113204

    CrossRef Google Scholar

    [35] Quereda J, Kuriakose S, Munuera C, Mompean FJ, Al-Enizi AM et al. Scalable and low-cost fabrication of flexible WS2 photodetectors on polycarbonate. npj Flexible Electron 6, 23 (2022). doi: 10.1038/s41528-022-00157-9

    CrossRef Google Scholar

    [36] Azpeitia J, Frisenda R, Lee M, Bouwmeester D, Zhang WL et al. Integrating superconducting van der Waals materials on paper substrates. Mater Adv 2, 3274–3281 (2021). doi: 10.1039/D1MA00118C

    CrossRef Google Scholar

    [37] Pataniya PM, Patel V, Sumesh CK. MoS2/WSe2 nanohybrids for flexible paper-based photodetectors. Nanotechnology 32, 315709 (2021). doi: 10.1088/1361-6528/abf77a

    CrossRef Google Scholar

    [38] Tobjörk D, Österbacka R. Paper electronics. Adv Mater 23, 1935–1961 (2011). doi: 10.1002/adma.201004692

    CrossRef Google Scholar

    [39] McManus D, Vranic S, Withers F, Sanchez-Romaguera V, Macucci M et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat Nanotechnol 12, 343–350 (2017). doi: 10.1038/nnano.2016.281

    CrossRef Google Scholar

    [40] Casiraghi C, Macucci M, Parvez K, Worsley R, Shin Y et al. Inkjet printed 2D-crystal based strain gauges on paper. Carbon 129, 462–467 (2018). doi: 10.1016/j.carbon.2017.12.030

    CrossRef Google Scholar

    [41] Pataniya PM, Sumesh CK. Low cost and flexible photodetector based on WSe2 Nanosheets/Graphite heterostructure. Synth Met 265, 116400 (2020). doi: 10.1016/j.synthmet.2020.116400

    CrossRef Google Scholar

    [42] Torrisi F, Carey T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 23, 73–96 (2018). doi: 10.1016/j.nantod.2018.10.009

    CrossRef Google Scholar

    [43] Ricardo KB, Sendecki A, Liu HT. Surfactant-free exfoliation of graphite in aqueous solutions. Chem Commun 50, 2751–2754 (2014). doi: 10.1039/c3cc49273g

    CrossRef Google Scholar

    [44] Alzakia FI, Jonhson W, Ding J, Tan SC. Ultrafast exfoliation of 2D materials by solvent activation and one-step fabrication of all-2D-material photodetectors by electrohydrodynamic printing. ACS Appl Mater Interfaces 12, 28840–28851 (2020). doi: 10.1021/acsami.0c06279

    CrossRef Google Scholar

    [45] McManus D, Santo AD, Selvasundaram PB, Krupke R, LiBassi A et al. Photocurrent study of all-printed photodetectors on paper made of different transition metal dichalcogenide nanosheets. Flex Print Electron 3, 034005 (2018). doi: 10.1088/2058-8585/aaddb5

    CrossRef Google Scholar

    [46] Zhang WL, Zhao QH, Munuera C, Lee M, Flores E et al. Integrating van der Waals materials on paper substrates for electrical and optical applications. Appl Mater Today 23, 101012 (2021). doi: 10.1016/j.apmt.2021.101012

    CrossRef Google Scholar

    [47] Zhao QH, Carrascoso F, Gant P, Wang T, Frisenda R et al. A system to test 2D optoelectronic devices in high vacuum. J Phys Mater 3, 036001 (2020). doi: 10.1088/2515-7639/ab8781

    CrossRef Google Scholar

    [48] Quereda J, Zhao QH, Diez E, Frisenda R, Castellanos-Gomez A. Fiber-coupled light-emitting diodes (LEDs) as safe and convenient light sources for the characterization of optoelectronic devices [version 1; peer review: 1 approved, 1 approved with reservations]. Open Res Europe 1, 98 (2021). doi: 10.12688/openreseurope.14018.1

    CrossRef Google Scholar

    [49] An JN, Le TSD, Lim CHJ, Tran VT, Zhan ZY et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Adv Sci 5, 1800496 (2018). doi: 10.1002/advs.201800496

    CrossRef Google Scholar

    [50] Yang W, Hu K, Teng F, Weng JH, Zhang Y et al. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett 18, 4697–4703 (2018). doi: 10.1021/acs.nanolett.8b00988

    CrossRef Google Scholar

    [51] Li SY, Zhang Y, Yang W, Liu H, Fang XS. 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv Mater 32, 1905443 (2020). doi: 10.1002/adma.201905443

    CrossRef Google Scholar

    [52] Wang FK, Gao T, Zhang Q, Hu ZY, Jin B et al. Liquid-alloy-assisted growth of 2D ternary Ga2In4S9 toward high-performance UV photodetection. Adv Mater 31, 1806306 (2019). doi: 10.1002/adma.201806306

    CrossRef Google Scholar

    [53] Huang WJ, Gan L, Yang HT, Zhou N, Wang RY et al. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv Funct Mater 27, 1702448 (2017). doi: 10.1002/adfm.201702448

    CrossRef Google Scholar

    [54] Island JO, Blanter SI, Buscema M, Van Der Zant HSJ, Castellanos-Gomez A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett 15, 7853–7858 (2015). doi: 10.1021/acs.nanolett.5b02523

    CrossRef Google Scholar

    [55] Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR et al. ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7, 1003–1009 (2007). doi: 10.1021/nl070111x

    CrossRef Google Scholar

    [56] Pataniya P, Zankat CK, Tannarana M, Sumesh CK, Narayan S et al. Paper-based flexible photodetector functionalized by WSe2 nanodots. ACS Appl Nano Mater 2, 2758–2766 (2019). doi: 10.1021/acsanm.9b00266

    CrossRef Google Scholar

    [57] Ouyang WX, Teng F, Fang XS. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets. Adv Funct Mater 28, 1707178 (2018). doi: 10.1002/adfm.201707178

    CrossRef Google Scholar

    [58] Gomathi PT, Sahatiya P, Badhulika S. Large-area, flexible broadband photodetector based on ZnS–MoS2 hybrid on paper substrate. Adv Funct Mater 27, 1701611 (2017). doi: 10.1002/adfm.201701611

    CrossRef Google Scholar

    [59] Leng T, Parvez K, Pan KW, Ali J, McManus D et al. Printed graphene/WS2 battery-free wireless photosensor on papers. 2D Mater 7, 024004 (2020). doi: 10.1088/2053-1583/ab602f

    CrossRef Google Scholar

    [60] Li JY, Han JF, Li HX, Fan XY, Huang K. Large-area, flexible broadband photodetector based on WS2 nanosheets films. Mater Sci Semicond Process 107, 104804 (2020). doi: 10.1016/j.mssp.2019.104804

    CrossRef Google Scholar

    [61] Perea-Lõpez N, Elías AL, Berkdemir A, Castro-Beltran A, Gutiérrez HR et al. Photosensor device based on few-layered WS2 films. Adv Funct Mater 23, 5511–5517 (2013). doi: 10.1002/adfm.201300760

    CrossRef Google Scholar

    [62] Lan CY, Zhou ZY, Zhou ZF, Li C, Shu L et al. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res 11, 3371–3384 (2018). doi: 10.1007/s12274-017-1941-4

    CrossRef Google Scholar

    [63] Tweedie MEP, Lau CS, Hou L, Wang X, Sheng Y et al. Transparent ultrathin all-two-dimensional lateral Gr: WS2: Gr photodetector arrays on flexible substrates and their strain induced failure mechanisms. Mater Today Adv 6, 100067 (2020). doi: 10.1016/j.mtadv.2020.100067

    CrossRef Google Scholar

    [64] Kim BH, Yoon H, Kwon SH, Kim DW, Yoon YJ. Direct WS2 photodetector fabrication on a flexible substrate. Vacuum 184, 109950 (2021). doi: 10.1016/j.vacuum.2020.109950

    CrossRef Google Scholar

    [65] Kim HS, Patel M, Kim J, Jeong MS. Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible-NIR optoelectronic devices. ACS Appl Mater Interfaces 10, 3964–3974 (2018). doi: 10.1021/acsami.7b16397

    CrossRef Google Scholar

    [66] Li HJW, Huang K, Zhang YZ. Enhanced photoresponsivity of the GOQDs decorated WS2 photodetector. Mater Res Express 6, 045902 (2019). doi: 10.1088/2053-1591/aaf913

    CrossRef Google Scholar

    [67] Patel RP, Pataniya PM, Patel M, Sumesh CK. WSe2 crystals on paper: flexible, large area and broadband photodetectors. Nanotechnology 32, 505202 (2021). doi: 10.1088/1361-6528/ac26fe

    CrossRef Google Scholar

    [68] Veerla RS, Sahatiya P, Badhulika S. Fabrication of a flexible UV photodetector and disposable photoresponsive uric acid sensor by direct writing of ZnO pencil on paper. J Mater Chem C 5, 10231–10240 (2017). doi: 10.1039/C7TC03292G

    CrossRef Google Scholar

    [69] Abid, Sehrawat P, Islam SS. Broadband photodetection in wide temperature range: layer-by-layer exfoliation monitoring of WS2 bulk using microscopy and spectroscopy. J Appl Phys 125, 154303 (2019). doi: 10.1063/1.5080922

    CrossRef Google Scholar

    [70] Cui Y, Xin R, Yu ZH, Pan YM, Ong ZY et al. High-performance monolayer WS2 field-effect transistors on High-κ dielectrics. Adv Mater 27, 5230–5234 (2015). doi: 10.1002/adma.201502222

    CrossRef Google Scholar

    [71] Zhu WJ, Low T, Lee YH, Wang H, Farmer DB et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun 5, 3087 (2014). doi: 10.1038/ncomms4087

    CrossRef Google Scholar

    [72] Wu D, Guo JW, Wang CQ, Ren XY, Chen YS et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 15, 10119–10129 (2021). doi: 10.1021/acsnano.1c02007

    CrossRef Google Scholar

    [73] Gusakova J, Wang XL, Shiau LL, Krivosheeva A, Shaposhnikov V et al. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e method). Phys Status Solidi (A) Appl Mater Sci 214, 1700218 (2017). doi: 10.1002/pssa.201700218

    CrossRef Google Scholar

  • Supplementary information for Solvent-free fabrication of broadband WS2 photodetectors on paper
    Supplementary video S1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint