Citation: | Zhang WL, Çakıroğlu O, Al-Enizi A, Nafady A, Gan XT et al. Solvent-free fabrication of broadband WS2 photodetectors on paper. Opto-Electron Adv 6, 220101 (2023). doi: 10.29026/oea.2023.220101 |
[1] | Zhang Y, Zhang LN, Cui K, Ge SG, Cheng X et al. Flexible electronics based on micro/nanostructured paper. Adv Mater 30, 1801588 (2018). doi: 10.1002/adma.201801588 |
[2] | Xu YD, Fei QH, Page M, Zhao GG, Ling Y et al. Paper-based wearable electronics. iScience 24, 102736 (2021). doi: 10.1016/j.isci.2021.102736 |
[3] | Liu JP, Yang C, Wu HY, Lin ZY, Zhang ZX et al. Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment. Energy Environ Sci 7, 3674–3682 (2014). doi: 10.1039/C4EE01995D |
[4] | Ha D, Fang ZQ, Zhitenev NB. Paper in electronic and optoelectronic devices. Adv Electron Mater 4, 1700593 (2018). doi: 10.1002/aelm.201700593 |
[5] | Mazaheri A, Lee M, Van Der Zant HSJ, Frisenda R, Castellanos-Gomez A. MoS2-on-paper optoelectronics: drawing photodetectors with van der Waals semiconductors beyond graphite. Nanoscale 12, 19068–19074 (2020). doi: 10.1039/D0NR02268C |
[6] | Yan WJ, Fuh HR, Lv YH, Chen KQ, Tsai TY et al. Giant gauge factor of Van der Waals material based strain sensors. Nat Commun 12, 2018 (2021). doi: 10.1038/s41467-021-22316-8 |
[7] | Cai WF, Wang JY, He YM, Liu S, Xiong QH et al. Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction. Nano-Micro Lett 13, 74 (2021). doi: 10.1007/s40820-020-00584-1 |
[8] | Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28, 1801834 (2018). doi: 10.1002/adfm.201801834 |
[9] | Miranda I, Souza A, Sousa P, Ribeiro J, Castanheira EMS et al. Properties and applications of PDMS for biomedical engineering: a review. J Funct Biomater 13, 2 (2022). doi: 10.3390/jfb13010002 |
[10] | Jung YH, Chang TH, Zhang HL, Yao CH, Zheng QF et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6, 7170 (2015). doi: 10.1038/ncomms8170 |
[11] | Liu HC, Jian RR, Chen HB, Tian XL, Sun CL et al. Application of biodegradable and biocompatible nanocomposites in electronics: current status and future directions. Nanomaterials 9, 950 (2019). doi: 10.3390/nano9070950 |
[12] | Zhu PH, Kuang YD, Wei Y, Li F, Ou HJ et al. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem Eng J 404, 127105 (2021). doi: 10.1016/j.cej.2020.127105 |
[13] | Gao L, Zhu CX, Li L, Zhang CW, Liu JH et al. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl Mater Interfaces 11, 25034–25042 (2019). doi: 10.1021/acsami.9b07465 |
[14] | Jiang Z, Liu DS, Li CH, Liu HZ, Zou JH et al. Signature of p-type semiconductor features in paper-based back gate metal-organic framework thin-film transistors. Appl Phys Lett 117, 093303 (2020). doi: 10.1063/5.0010929 |
[15] | Martins R, Gaspar D, Mendes MJ, Pereira L, Martins J et al. Papertronics: multigate paper transistor for multifunction applications. Appl Mater Today 12, 402–414 (2018). doi: 10.1016/j.apmt.2018.07.002 |
[16] | Kim I, Jeon H, Kim D, You J, Kim D. All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 53, 975–981 (2018). doi: 10.1016/j.nanoen.2018.09.060 |
[17] | Mao YC, Zhang N, Tang YJ, Wang M, Chao MJ et al. A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 9, 14499–14505 (2017). doi: 10.1039/C7NR05222G |
[18] | Brunetti F, Operamolla A, Castro-Hermosa S, Lucarelli G, Manca V et al. Printed solar cells and energy storage devices on paper substrates. Adv Funct Mater 29, 1806798 (2019). doi: 10.1002/adfm.201806798 |
[19] | Barr MC, Rowehl JA, Lunt RR, Xu JJ, Wang AN et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater 23, 3500–3505 (2011). doi: 10.1002/adma.201101263 |
[20] | Zhang YZ, Wang Y, Cheng T, Lai WY, Pang H et al. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev 44, 5181–5199 (2015). doi: 10.1039/C5CS00174A |
[21] | Ko Y, Kwon M, Bae WK, Lee B, Lee SW et al. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun 8, 536 (2017). doi: 10.1038/s41467-017-00550-3 |
[22] | Pataniya PM, Sumesh CK. WS2 nanosheet/graphene heterostructures for paper-based flexible photodetectors. ACS Appl Nano Mater 3, 6935–6944 (2020). doi: 10.1021/acsanm.0c01276 |
[23] | Zhang Y, Xu WX, Xu XJ, Yang W, Li SY et al. Low-cost writing method for self-powered paper-based UV photodetectors utilizing Te/TiO2 and Te/ZnO heterojunctions. Nanoscale Horiz 4, 452–456 (2019). doi: 10.1039/C8NH00401C |
[24] | Fang HJ, Li JW, Ding J, Sun Y, Li Q et al. An origami perovskite photodetector with spatial recognition ability. ACS Appl Mater Interfaces 9, 10921–10928 (2017). doi: 10.1021/acsami.7b02213 |
[25] | Cai S, Zuo CL, Zhang JY, Liu H, Fang XS. A paper-based wearable photodetector for simultaneous UV intensity and dosage measurement. Adv Funct Mater 31, 2100026 (2021). doi: 10.1002/adfm.202100026 |
[26] | Kannichankandy D, Pataniya PM, Zankat CK, Tannarana M, Pathak VM et al. Paper based organic–inorganic hybrid photodetector for visible light detection. Appl Surf Sci 524, 146589 (2020). doi: 10.1016/j.apsusc.2020.146589 |
[27] | Xie C, Yan F. Flexible photodetectors based on novel functional materials. Small 13, 1701822 (2017). doi: 10.1002/smll.201701822 |
[28] | Jiang X, Chen F, Zhao SC, Su WT. Recent progress in the CVD growth of 2D vertical heterostructures based on transition-metal dichalcogenides. CrystEngComm 23, 8239–8254 (2021). doi: 10.1039/D1CE01289D |
[29] | Nan HY, Zhou RW, Gu XF, Xiao SQ, Ostrikov K. Recent advances in plasma modification of 2D transition metal dichalcogenides. Nanoscale 11, 19202–19213 (2019). doi: 10.1039/C9NR05522C |
[30] | Huo NJ, Yang SX, Wei ZM, Li SS, Xia JB et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci Rep 4, 5209 (2014). doi: 10.1038/srep05209 |
[31] | Nutting D, Felix JF, Tillotson E, Shin DW, De Sanctis A et al. Heterostructures formed through abraded van der Waals materials. Nat Commun 11, 3047 (2020). doi: 10.1038/s41467-020-16717-4 |
[32] | Lee M, Mazaheri A, Van Der Zant HSJ, Frisenda R, Castellanos-Gomez A. Drawing WS2 thermal sensors on paper substrates. Nanoscale 12, 22091–22096 (2020). doi: 10.1039/D0NR06036D |
[33] | Matatagui D, Cruz C, Carrascoso F, Al-Enizi AM, Nafady A et al. Eco-friendly disposable WS2 paper sensor for sub-ppm NO2 detection at room temperature. Nanomaterials 12, 1213 (2022). doi: 10.3390/nano12071213 |
[34] | Zhang WL, Frisenda R, Zhao QH, Carrascoso F, Al-Enizi AM et al. Paper-supported WS2 strain gauges. Sens Actuators A Phys 332, 113204 (2021). doi: 10.1016/j.sna.2021.113204 |
[35] | Quereda J, Kuriakose S, Munuera C, Mompean FJ, Al-Enizi AM et al. Scalable and low-cost fabrication of flexible WS2 photodetectors on polycarbonate. npj Flexible Electron 6, 23 (2022). doi: 10.1038/s41528-022-00157-9 |
[36] | Azpeitia J, Frisenda R, Lee M, Bouwmeester D, Zhang WL et al. Integrating superconducting van der Waals materials on paper substrates. Mater Adv 2, 3274–3281 (2021). doi: 10.1039/D1MA00118C |
[37] | Pataniya PM, Patel V, Sumesh CK. MoS2/WSe2 nanohybrids for flexible paper-based photodetectors. Nanotechnology 32, 315709 (2021). doi: 10.1088/1361-6528/abf77a |
[38] | Tobjörk D, Österbacka R. Paper electronics. Adv Mater 23, 1935–1961 (2011). doi: 10.1002/adma.201004692 |
[39] | McManus D, Vranic S, Withers F, Sanchez-Romaguera V, Macucci M et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat Nanotechnol 12, 343–350 (2017). doi: 10.1038/nnano.2016.281 |
[40] | Casiraghi C, Macucci M, Parvez K, Worsley R, Shin Y et al. Inkjet printed 2D-crystal based strain gauges on paper. Carbon 129, 462–467 (2018). doi: 10.1016/j.carbon.2017.12.030 |
[41] | Pataniya PM, Sumesh CK. Low cost and flexible photodetector based on WSe2 Nanosheets/Graphite heterostructure. Synth Met 265, 116400 (2020). doi: 10.1016/j.synthmet.2020.116400 |
[42] | Torrisi F, Carey T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 23, 73–96 (2018). doi: 10.1016/j.nantod.2018.10.009 |
[43] | Ricardo KB, Sendecki A, Liu HT. Surfactant-free exfoliation of graphite in aqueous solutions. Chem Commun 50, 2751–2754 (2014). doi: 10.1039/c3cc49273g |
[44] | Alzakia FI, Jonhson W, Ding J, Tan SC. Ultrafast exfoliation of 2D materials by solvent activation and one-step fabrication of all-2D-material photodetectors by electrohydrodynamic printing. ACS Appl Mater Interfaces 12, 28840–28851 (2020). doi: 10.1021/acsami.0c06279 |
[45] | McManus D, Santo AD, Selvasundaram PB, Krupke R, LiBassi A et al. Photocurrent study of all-printed photodetectors on paper made of different transition metal dichalcogenide nanosheets. Flex Print Electron 3, 034005 (2018). doi: 10.1088/2058-8585/aaddb5 |
[46] | Zhang WL, Zhao QH, Munuera C, Lee M, Flores E et al. Integrating van der Waals materials on paper substrates for electrical and optical applications. Appl Mater Today 23, 101012 (2021). doi: 10.1016/j.apmt.2021.101012 |
[47] | Zhao QH, Carrascoso F, Gant P, Wang T, Frisenda R et al. A system to test 2D optoelectronic devices in high vacuum. J Phys Mater 3, 036001 (2020). doi: 10.1088/2515-7639/ab8781 |
[48] | Quereda J, Zhao QH, Diez E, Frisenda R, Castellanos-Gomez A. Fiber-coupled light-emitting diodes (LEDs) as safe and convenient light sources for the characterization of optoelectronic devices [version 1; peer review: 1 approved, 1 approved with reservations]. Open Res Europe 1, 98 (2021). doi: 10.12688/openreseurope.14018.1 |
[49] | An JN, Le TSD, Lim CHJ, Tran VT, Zhan ZY et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Adv Sci 5, 1800496 (2018). doi: 10.1002/advs.201800496 |
[50] | Yang W, Hu K, Teng F, Weng JH, Zhang Y et al. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett 18, 4697–4703 (2018). doi: 10.1021/acs.nanolett.8b00988 |
[51] | Li SY, Zhang Y, Yang W, Liu H, Fang XS. 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv Mater 32, 1905443 (2020). doi: 10.1002/adma.201905443 |
[52] | Wang FK, Gao T, Zhang Q, Hu ZY, Jin B et al. Liquid-alloy-assisted growth of 2D ternary Ga2In4S9 toward high-performance UV photodetection. Adv Mater 31, 1806306 (2019). doi: 10.1002/adma.201806306 |
[53] | Huang WJ, Gan L, Yang HT, Zhou N, Wang RY et al. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv Funct Mater 27, 1702448 (2017). doi: 10.1002/adfm.201702448 |
[54] | Island JO, Blanter SI, Buscema M, Van Der Zant HSJ, Castellanos-Gomez A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett 15, 7853–7858 (2015). doi: 10.1021/acs.nanolett.5b02523 |
[55] | Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR et al. ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7, 1003–1009 (2007). doi: 10.1021/nl070111x |
[56] | Pataniya P, Zankat CK, Tannarana M, Sumesh CK, Narayan S et al. Paper-based flexible photodetector functionalized by WSe2 nanodots. ACS Appl Nano Mater 2, 2758–2766 (2019). doi: 10.1021/acsanm.9b00266 |
[57] | Ouyang WX, Teng F, Fang XS. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets. Adv Funct Mater 28, 1707178 (2018). doi: 10.1002/adfm.201707178 |
[58] | Gomathi PT, Sahatiya P, Badhulika S. Large-area, flexible broadband photodetector based on ZnS–MoS2 hybrid on paper substrate. Adv Funct Mater 27, 1701611 (2017). doi: 10.1002/adfm.201701611 |
[59] | Leng T, Parvez K, Pan KW, Ali J, McManus D et al. Printed graphene/WS2 battery-free wireless photosensor on papers. 2D Mater 7, 024004 (2020). doi: 10.1088/2053-1583/ab602f |
[60] | Li JY, Han JF, Li HX, Fan XY, Huang K. Large-area, flexible broadband photodetector based on WS2 nanosheets films. Mater Sci Semicond Process 107, 104804 (2020). doi: 10.1016/j.mssp.2019.104804 |
[61] | Perea-Lõpez N, Elías AL, Berkdemir A, Castro-Beltran A, Gutiérrez HR et al. Photosensor device based on few-layered WS2 films. Adv Funct Mater 23, 5511–5517 (2013). doi: 10.1002/adfm.201300760 |
[62] | Lan CY, Zhou ZY, Zhou ZF, Li C, Shu L et al. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res 11, 3371–3384 (2018). doi: 10.1007/s12274-017-1941-4 |
[63] | Tweedie MEP, Lau CS, Hou L, Wang X, Sheng Y et al. Transparent ultrathin all-two-dimensional lateral Gr: WS2: Gr photodetector arrays on flexible substrates and their strain induced failure mechanisms. Mater Today Adv 6, 100067 (2020). doi: 10.1016/j.mtadv.2020.100067 |
[64] | Kim BH, Yoon H, Kwon SH, Kim DW, Yoon YJ. Direct WS2 photodetector fabrication on a flexible substrate. Vacuum 184, 109950 (2021). doi: 10.1016/j.vacuum.2020.109950 |
[65] | Kim HS, Patel M, Kim J, Jeong MS. Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible-NIR optoelectronic devices. ACS Appl Mater Interfaces 10, 3964–3974 (2018). doi: 10.1021/acsami.7b16397 |
[66] | Li HJW, Huang K, Zhang YZ. Enhanced photoresponsivity of the GOQDs decorated WS2 photodetector. Mater Res Express 6, 045902 (2019). doi: 10.1088/2053-1591/aaf913 |
[67] | Patel RP, Pataniya PM, Patel M, Sumesh CK. WSe2 crystals on paper: flexible, large area and broadband photodetectors. Nanotechnology 32, 505202 (2021). doi: 10.1088/1361-6528/ac26fe |
[68] | Veerla RS, Sahatiya P, Badhulika S. Fabrication of a flexible UV photodetector and disposable photoresponsive uric acid sensor by direct writing of ZnO pencil on paper. J Mater Chem C 5, 10231–10240 (2017). doi: 10.1039/C7TC03292G |
[69] | Abid, Sehrawat P, Islam SS. Broadband photodetection in wide temperature range: layer-by-layer exfoliation monitoring of WS2 bulk using microscopy and spectroscopy. J Appl Phys 125, 154303 (2019). doi: 10.1063/1.5080922 |
[70] | Cui Y, Xin R, Yu ZH, Pan YM, Ong ZY et al. High-performance monolayer WS2 field-effect transistors on High-κ dielectrics. Adv Mater 27, 5230–5234 (2015). doi: 10.1002/adma.201502222 |
[71] | Zhu WJ, Low T, Lee YH, Wang H, Farmer DB et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun 5, 3087 (2014). doi: 10.1038/ncomms4087 |
[72] | Wu D, Guo JW, Wang CQ, Ren XY, Chen YS et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 15, 10119–10129 (2021). doi: 10.1021/acsnano.1c02007 |
[73] | Gusakova J, Wang XL, Shiau LL, Krivosheeva A, Shaposhnikov V et al. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e method). Phys Status Solidi (A) Appl Mater Sci 214, 1700218 (2017). doi: 10.1002/pssa.201700218 |
Supplementary information for Solvent-free fabrication of broadband WS2 photodetectors on paper | |
Supplementary video S1 |
(a) Schematic illustration of the fabrication process of paper-based WS2 photodetectors via abrading WS2 crystals and penciling graphite electrodes on paper substrates. (b) Photograph of the 3 × 3 WS2 photodetector array. Inset shows the magnified view of a WS2 photodetector. (c) Optical micrograph of a WS2 photodetector showing the WS2 channel and graphite electrode regions.
Comparison of the photoresponse performance of the paper-based WS2 photodetector (device A) tested in air and vacuum conditions under illumination. (a) Current vs. time across the device under a periodic ON/OFF switching of illumination with a power intensity of 35 mW cm−2. (b) Zoomed in on three consecutive ON/OFF cycles from (a). (c) Photocurrent vs. time for the WS2 device as the illumination is switched ON/OFF with increasing incident power intensity from 1.1 mW cm−2 to 35 mW cm−2. (d) Photocurrent as a function of the power intensity. Note: Measurements are carried out at a bias voltage of 10 V and with a selected wavelength of 617 nm. The channel length and width of the device A are ~300 μm and 2 mm, respectively.
Voltage-dependent photoresponse of the paper-based WS2 photodetector (device B) under the illumination of 617 nm. (a) Photocurrent as a function of time for the WS2 photodetector while the light is switched ON/OFF under various power intensities at a fixed bias voltage of 35 V. (b) The measured photocurrent and (c) corresponding responsivity as a function of power intensity collected at various bias voltages from 1 to 35 V. (d) The measured photocurrent and responsivity as a function of bias voltage at a fixed power intensity of 35 mW cm−2.
Spectral response of the paper-based WS2 photodetector (device B). (a) Photocurrent vs. time when the device is subjected to cycles of ON/OFF illumination with different wavelengths. (b) Spectrum response of the WS2 photodetector under various wavelengths of illumination in the range of 365 nm (ultraviolet) to 940 nm (near-infrared). Note: The device is measured at a fixed voltage of 10 V and an incident power intensity of 13 mW cm−2.
Integration of the paper-based WS2 photodetector as detection element in an optical spectrometer. (a) Schematic diagram of the spectrometer system consist of a light source, a light-scattering optical element (reflective diffraction grating), and a detection element. (b) The measured power profiles using a commercial silicon photodiode and (c) photocurrent profiles using the paper-based WS2 photodetector (device C). Note: As light source we have used a supercontinuum laser with different spectral filters.