Citation: | Cui SY, Lu YY, Kong DP, Luo HY, Peng L et al. Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors. Opto-Electron Adv 6, 220172 (2023). doi: 10.29026/oea.2023.220172 |
[1] | Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 5, 5747 (2014). doi: 10.1038/ncomms6747 |
[2] | Naqi M, Lee S, Kwon HJ, Lee MG, Kim M et al. A fully integrated flexible heterogeneous temperature and humidity sensor‐based occupancy detection device for smart office applications. Adv Mater Technol 4, 1900619 (2019). doi: 10.1002/admt.201900619 |
[3] | Zhang J Q, Gao Y, Li C et al. Laser direct writing of flexible antenna sensor for strain and humidity sensing. Opto-Electron Eng 49, 210316 (2022). doi: 10.12086/oee.2022.210316 |
[4] | Shen YK, Hou SJ, Hao DD, Zhang X, Lu Y et al. Food-based highly sensitive capacitive humidity sensors by inkjet printing for human body monitoring. ACS Appl Electron Mater 3, 4081–4090 (2021). doi: 10.1021/acsaelm.1c00570 |
[5] | Guo HY, Lan CY, Zhou ZF, Sun PH, Wei DP et al. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9, 6246–6253 (2017). doi: 10.1039/C7NR01016H |
[6] | Lan LY, Le XH, Dong HY, Xie J, Ying YB et al. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens Bioelectron 165, 112360 (2020). doi: 10.1016/j.bios.2020.112360 |
[7] | Lu YY, Xu KC, Zhang LS, Deguchi M, Shishido H et al. Multimodal plant healthcare flexible sensor system. ACS Nano 14, 10966–10975 (2020). doi: 10.1021/acsnano.0c03757 |
[8] | Lu YY, Yang G, Shen YJ, Yang HY, Xu KC. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nanomicro Lett 14, 150 (2022). |
[9] | Kano S, Kim K, Fujii M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens 2, 828–833 (2017). doi: 10.1021/acssensors.7b00199 |
[10] | Peng XY, Chu J, Aldalbahi A, Rivera M, Wang LD et al. A flexible humidity sensor based on KC–MWCNTs composites. Appl Surf Sci 387, 149–154 (2016). doi: 10.1016/j.apsusc.2016.05.108 |
[11] | Gu L, Zhou D, Cao JC. Piezoelectric active humidity sensors based on lead-free NaNbO3 piezoelectric nanofibers. Sensors 16, 833 (2016). doi: 10.3390/s16060833 |
[12] | Wu JH, Yin CS, Zhou J, Li HL, Liu Y et al. Ultrathin glass-based flexible, transparent, and ultrasensitive surface acoustic wave humidity sensor with ZnO nanowires and graphene quantum dots. ACS Appl Mater Interfaces 12, 39817–39825 (2020). doi: 10.1021/acsami.0c09962 |
[13] | Najeeb MA, Ahmad Z, Shakoor RA. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv Mater Interfaces 5, 1800969 (2018). doi: 10.1002/admi.201800969 |
[14] | Kim J, Cho JH, Lee HM, Hong SM. Capacitive humidity sensor based on carbon black/polyimide composites. Sensors 21, 1974 (2021). doi: 10.3390/s21061974 |
[15] | Duan ZH, Jiang YD, Tai HL. Recent advances in humidity sensors for human body related humidity detection. J Mater Chem C 9, 14963–14980 (2021). doi: 10.1039/D1TC04180K |
[16] | Zhu CC, Tao LQ, Wang Y, Zheng K, Yu JB et al. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens Actuators B Chem 325, 128790 (2020). doi: 10.1016/j.snb.2020.128790 |
[17] | Guan X, Hou ZN, Wu K, Zhao HR, Liu S et al. Flexible humidity sensor based on modified cellulose paper. Sens Actuators B Chem 339, 129879 (2021). doi: 10.1016/j.snb.2021.129879 |
[18] | Sriphan S, Charoonsuk T, Khaisaat S, Sawanakarn O, Pharino U et al. Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film. Nanotechnology 32, 155502 (2021). doi: 10.1088/1361-6528/abd8ae |
[19] | Velumani M, Meher SR, Alex ZC. Composite metal oxide thin film based impedometric humidity sensors. Sens Actuators B Chem 301, 127084 (2019). doi: 10.1016/j.snb.2019.127084 |
[20] | Tang HY, Sacco LN, Vollebregt S, Ye HY, Fan XJ et al. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives. J Mater Chem A 8, 24943–24976 (2020). doi: 10.1039/D0TA08190F |
[21] | Ren J, Guo BJ, Feng Y, Yu K. Few-layer MoS2 dendrites as a highly active humidity sensor. Phys E:Low-Dimens Syst Nanostructures 116, 113782 (2020). doi: 10.1016/j.physe.2019.113782 |
[22] | Eryürek M, Tasdemir Z, Karadag Y, Anand S, Kilinc N et al. Integrated humidity sensor based on SU-8 polymer microdisk microresonator. Sens Actuators B Chem 242, 1115–1120 (2017). doi: 10.1016/j.snb.2016.09.136 |
[23] | Sprincean V, Caraman M, Spataru T, Fernandez F, Paladi F. Influence of the air humidity on the electrical conductivity of the β-Ga2O3-GaS structure: air humidity sensor. Appl Phys A 128, 303 (2022). doi: 10.1007/s00339-022-05402-6 |
[24] | Wang D, Lou YL, Wang R, Wang PP, Zheng XJ et al. Humidity sensor based on Ga2O3 nanorods doped with Na+ and K+ from GaN powder. Ceram Int 41, 14790–14797 (2015). doi: 10.1016/j.ceramint.2015.07.211 |
[25] | Tsai TY, Chang SJ, Weng WY, Liu S, Hsu CL et al. β−Ga2O3 nanowires-based humidity sensors prepared on GaN/sapphire substrate. IEEE Sens J 13, 4891–4896 (2013). doi: 10.1109/JSEN.2013.2274872 |
[26] | Juan YM, Chang SJ, Hsueh HT, Wang SH, Weng WY et al. Effects of humidity and ultraviolet characteristics on β-Ga2O3 nanowire sensor. RSC Adv 5, 84776–84781 (2015). doi: 10.1039/C5RA16710H |
[27] | Domènech-Gil G, Peiró I, López-Aymerich E, Moreno M, Pellegrino P et al. Room temperature humidity sensor based on single β-Ga2O3 nanowires. Proceedings 2, 958 (2018). |
[28] | Pilliadugula R, Gopalakrishnan N. Room temperature ammonia sensing performances of pure and Sn doped β-Ga2O3. Mater Sci Semicond Process 135, 106086 (2021). doi: 10.1016/j.mssp.2021.106086 |
[29] | Xu KC, Fujita Y, Lu YY, Honda S, Shiomi M et al. A wearable body condition sensor system with wireless feedback alarm functions. Adv Mater 33, 2008701 (2021). doi: 10.1002/adma.202008701 |
[30] | Zhang CJ, Li ZK, Li HY, Yang Q, Wang H et al. Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor. ACS Appl Mater Interfaces 14, 38328–38338 (2022). doi: 10.1021/acsami.2c08835 |
[31] | Son Y, Yeo J, Moon H, Lim TW, Hong S et al. Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv Mater 23, 3176–3181 (2011). doi: 10.1002/adma.201100717 |
[32] | Wolf A, Dostovalov A, Bronnikov K, Skvortsov M, Wabnitz S et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electron Adv 5, 210055 (2022). doi: 10.29026/oea.2022.210055 |
[33] | Luo HY, Lu YY, Xu YH, Yang G, Cui SY et al. A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy 103, 107803 (2022). doi: 10.1016/j.nanoen.2022.107803 |
[34] | Hepp M, Wang HZ, Derr K, Delacroix S, Ronneberger S et al. Trained laser-patterned carbon as high-performance mechanical sensors. npj Flex Electron 6, 3 (2022). doi: 10.1038/s41528-022-00136-0 |
[35] | Rodriguez RD, Shchadenko S, Murastov G, Lipovka A, Fatkullin M et al. Ultra‐robust flexible electronics by laser‐driven polymer‐nanomaterials integration. Adv Funct Mater 31, 2008818 (2021). doi: 10.1002/adfm.202008818 |
[36] | Shin J, Jeong B, Kim J, Nam VB, Yoon Y et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater 32, 1905527 (2020). doi: 10.1002/adma.201905527 |
[37] | Zhang CY, Zhou W, Geng D, Bai C, Li WD et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 4, 200061 (2021). doi: 10.29026/oea.2021.200061 |
[38] | Liao J N, Zhang D S, Li Z G. Advance in femtosecond laser fabrication of flexible electronics. Opto-Electron Eng 49, 210388 (2022). doi: 10.12086/oee.2022.210388 |
[39] | Lu YY, Xu KC, Yang MQ, Tang SY, Yang TY et al. Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horiz 6, 260–270 (2021). doi: 10.1039/D0NH00594K |
[40] | Liu SL, Yuen MC, White EL, Boley JW, Deng B et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces 10, 28232–28241 (2018). doi: 10.1021/acsami.8b08722 |
[41] | Liu SL, Reed SN, Higgins MJ, Titus MS, Kramer-Bottiglio R. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering. Nanoscale 11, 17615–17629 (2019). doi: 10.1039/C9NR03903A |
[42] | Mahapatra PL, Das S, Mondal PP, Das T, Saha D et al. Microporous copper chromite thick film based novel and ultrasensitive capacitive humidity sensor. J Alloys Compd 859, 157778 (2021). doi: 10.1016/j.jallcom.2020.157778 |
[43] | Zhang JJ, Sun L, Chen C, Liu M, Dong W et al. High performance humidity sensor based on metal organic framework MIL-101(Cr) nanoparticles. J Alloys Compd 695, 520–525 (2017). doi: 10.1016/j.jallcom.2016.11.129 |
[44] | Ma LY, Wu RH, Patil A, Zhu SH, Meng ZH et al. Full‐textile wireless flexible humidity sensor for human physiological monitoring. Adv Funct Mater 29, 1904549 (2019). doi: 10.1002/adfm.201904549 |
[45] | Passlack M, Schubert EF, Hobson WS, Hong M, Moriya N et al. Ga2O3 films for electronic and optoelectronic applications. J Appl Phys 77, 686–693 (1995). doi: 10.1063/1.359055 |
[46] | Oshima T, Kaminaga K, Mukai A, Sasaki K, Masui T et al. Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation. J Appl Phys 52, 051101 (2013). doi: 10.7567/JJAP.52.051101 |
[47] | He J, Zheng XT, Zheng ZW, Kong DG, Ding K et al. Pair directed silver nano-lines by single-particle assembly in nanofibers for non-contact humidity sensors. Nano Energy 92, 106748 (2022). doi: 10.1016/j.nanoen.2021.106748 |
[48] | Hu GQ, Guan K, Lu LB, Zhang JR, Lu N et al. Engineered functional surfaces by laser microprocessing for biomedical applications. Engineering 4, 822–830 (2018). doi: 10.1016/j.eng.2018.09.009 |
[49] | Yu YC, Bai S, Wang ST, Hu AM. Ultra-short pulsed laser manufacturing and surface processing of microdevices. Engineering 4, 779–786 (2018). doi: 10.1016/j.eng.2018.10.004 |
[50] | Liu SLZ, Kim SY, Henry KE, Shah DS, Kramer-Bottiglio R. Printed and laser-activated liquid metal-elastomer conductors enabled by ethanol/PDMS/liquid metal double emulsions. ACS Appl Mater Interfaces 13, 28729–28736 (2021). doi: 10.1021/acsami.0c23108 |
[51] | Liu XH, Zhang DZ, Wang DY, Li TT, Song XS et al. A humidity sensing and respiratory monitoring system constructed from quartz crystal microbalance sensors based on a chitosan/polypyrrole composite film. J Mater Chem A 9, 14524–14533 (2021). doi: 10.1039/D1TA02828F |
[52] | Heng WZ, Yang G, Kim WS, Xu KC. Emerging wearable flexible sensors for sweat analysis. Biodes Manuf 5, 64–84 (2022). doi: 10.1007/s42242-021-00171-2 |
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors |
Design and fabrication of flexible capacitive humidity sensors. (a) Fabrication processes of flexible Ga2O3/LM humidity sensors, including ultrasonication, spraying coating and laser sintering. (b) Schematic of the mechanism to form GWLM films by laser sintering and the sensing mechanism of Ga2O3/LM-based humidity sensors.
Characterizations of flexible humidity sensors. SEM images of GWLM (a–d) with and (a, e) without laser sintering. (f) EDX images of the Ga, In, and O distributions. (g) Histogram of diameter size distribution for the unsintered GWLM particles on the PI film. (h) Resistivity of the laser induced conductive GWLM paths at different laser fluences. (i) The minimum resolution of sintered LM path at a laser fluence of 9.4 J/cm2. (j–l) Schematics of Ga2O3/LM-based humidity sensors with various fabrication parameters (i.e. widths and lengths of electrodes, UV laser fluence) (top). Cycle measurements of Ga2O3/LM-based humidity sensors by periodically varying the humidity from 30% RH to 95% RH (bottom).
(a) Photo of a flexible Ga2O3/LM-based humidity sensor. (b) Capacitance change of Ga2O3/LM-based humidity sensor at different RHs. The inset shows the image of this sensor. (c) A temperature dependent test of Ga2O3/LM-based humidity sensor via varying temperatures from 25 °C to 45 °C. The temperature in the oven was recorded by a commercial thermal sensor. (d, e) Long-term stability measurement (50 cycles) under 95% RH. (f) Cycle measurements of four different batches of humidity sensors by periodically varying the humidity from 30% RH to 95% RH.
(a) Photos of a humidity sensor on a commercial mask worn on the subject’s face. (b) Human respiration test of a subject by mouth at a rest state. (c) Response and recovery time of the sensor. (d–f) Real-time monitoring of respiratory rate by nose of a subject at a rest state. Real-time monitoring of palm moisture while (g) drinking hot water and (h) exercising.